PENJADWALAN JALUR BUS DALAM KOTA DENGAN MODEL PETRINET DAN ALJABAR MAX-PLUS (STUDI KASUS BUSWAY TRANSJAKARTA)

Winarni

Jurusan Matematika FKIP Universitas Adhi Buana Surabaya email: winarni_its@yahoo.com

ABSTRAK

Jaringan jalur bus dalam kota merupakan salah satu fasilitas transportasi umum yang memegang peranan penting dalam kehidupan masyarakat kota yang mempunyai karakteristik mobilitasnya cukup tinggi. Jaringan bus TransJakarta (Busway) di Jakarta merupakan salah satu contohnya. Jaringan bus tersebut dibangun antara lain sebagai solusi permasalahan di sektor angkutan umum dan memberikan pilihan solusi untuk mengatasi kemacetan lalu lintas di Jakarta. Salah satu masalah penting dalam sistem transportasi tersebut yang menjadi keluhan masyarakat adalah mengenai ketidakpastian waktu tunggu kedatangan bus di tiap-tiap halte, hal ini dimungkinkan antara lain karena belum adanya penjadwalan yang baik pada sistem tersebut. Dalam penelitian ini akan dilakukan penjadwalan keberangkatan bus menggunakan pendekatan aljabar max-plus dengan terlebih dahulu mengkontruksi model sistem dengan Petrinet. Studi kasus dalam penelitian ini adalah jaringan bus TransJakarta. Dari penelitian ini diharapkan memperoleh desain jadwal keberangkatan bus di tiap halte pada masing-masing koridor.

Kata kunci: jalur bus dalam kota, penjadwalan, aljabar max-plus, Petrinet, busway.

PENDAHULUAN

Karakteristik daerah perkotaan yaitu antara lain padat penduduknya dan masyarakatnya mempunyai mobilitas yang cukup tinggi tersebut menjadikan masyarakat kota sangat kebutuhan transportasi. bergantung pada Tentunya hal ini berdampak besar pada arus lalu lintas di jalan raya, sehingga kepadatan bahkan kemacetan arus lalu lintas pun hampir tidak bisa dihindarkan masyarakat setiap hari. Terlebih lagi dengan semakin meningkatnya taraf perekonomian masyarakat dan semakin mudahnya kredit kendaraan bermotor yang tidak diiringi dengan adanya upaya peningkatan dan perbaikan mutu fasilitas dan regulasi sistem transportasi umum optimal mengakibatkan pengguna kendaraan pribadi semakin meningkat. Pemandangan kemacetan arus lalu lintas dan dampaknya antara lain polusi udara, stress, pemborosan bahan bakar minyak (BBM) dan lain-lain adalah hal menyedihkan yang harus dihadapi dan dialami masyarakat hampir setiap hari.

Peningkatan dan perbaikan mutu fasilitas dan regulasi dalam pelayanan transportasi umum secara optimal yang mampu memberikan kepuasan kepada masyarakat, setidaknya dapat memberikan alternatif pada masyarakat untuk lebih memilih menggunakan jasa transportasi umum daripada menggunakan kendaraan pribadi sendiri-sendiri. Jika masyarakat sudah lebih tertarik menggunakan jasa transportasi umum, hal ini berarti penggunaan kendaraan pribadi

berkurang sehingga mengurangi kemacetan arus lalu lintas di jalan raya dan secara tidak langsung ikut memberikan kontribusi pada penghematan BBM.

Saat ini di Jakarta khususnya sedang terus dikembangkan jaringan transportasi Trans-Jakarta dalam upaya untuk mengatasi kemacetan, salah satunya adalah busway. Jika dilihat dari perencanaannya dan terlepas dari kesadaran masyarakat mengenai jalur khusus busway yang relatif masih kurang, sistem tersebut mempunyai peluang besar untuk berhasil, terlebih lagi ketika harga BBM semakin mahal. Mengutip suatu artikel mengenai busway, dikatakan bahwa peranan busway semakin penting ketika harga BBM naik (http://bataviabusway.blogspot.com).

Namun, sejauh ini masih banyak keluhan dari pengguna antara lain mengenai ketidakpastian kedatangan bus di tiap-tiap halte, terkadang cepat terkadang cukup lama bahkan ketika bus sudah datang di halte namun bus sudah penuh penumpang. Dengan sistem yang ada saat ini, para pengguna jasa bus TransJakarta harus menunggu seringkali bus ketidakpastian. Meskipun kondisi halte dalam keadaan kosong, tidak menjamin penumpang bisa langsung naik bus yang datang berikutnya, terutama pada jam-jam sibuk (http://TransJakartainfo.com). Hal ini dimungkinkan karena belum adanya penjadwalan pada sistem tersebut yang dapat mengoptimalkan alokasi jumlah armada sehingga kebutuhan

pengguna jasa bus TransJakarta dapat terpenuhi selain kendala operasional lainnya.


Kajian yang mengarah pada tujuan memperbaikan sistem transportasi umum perlu terus dikembangkan. Terkait dengan masalah ini, mulai tahun 90an hingga saat ini kajian teori Aljabar Max-Plus untuk pemodelan, analisis dan kontrol antara lain dalam jaringan transportasi, bidang manufaktur, jaringan komunikasi dan sistem komputer terus berkembang.

Berdasarkan uraian di atas, dalam penelitian ini dikaji model Petrinet dan model aljabar max-plus untuk mendesaian penjadwalan suatu jaringan transportasi umum dalam hal ini jalur bus dalam kota dengan studi kasus jaringan busway Translakarta.

SISTEM JARINGAN BUSWAY TRANSJAKARTA

Jakarta adalah salah satu kota termacet di Indonesia. Saat ini, di Jakarta sedang terus dikembangkan jaringan transportasi dalam upaya untuk mengatasi kemacetan, antara lain jaringan busway TransJakarta. Adapun denah jaringan busway TransJakarta baik yang sudah beroperasi atau sedang dalam proses dapat dilihat pada Gambar 1. (http://bataviabusway.blogspot.com)

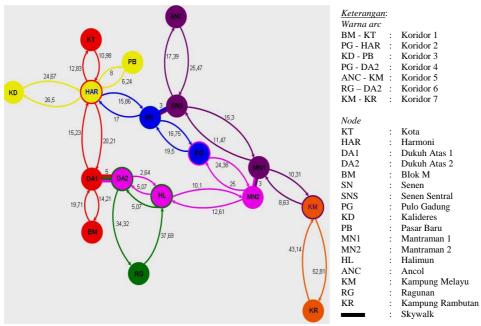
Dalam makalah ini, yang akan dikaji adalah jaringan bus TransJakarta (busway) di Jakarta dengan jumlah koridor yang sudah aktif beroperasi sampai dengan bulan November 2008 yaitu sebanyak 7 koridor seperti dalam Gambar 1. Ada sedikit perubahan pada koridor 6, yaitu rute Ragunan–Halimun menjadi Ragunan–Dukuh Atas 2. Sedangkan jumlah armada maksimum yang dialokasikan untuk tiap-tiap koridor berdasarkan data yang diperoleh dari Kantor Badan Layanan Umum TransJakarta dapat dilihat pada Tabel 1. (untuk hari kerja dari jam 05.00-08.00)

Gambar 1. Denah Busway Koridor 1 s/d 15

Taber 1. Alokasi Bus Hap Koridor Busway						
	Koridor 1 (Blok M -Kot	Pemberangkata	an bus dari Pool ke			
Periode	Headway (menit)	Alokasi bus (unit)	Blok M/M.Agung	Kota/H.I		
05:00 - 06:00	4,5	20	12	8		
06:00 - 07:00	1,8	50	17	13		
07:00 - 08:00	1,1	80	18	14		
ŀ	Koridor 2 (Pulo Gadung - Ha	Pemberangkata	Pemberangkatan bus dari Pool ke			
Periode	Headway (menit)	Alokasi bus (unit)	Pulo Gadung/Asmi	Harmoni/Pedongkelan		
05:00 - 06:00	5	20	12	8		
06:00 - 07:00	2	43	13	10		
07:00 - 08:00	2	43	0	0		
Korid	or 3 (Kalideres - Harmoni -	Pasar Baru)	Pemberangkata	an bus dari Pool ke		
Periode	Headway (menit)	Alokasi bus (unit)	Kalideres	Harmoni		
05:00 - 06:00	6	20	8	12		
06:00 - 07:00	2,4	46	16	10		
07:00 - 08:00	2,4	46	0	0		
Ko	ridor 4 (Pulo Gadung - Dukı	ıh Atas 2)	Pemberangkatan bus dari Pool ke			
Periode	Headway (menit)	Alokasi bus (unit)	PuloGadung	Dukuh Atas 2		
05:00 - 06:00	5	20	12	8		
06:00 - 07:00	3	30	6	4		
07:00 - 08:00	3	30	0	0		
K	oridor 5 (Ancol - Kampung	Melayu)	Pemberangkata	an bus dari Pool ke		
Periode	Headway (menit)	Alokasi bus (unit)	Ancol	Kp. Melayu		
05:00 - 06:00	5,6	18	6	12		
06:00 - 07:00	4,3	22	2	3		
07:00 - 08:00	3,7	27	2	2		
К	Koridor 6 (Ragunan - Dukuh Atas 2)			an bus dari Pool ke		
Periode	Headway (menit)	Alokasi bus (unit)	Ragunan	Dukuh Atas 2		
05:00 - 06:00	5	20	12	8		
06:00 - 07:00	3	31	7	4		
07:00 - 08:00	3	31	0	0		

Tabel 1. Alokasi Bus Tiap Koridor Busway

Tabel 1. (lanjutan...)


Koridor 7 (Kampung Melayu - Kampung Rambutan)			Pemberangkatan bus dari Pool ke	
Periode	Headway (menit)	Alokasi bus (unit)	Kp. Melayu	Kp. Rambutan
05:00 - 06:00	5	20	8	12
06:00 - 07:00	3,3	30	0	10
07:00 - 08:00	3,3	30	0	0

Ket: Headway adalah interval waktu di ujung koridor antara keberangkatan bus dengan keberangkatan bus sebelumnya.

Adapun data waktu tempuh antar halte di tiap koridor yang diperoleh dari obsevasi di lapangan selama beberapa hari yaitu tanggal 25–29 Agustus, 21–23 Oktober, dan 12 November 2008. Namun, karena terbatasnya jumlah halaman makalah ini, data tersebut tidak dapat ditampilkan lengkap dalam makalah ini dan

hanya dirangkum dalam tabel 2. Data tersebut selanjutnya diasumsikan tetap.

Berdasarkan data-data di atas dapat disusun graf dari jaringan busway adalah sebagai berikut:

Gambar 2. Graf Jaringan Busway

MODEL PETRINET

Petrinet dikembangkan pertama kali oleh C.A. Petri pada awal 1960-an. Ini merupakan salah satu alat untuk memodelkan sistem event diskrit. Pada Petrinet, event berkaitan dengan transisi dan keadaan (state) berkaitan dengan place. Dalam sistem event diskrit, perubahan keadaan terjadi karena adanya perubahan event. Agar suatu event dapat terjadi, beberapa keadaan harus dipenuhi terlebih dahulu. Place dapat berfungsi sebagai input atau output suatu transisi. Place sebagai input menyatakan keadaan yang harus dipenuhi agar transisi dapat terjadi. Setelah transisi terjadi maka keadaan akan berubah. Place yang menyatakan keadaan tersebut adalah output dari transisi. Berikut ini adalah definisi Petrinet:

<u>Definisi 1.</u> (Cassandras, 1993). Petrinet adalah 4-tuple (P, T, A, w) dengan $P: himpunan berhingga place, <math>P = \{p_1, p_2, \dots, p_n\},$

$$T$$
: himpunan berhingga transisi, $T = \{t_1, t_2, ..., t_m\}$, A : himpunan arc, $A \subseteq (P \times T) \cup (T \times P)$, w : fungsi bobot, $w: A \rightarrow \{1, 2, 3, ...\}$.

Petrinet dapat digambarkan sebagai graf berarah. Node dari graf berupa place yan1g diambil dari himpunan place P atau transisi yang diambil dari himpunan transisi T. Pada graf Petrinet diperbolehkan menggunakan beberapa arc untuk menghubungkan dua node atau ekivalen dengan memberikan bobot ke setiap arc yang menyatakan jumlah arc. Struktur ini dikenal dengan struktur multigraf. Dalam membahas representasi Petrinet secara grafik akan digunakan notasi I(tj) dan O(tj) yang masingmasing menyatakan himpunan place input ke transisi tj dan output dari transisi tj. Secara matematis definisi tersebut dapat ditulis menjadi persamaan berikut (Cassandras, 1993)

 $I(tj) = \{pi : (pi, tj) \in A\}$ $O(tj) = \{pi : (tj, pi) \in A\}$

Dengan istilah lain, $I(tj) = \{pi : (pi, tj) \in A\}$ menunjukkan I(tj) adalah himpunan upstream place untuk transisi tj dan $O(tj) = \{pi : (tj, pi) \in A\}$ menunjukkan O(tj) himpunan downstream place untuk transisi tj.

Notasi yang sama dapat digunakan untuk mendeskripsikan input dan output transisi untuk place *pi*, yaitu

$$I(pi) = \{tj : (tj, pi) \in A\}$$

 $O(pi) = \{tj : (pi, tj) \in A\}$

 $I(pi) = \{tj : (tj, pi) \in A\}$ menunjukkan I(pi) adalah himpunan upstream transisi untuk place pi dan $O(pi) = \{tj : (pi, tj) \in A\}$ menunjukkan O(pi) himpunan downstream transisi untuk place pi.

Grafik Petrinet terdiri dari dua macam node yaitu lingkaran dan garis/persegipanjang kecil. Lingkaran menyatakan place sedangkan garis/persegipanjang kecil menyatakan transisi. disimbolkan dengan panah menghubungkan place dan transisi. Pada Petrinet tidak diperkenankan adanya arc antara place dengan place atau antara transisi dengan transisi. Arc yang menghubungkan place pi ke transisi tj berarti $pi \in I(ti)$. Jika bobot arc dari place pi ke transisi ti adalah k ditulis w(pi, ti) = k, maka terdapat k arc dari place pi ke transisi tj atau sebuah arc dengan bobot k. Transisi pada Petrinet menyatakan event pada sistem event diskrit dan place merepresentasikan kondisi agar event dapat terjadi. Token adalah sesuatu yang diletakkan di place yang menyatakan terpenuhi tidaknya suatu kondisi. Secara grafik token digambarkan dengan dot dan diletakkan di dalam place. Jika jumlah token banyak maka dituliskan dengan angka.

Definisi 2. (Cassandras, 1993).

Penanda (marking) x pada Petrinet adalah fungsi $x: P \rightarrow \{0, 1, 2, ...\}$.

Penanda dinyatakan dengan vektor yang berisi bilangan bulat nonnegatif yang menyatakan jumlah token yaitu

$$X = [x(p_1), x(p_2), ..., x(p_n)]^T$$
.

Jumlah elemen x sama dengan banyak place di Petrinet. Elemen ke-i pada vektor X merupakan jumlah token pada place p_i , $x(pi) \in \{0, 1, 2, ...\}$.

Definisi 3. (Cassandras, 1993).

Petrinet bertanda (marked) adalah 5-tuple (P, T, A, w, x_0) dimana (P, T, A, w) adalah Petrinet dan X_0 adalah penanda awal.

Selanjutnya Petrinet bertanda cukup disebut Petrinet dan istilah tanda tersebut disebut token. Seperti pemodelan sistem pada umumnya, maka harus didefinisikan keadaan (state) pada Petrinet. Keadaan pada Petrinet adalah token Petrinet.

Definisi 4. (Cassandras, 1993).

Keadaan (state) Petrinet bertanda adalah
$$X = [x(p_1), x(p_2), ..., x(p_n)]^T$$
.

Jumlah token pada place adalah sebarang bilangan bulat nonnegatif, tidak harus terbatas (bounded). Ruang keadaan (state space) X pada Petrinet bertanda dengan n place didefinisikan oleh semua vektor berdimensi n dengan elemenelemennya adalah bilangan bulat nonnegatif, sehingga $\mathbf{x}(p_i)$ Î $\{0, 1, 2, 3, \dots\}$. Tetapi, dalam menyusun Petrinet perlu dihindari terjadinya ledakan (blow up) token pada satu atau lebih token, karena hal ini menunjukkan Petrinet tersebut tidak stabil.

Definisi 5. (Cassandras, 1993).

Transisi $tj \in T$ pada Petrinet bertanda dikatakan enabled jika

$$x(pi) \ge w(pi, tj), \forall pi \in I(tj)$$

Definisi 6. (Cassandras, 1993).

Fungsi perubahan keadaan,

$$f: \{0, 1, 2, \dots\}^n \times T \rightarrow \{0, 1, 2, \dots\}^n$$

pada Petrinet bertanda (P, T, A, w, X_0) terdefinisi untuk transisi $t_i \in T$ jika dan hanya jika

$$x(p_i) \ge w(p_i, t_j), \forall pi \in I(tj)$$

Jika $f(x, t_j)$ terdefinisi maka ditulis $x' = f(x, t_j)$, dimana

$$x'(p_i) = x(p_i) - w(p_i, t_j) + w(t_j, p_i),$$

 $i = 1, 2, ..., n, j = 1, 2, ..., m$

Keadaan di mana tidak ada transisi yang enabled disebut keadaan terminal dan Petrinet mengalami deadlock. Sistem dikatakan tidak stabil jika terjadi ledakan (blow up) pada nilai variabel keadaannya. Variabel keadaan dari Petrinet adalah jumlah token pada setiap place. Jika jumlah token pada satu atau lebih place bertambah menuju ke tak hingga maka dikatakan Petrinet tidak stabil. Penyusunan Petrinet yang baik diharapkan menghindari terjadinya deadlock dan tidak stabil

Untuk menyusun model Petrinet dan model Aljabar Max-Plus yang dibahas dalam penelitian ini, diperlukan spesifikasi fisik sebagai berikut:

- a) Jalur-jalur dalam jaringan busway (koridor), seperti yang sudah dipaparkan di atas.
- b) Jumlah dan distribusi bus di tiap-tiap koridor dapat dilihat pada Tabel 2.
- c) Aturan sinkronisasi antar keberangkatan bus

Berdasarkan data waktu tempuh rata-rata antar halte dan data alokasi bus tiap koridor serta mempertimbangkan kondisi halte ujung dan halte transit, maka diperoleh distribusi bus di tiap lintasan (dengan waktu referensi 07.30) seperti pada Tabel 2 di bawah ini. Data tersebut selanjutnya diasumsikan tetap.

Tabel 2. Waktu Tempuh, Distribusi Bus, dan Pendefinisian Variabel

Koridor	Variabel	Keberangkatan dari	Menuju ke halte	Waktu Tempuh (menit)	Jumlah bus yang beroperasi
1	X1	Blok M	Dukuh Atas 1	19,71	18
1	X2	Dukuh Atas 1	Harmoni	15,23	12
1	X3	Harmoni	Kota	12,83	7
1	X4	Kota	Harmoni	10,98	9
1	X5	Harmoni	Dukuh Atas 1	20,21	17
1	X6	Dukuh Atas 1	Blok M	14,21	5
2	X7	Pulo Gadung	Senen	19,5	10
2	X8	Senen	Harmoni	17	9
2	X 9	Harmoni	Senen	15,86	8
2	X10	Senen	Pulo Gadung	16,75	8
3	X11	Kalideres	Harmoni	24,67	10
3	X12	Harmoni	Pasar Baru	8	4
3	X13	Pasar Baru	Harmoni	6,24	2
3	X14	Harmoni	Kalideres	26,5	11
4	X15	Pulo Gadung	Mantraman 2	24,38	9
4	X16	Mantraman 2	Halimun	12,61	4
4	X17	Halimun	Dukuh Atas 2	5,07	2
4	X18	Dukuh Atas 2	Halimun	2,64	1
4	X19	Halimun	Mantraman 2	10,1	3
4	X20	Mantraman 2	Pulo Gadung	25	8
5	X21	Ancol	Sentral Senen	25,47	8
5	X22	Sentral Senen	Mantraman 1	15,3	4
5	X23	Mantraman 1	Kp. Melayu	10,31	2
5	X24	Kp. Melayu	Mantraman 1	8,63	2
5	X25	Mantraman 1	Sentral Senen	11,47	3
5	X26	Sentral Senen	Ancol	17,39	6
6	X27	Ragunan	Halimun	37,69	13
6	X28	Halimun	Dukuh Atas 2	5,07	2
6	X 29	Dukuh Atas 2	Ragunan	34,32	11
7	X30	Kp. Melayu	Kp. Rambutan	52,81	16
7	X31	Kp. Rambutan	Kp. Melayu	43,14	13

Berdasarkan observasi di lapangan mengenai kondisi sistem jaringan busway dan berdasarkan hasil perhitungan jumlah bus yang beroperasi pada waktu referensi pukul 07.30 seperti terlihat pada Tabel 2 di atas, maka dapat disusun aturan sinkronisasi pada jaringan busway dengan 7 koridor tersebut sebagai berikut

- i) Koridor 1 (BLOK M KOTA): BM HAR DA1 KT
 - Keberangkatan bus yang ke-(k+1) dari DA1 menuju HAR (ke arah KT) dan keberangkatan bus yang ke-(k+1) dari DA1 menuju BM keduanya menunggu kedatangan bus yang berangkat ke-(k-1) dari HL menuju DA2 (yang berasal dari MN2) dan menunggu kedatangan bus yang berangkat ke-(k-1) dari HL menuju DA2 (yang berasal dari RG) menuju DA2 dan masing-masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari DA2 ke DA1.
 - Keberangkatan bus yang ke-(k+1) dari HAR menuju KT dan keberangkatan bus yang ke-(k+1) dari HAR menuju DA1 (ke arah BM) keduanya menunggu kedatangan bus yang berangkat ke-(k-9) dari KD

menuju HAR (ke arah PB), menunggu kedatangan bus yang berangkat ke-(k-1) dari PB menuju HAR (ke arah KD), dan menunggu kedatangan bus yang berangkat ke-(k-8) dari SN menuju HAR (yang berasal dari PG).

- ii) Koridor 2 (PULO GADUNG HARMONI): PG SN HAR
 - Keberangkatan bus yang ke-(k+1) dari PG menuju SN (ke arah HAR) menunggu kedatangan bus yang berangkat ke-(k-7) dari MN2 menuju PG (yang berasal dari DA2).
 - Keberangkatan bus yang ke-(k+1) dari SN menuju HAR menunggu kedatangan bus yang berangkat ke-(k-7) dari ANC menuju SNS (ke arah KM) dan menunggu kedatangan bus yang berangkat ke-(k-2) dari MN1 menuju SNS (ke arah ANC) dan masing-masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari SNS ke SN. Dan sedikit berbeda dengan lintasan lain, halte-halte yang disinggahi dari SN ke HAR dan dari HAR ke SN berbeda, sehingga keberangkatan bus yang ke-(k+1) dari SN menuju HAR juga

- menunggu kedatangan bus yang berangkat ke-(k-8) dari HAR menuju SN.
- Keberangkatan bus yang ke-(k+1) dari HAR menuju SN menunggu kedatangan bus yang berangkat ke-(k-9) dari KD menuju HAR (ke arah PB), menunggu kedatangan bus yang berangkat ke-(k-1) dari PB menuju HAR (ke arah KD), menunggu kedatangan bus yang berangkat ke-(k-8) dari KT menuju HAR (ke arah BM) dan menunggu kedatangan bus yang berangkat ke-(k-11) dari DA1 menuju HAR (ke arah KT).
- Keberangkatan bus yang ke-(k+1) dari SN menuju PG menunggu kedatangan bus yang berangkat ke-(k-7) dari ANC menuju SNS (ke arah KM) dan menunggu kedatangan bus yang berangkat ke-(k-2) dari MN1 menuju SNS (ke arah ANC) dan masing-masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari SNS ke SN.
- iii) Koridor 3 (KALIDERES PASAR BARU): KD – HAR – PB
 - Keberangkatan bus yang ke-(k+1) dari HAR menuju PB dan keberangkatan bus yang ke-(k+1) dari HAR menuju KD keduanya menunggu kedatangan bus yang berangkat ke-(k-8) dari KT menuju HAR (ke arah BM), menunggu kedatangan bus yang berangkat ke-(k-11) dari DA1 menuju HAR (ke arah KT), dan menunggu kedatangan bus yang berangkat ke-(k-8) dari SN menuju HAR.
- iv) Koridor 4 (PULO GADUNG DUKUH ATAS 2) : PG – MN2 – HL – DA2
 - Keberangkatan bus yang ke-(k+1) dari PG menuju MN2 (ke arah DA2) menunggu kedatangan bus yang berangkat ke-(k-7) dari SN menuju PG (yang berasal dari HAR).
 - Keberangkatan bus yang ke-(k+1) dari MN2 menuju HL dan keberangkatan bus yang ke-(k+1) dari MN2 menuju PG keduanya menunggu kedatangan bus yang berangkat ke-(k-3) dari SNS menuju MN1 (ke arah KM) dan menunggu kedatangan bus yang berangkat ke-(k-1) dari KM menuju MN1 (ke arah ANC) dan masingmasing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari SNS ke SN.
 - Keberangkatan bus yang ke-(k+1) dari DA2 menuju HL (ke arah PG) menunggu kedatangan bus yang berangkat ke-(k-17) dari BM menuju DA1 (ke arah KT) dan menunggu menunggu kedatangan bus yang berangkat ke-(k-16) dari HAR menuju DA1 (ke arah BM) dan masing-

- masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari DA1 ke DA2.
- Keberangkatan bus yang ke-(k+1) dari HL menuju MN2 (ke arah PG) menunggu kedatangan bus yang berangkat ke-(k-12) dari RG menuju HL (ke arah DA2).
- v) Koridor 5 (ANCOL KAMPUNG MELAYU): ANC – SNS – MN1 – KM
 - Keberangkatan bus yang ke-(k+1) dari SNS menuju MN1 (ke arah KM) dan keberangkatan bus yang ke-(k+1) dari SNS menuju ANC keduanya menunggu kedatangan bus yang berangkat ke-(k-7) dari HAR menuju SN (ke arah PG) dan menunggu kedatangan bus yang berangkat ke-(k-9) dari PG menuju SN (ke arah HAR) dan masing-masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari SN ke SNS.
 - Keberangkatan bus yang ke-(k+1) dari MN1 menuju KM dan keberangkatan bus yang ke-(k+1) dari MN1 menuju SNS (ke arah ANC) keduanya menunggu kedatangan bus yang berangkat ke-(k-8) dari PG menuju MN2 (ke arah DA2) dan menunggu kedatangan bus yang berangkat ke-(k-2) dari HL menuju MN2 (ke arah PG) dan masing-masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari MN2 ke MN1.
 - Keberangkatan bus yang ke-(k+1) dari KM menuju MN1(ke arah ANC) menunggu kedatangan bus yang berangkat ke-(k-12) dari KR menuju KM.
- vi) Koridor 6 (RAGUNAN DUKUH ATAS 2): RG – HL – DA2 / DA2 – RG
 - Keberangkatan bus yang ke-(k+1) dari DA2 menuju RG menunggu kedatangan bus yang berangkat ke-(k-1) dari HL menuju DA2 (yang berasal dari MN2). Selain itu juga menunggu kedatangan bus yang berangkat ke-(k-17) dari BM menuju DA1 (ke arah KT) dan menunggu kedatangan bus yang berangkat ke-(k-16) dari HAR menuju DA1 (ke arah BM) dan masing-masing ditambah waktu tempuh rata-rata untuk berjalan lewat skywalk dari DA1 ke DA2.
- vii) Koridor 7 (KAMPUNG MELAYU KAMPUNG RAMBUTAN): KM KR
 - Keberangkatan bus yang ke-(k+1) dari KM menuju KR menunggu kedatangan bus yang berangkat ke-(k-1) dari MN1 menuju KM.

Berdasarkan spesifikasi fisik di atas, maka dapat disusun model Petrinet untuk penjadwalan keberangkatan bus. Selanjutnya dari model Petrinet berikut, dapat diterjemahkan menjadi model aljabar max-plus (dan sebaliknya).

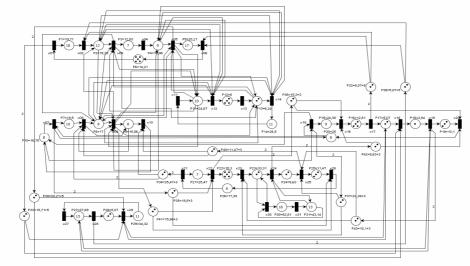
Pertama, disusun Petrinet untuk tiap koridor, kemudian disinkronisasi berdasarkan aturan sinkronisasi di atas. Petrinet yang disusun berikut ini dimaksukan untuk menggambarkan sinkronisasi antar keberangkatan berdasarkan aturan sinkronisasi yang telah diberikan di atas, namun tidak dimaksudkan untuk menggambarkan pergerakan jaringan bus secara simultan. Dengan pendefinisian Petrinet sebagaimana telah dijelaskan di atas, maka Petrinet yang disusun untuk permasalahan ini adalah Petrinet dengan waktu dikarakterisasi oleh P, T, A, w , X₀, dan T , yaitu sebagai berikut:

P: himpunan berhingga place, $P = \{p_1, p_2, ..., p_{43}\}$, dengan jumlah token pada place $p_1, p_2, ..., p_{31}$ menunjukkan jumlah distribusi bus pada masingmasing rute yang bersesuaian, sedangkan token pada p_{32} , p_{33} , ..., p_{43} tidak menunjukkan jumlah bus, namun dikondisikan untuk menyusun Petrinet yang sesuai untuk permasalahan ini.

T: himpunan berhingga transisi, $T = \{t_1, t_2, ..., t_{31}\}$, dalam hal ini akan digunakan notasi untuk masing-masing transisi adalah x yaitu $T = \{x_{01}, x_{02}, ..., x_{31}\}$. Transisi-transisi tersebut merepresentasikan event keberangkatan bus di halte-halte ujung koridor dan halte transit. Hal ini bertujuan agar sesuai dengan notasi yang digunakan dalam penyusunan model aljabar max-plus.

A: himpunan arc, $A\subseteq (P\times T)\cup (T\times P)$, yaitu $A = \{(x_{01}, p_1), (p_1, x_{02}), (x_{02}, p_2), (p_2, x_{03}), (x_{03}, p_2), (p_3, p_4), (p_4, p_5), (p_5, p_6), (p_6, p_7), (p_7, p_8), (p_8, p_8), (p$ p_3), (p_3, x_{04}) , (x_{04}, p_4) , (p_4, x_{05}) , (x_{05}, p_5) , (p_{05}, x_{06}) , $(x_{06}, p_6), (p_6, x_{01}), (p_2, x_{14}), (x_{14}, p_2), (p_2, x_{12}), (x_{12}, x_{12}), (x_{12}$ p_2), (p_2, x_{09}) , (x_{09}, p_2) , (x_{03}, p_8) , (p_8, x_{03}) , (x_{03}, p_{11}) , $(p_{11}, x_{03}), (x_{03}, p_{13}), (p_{13}, x_{03}), (x_{05}, p_{11}), (p_{11}, x_{05}),$ $(x_{05}, p_{13}), (p_{13}, x_{05}), (x_{05}, p_8), (p_8, x_{05}), (x_{07}, p_7), (p_7, p_8)$ $(x_{08}), (x_{08}, p_8), (p_8, x_{09}), (x_{09}, p_9), (p_9, x_{10}), (x_{10}, p_{10}),$ $(p_{10}, x_{07}), (x_{07}, p_{20}), (p_{20}, x_{07}), (x_{08}, p_9), (p_9, x_{08}), (x_{09}, x_{09}), (x_{09}, x_{09})$ p_{11}), (p_{11}, x_9) , (x_{09}, p_{13}) , (p_{13}, x_{09}) , (x_{09}, p_4) , (p_4, x_{09}) , $(x_{11}, p_{11}), (p_{11}, x_{12}), (x_{12}, p_{12}), (p_{12}, x_{13}), (x_{13}, p_{13}),$ $(p_{13}, x_{14}), (x_{14}, p_{14}), (p_{14}, x_{11}), (x_{12}, p_4), (p_4, x_{12}), (x_{14}, p_{14}), (x_{14}, p_{14})$ p_4), (p_4, x_{14}) , (x_{12}, p_9) , (p_9, x_{12}) , (x_{14}, p_9) , (p_9, x_{14}) , $(x_{15}, p_{15}), (p_{15}, x_{16}), (x_{16}, p_{16}), (p_{16}, x_{17}), (x_{17}, p_{17}),$ $(p_{17}, x_{18}), (x_{18}, p_{18}), (p_{18}, x_{19}), (x_{19}, p_{19}), (p_{19}, x_{20}),$ $(x_{20}, p_{20}), (p_{20}, x_{15}), (x_{15}, p_{10}), (p_{10}, x_{15}), (x_{19}, p_{27}),$ $(p_{27}, x_{19}), (x_{21}, p_{21}), (p_{21}, x_{22}), (x_{22}, p_{22}), (p_{22}, x_{23}),$ $(x_{23}, p_{23}), (p_{23}, x_{24}), (x_{24}, p_{24}), (p_{24}, x_{25}), (x_{25}, p_{25}),$ $(p_{25}, x_{26}), (x_{26}, p_{26}), (p_{26}, x_{21}), (x_{24}, p_{31}), (p_{31}, x_{24}),$ $(x_{27}, p_{27}), (p_{27}, x_{28}), (x_{28}, p_{28}), (p_{28}, x_{29}), (x_{29}, p_{29}),$ $(p_{29}, x_{27}), (x_{29}, p_{17}), (p_{17}, x_{29}), (x_{30}, p_{30}), (p_{30}, x_{31}),$ $(x_{31}, p_{31}), (p_{31}, x_{30}), (p_{32}, x_{02}), (p_{32}, x_{06}), (p_{33}, x_{18}),$ $(p_{33}, x_{29}), (p_{34}, x_{08}), (p_{34}, x_{10}), (p_{35}, x_{22}), (p_{35}, x_{26}),$ $(p_{36}, x_{16}), (p_{36}, x_{20}), (p_{37}, x_{23}), (p_{37}, x_{25}), (p_{38}, x_{02}),$ $(p_{38}, x_{06}), (p_{39}, x_{18}), (p_{39}, x_{29}), (p_{40}, x_{8}), (p_{40}, x_{10}),$ $(p_{41}, x_{22}), (p_{41}, x_{26}), (p_{42}, x_{16}), (p_{42}, x_{20}), (p_{43}, x_{23}),$ $(p_{43}, x_{25}), (x_{17}, p_{32}), (x_{28}, p_{38}), (x_{01}, p_{33}), (x_{05}, p_{39}),$

 $(x_{21}, p_{34}), (x_{25}, p_{40}), (x_{07}, p_{35}), (x_{09}, p_{41}), (x_{22}, p_{36}), (x_{24}, p_{42}), (x_{15}, p_{37}), (x_9, p_{43})$


Fungsi bobot, $w: A \rightarrow \{1, 2, 3, ...\}$, yaitu semua arc dalam himpunan A tersebut bobotnya adalah 1, kecuali $w(x_{17}, p_{32}) = w(x_{28}, p_{38}) = w(x_{01}, p_{33}) = w(x_{05}, p_{39}) = w(x_{21}, p_{34}) = w(x_{25}, p_{40}) = w(x_{07}, p_{35}) = w(x_{09}, p_{41}) = w(x_{22}, p_{36}) = w(x_{24}, p_{42}) = w(x_{15}, p_{37}) = w(x_{9}, p_{43}) = 2.$

T adalah vektor yang elemen-elemennya merepresentasikan waktu tempuh perjalanan tiap-tiap rute, durasi waktu tersebut disertakan pada setiap place yang, dimana τ_i disertakan pada place p_i , untuk p_1 s/d p_{31} masing-masing disertakan τ_1 s/d τ_{31} yang menunjukkan waktu tempuh perjalanan dengan keberangkatan x_{01} s/d x_{31} , sedangkan untuk p_{32} s/d p_{43} masing-masing disertakan τ_{32} s/d τ_{43} yang menunjukkan waktu tempuh perjalanan yang bersesuaian ditambah waktu tempuh untuk berjalan di skywalk, karena p_{32} s/d p_{43} berkaitan dari kedatangan dan keberangkatan bus dihalte-halte yang ada dihubungkan dengan skywalk. Hal ini dapat dilihat lebih lengkap pada Gambar 3.

Inisialisasi X_0 untuk place p_1 , p_2 , ..., p_{31} disesuaikan dengan distribusi bus yang beroperasi pada tiap-tiap rute berdasarkan Tabel 2, sedangkan jumlah token pada p_{32} , p_{33} , . . . , p_{43} masing-masing diinisialisasi dengan token sebanyak 2 token. Hal ini dimaksudkan agar downstrem transisi dari place p₃₂, p₃₃, ..., p₄₃ enable. Selain itu, semua arc dalam Petrinet ini diberikan bobot 1, kecuali arc $(x_{17}, p_{32}), (x_{28}, p_{38}),$ $(x_{01}, p_{33}), (x_{05}, p_{39}), (x_{21}, p_{34}), (x_{25}, p_{40}), (x_{07}, p_{35}),$ $(x_{09}, p_{41}), (x_{22}, p_{36}), (x_{24}, p_{42}), (x_{15}, p_{37}), (x_9, p_{43})$ diberi bobot 2. Secara fisik, nilai bobot sama dengan 2 dan 2 token pada p_{32} , p_{33} , ..., p_{43} tersebut maksudnya bahwa kedatangan x_{17} , x_{28} , x_{01} , x_{05} , x_{21} , x_{25} , x_{07} , x_{09} , x_{22} , x_{24} , x_{15} , x_{19} , masing-masing ditunggu oleh 2 keberangkatan bus lainnya, sebagai contoh adalah: kedatangan penumpang dari keberangkatan x_{01} (dari Blok M ke Dukuh Atas 1) ditunggu oleh keberangkatan x_{18} (dari Dukuh Atas 2 ke Halimun) dan x_{29} (dari Dukuh Atas 2 ke Ragunan). Hal ini direpresentasikan oleh arc (x_{01}, p_{33}) , (p_{33}, x_{18}) , dan (p_{33}, x_{29}) , perlu diperhatikan pula bahwa durasi waktu yang tertera pada place adalah p_{33} adalah 19,71 + 5, ini menunjukkan 19,71 menit adalah waktu yang diperlukan untuk perjalanan keberangkatan x_{01} dan 5 menit adalah waktu yang diperlukan untuk berjalan melalui skywalk dari Dukuh Atas 1 ke Dukuh Atas 2. Hal ini dimaksudkan untuk menjamin sinkronisasi koridor 4 dengan koridor 1, bahwa penumpang

dari koridor 1 dapat transit ke koridor 4 melalui skywalk Dukuh Atas. Demikian halnya representasi arc (x_{05}, p_{39}) , (p_{39}, x_{18}) , dan (p_{39}, x_{29}) dimaksudkan untuk menjamin sinkronisasi koridor 6 dengan koridor 1, bahwa penumpang dari koridor 1 dapat transit ke koridor 6 melalui skywalk Dukuh Atas. Sehingga, x_{18} (dari Dukuh

Atas 2 ke Halimun) dan x_{29} (dari Dukuh Atas 2 ke Ragunan) keduanya harus menunggu kedatangan bus x_{01} dan x_{05} . Hal tersebut dimaksudkan untuk menjamin adanya sinkronisasi antara koridor 1 dan 6 sebagaimana aturan sinkronisasi yang telah diberikan di atas. Berikut ini Petrinet untuk keberangkatan bus pada jaringan busway.

Gambar 3. Petrinet untuk Jaringan Busway

MODEL ALJABAR MAX-PLUS

Sistem transportasi dapat dikatakan sebagai Sistem Dinamik Event Diskrit (SDED) sama halnya sebagai sistem manufakturing, Kedinamikan dari sistem tersebut digambarkan sebagai evolusi perlakuan sistem selama diberikan waktu periodenya. Sistem transportasi dinamik diatur dengan sinkronisasi, paralelisasi dan kejadian yang serentak/concurrency (Nait-Sidi-Moh, A., dkk., 2008).

Penggunaan pendekatan aljabar max-plus dalam sistem even diskrit dinamik adalah karena aljabar max-plus dapat menangani dengan mudah proses sinkronisasi (Braker, 1990). Pendekatan dengan aljabar max-plus terkenal dengan kemampuannya untuk diadaptasikan pada masalah yang dapat dimodelkan dengan event-graph (Nait-Sidi-Moh, A., dkk., 2008). Aljabar max-plus dapat dilihat penerapannya dalam sistem manufaktur dan pada masalah masalah yang berkaitan dengan jaringan transportasi yang sering berasal dari kejadian seperti sinkronisasi antara resources dan konflik yang terjadi ketika distribusi resources diperlukan (Nait-Sidi-Moh, A., dkk., 2008).

Sebelum, menyusun model aljabar maxplus, berikut diberikan konsep dasar mengenai struktur aljabar R_{max} oleh Baccelli, dkk (1992) sebagai berikut:

 R_{max} menotasikan himpunan bilangan real R \cup $\{\varepsilon=-\infty\}$ dengan dua operasi biner max dan

plus yang masing-masing dinotasikan dengan \oplus dan \otimes . Untuk setiap $a,b \in R_{\max}$, didefinisikan operasi \oplus dan \otimes dengan

$$a \oplus b = \text{maks}(a,b) \text{ dan } a \otimes b = a+b$$

Elemen netral untuk operasi \oplus adalah $\stackrel{def}{\varepsilon} = -\infty$

dan elemen netral untuk operasi \otimes adalah e=0. Operasi \oplus dibaca o-plus dan operasi \otimes dibaca o-times. Himpunan R_{max} dengan operasi \oplus dan \otimes disebut aljabar max-plus dan didefinisikan sebagai $\Re_{max} = \{R_{max}, \oplus, \otimes, \varepsilon, e\}$.

Adapun bentuk umum model aljabar maxplus adalah sebagai berikut:

Suatu barisan $(x(k): k \in N)$ dapat dibangun oleh

$$x(k+1) = A \otimes x(k) \tag{1}$$

untuk $k \ge 0$, di mana $A \in \mathbb{R}^{n \times x}_{\max}$, $x \in \mathbb{R}^n$ dan $x(0) = x_0$ adalah kondisi awal. Secara ekivalen barisan x(k) dapat ditulis

$$x(k) = A^{\otimes k} \otimes x_0 \tag{2}$$

untuk semua $k \ge 0$. (Heidergott, B., dkk, 2006) Dalam hal ini, x(k) adalah waktu keberangkatan bus yang ke-k di suatu halte.

Berdasarkan data di Tabel 1 dan Tabel 2, dan berdasarkan model Petrinet masing-masing koridor sebelum sinkronisasi, maka dapat disusun model aljabar max-plus sebelum sinkronisasi sebagai berikut:

$$x_{1}(k+1) = 14,21 \otimes x_{6}(k-4) \qquad x_{17}(k+1) = 12,61 \otimes x_{16}(k-3)$$

$$x_{2}(k+1) = 19,71 \otimes x_{1}(k-17) \qquad x_{18}(k+1) = 5,01 \otimes x_{17}(k-1)$$

$$x_{3}(k+1) = 15,23 \otimes x_{2}(k-11) \qquad x_{19}(k+1) = 2,64 \otimes x_{18}(k)$$

$$x_{4}(k+1) = 12,83 \otimes x_{3}(k-6) \qquad x_{20}(k+1) = 10,10 \otimes x_{19}(k-2)$$

$$x_{5}(k+1) = 10,98 \otimes x_{4}(k-8) \qquad x_{21}(k+1) = 17,39 \otimes x_{26}(k-5)$$

$$x_{6}(k+1) = 20,21 \otimes x_{5}(k-16) \qquad x_{22}(k+1) = 25,47 \otimes x_{21}(k-7)$$

$$x_{7}(k+1) = 16,75 \otimes x_{10}(k-7) \qquad x_{23}(k+1) = 15,30 \otimes x_{22}(k-3)$$

$$x_{8}(k+1) = 19,5 \otimes x_{7}(k-9) \qquad x_{24}(k+1) = 10,31 \otimes x_{23}(k-1)$$

$$x_{9}(k+1) = 17 \otimes x_{8}(k-8) \qquad x_{25}(k+1) = 8,63 \otimes x_{24}(k-1)$$

$$x_{10}(k+1) = 15,86 \otimes x_{9}(k-7) \qquad x_{26}(k+1) = 11,47 \otimes x_{25}(k-2)$$

$$x_{11}(k+1) = 24,67 \otimes x_{11}(k-9) \qquad x_{28}(k+1) = 37,69 \otimes x_{27}(k-12)$$

$$x_{13}(k+1) = 8 \otimes x_{12}(k-3) \qquad x_{29}(k+1) = 5,07 \otimes x_{28}(k-1)$$

$$x_{14}(k+1) = 6,24 \otimes x_{13}(k-1) \qquad x_{30}(k+1) = 43,14 \otimes x_{31}(k-12)$$

$$x_{15}(k+1) = 24,38 \otimes x_{15}(k-8)$$

Dengan aturan sinkronisasi yang sudah dijelaskan pada bagian sebelumnya, maka model aljabar max-plus (3) menjadi sebagai berikut:

$$\begin{aligned} x_1(k+1) &= 14,21 \otimes x_6(k-4) \\ x_2(k+1) &= (19,71 \otimes x_1(k-17)) \oplus (5 \otimes 5 \otimes x_{17}(k-1)) \oplus (5 \otimes 5 \otimes x_{28}(k-1)) \\ x_3(k+1) &= (19,71 \otimes x_1(k-17)) \oplus (2 \otimes 5 \otimes x_{17}(k-1)) \oplus (6,24 \otimes x_{13}(k-1)) \oplus (17 \otimes x_8(k-8)) \\ x_4(k+1) &= (12,83 \otimes x_3(k-6) \\ x_5(k+1) &= (10,98 \otimes x_4(k-8)) \oplus (24,67 \otimes x_{11}(k-9)) \oplus (6,24 \otimes x_{13}(k-1)) \oplus (17 \otimes x_8(k-8)) \\ x_6(k+1) &= (20,21 \otimes x_5(k-16)) \oplus (5 \otimes 5 \otimes x_{27}(k-1)) \oplus (5 \otimes 5 \otimes x_{28}(k-1)) \\ x_7(k+1) &= (16,75 \otimes x_{10}(k-7)) \oplus (25 \otimes x_{20}(k-7)) \\ x_8(k+1) &= (16,75 \otimes x_{10}(k-7)) \oplus (25 \otimes x_{20}(k-7)) \oplus (3 \otimes 25,47 \otimes x_{21}(k-7)) \oplus (3 \otimes 11,47 \otimes x_{25}(k-2))) \\ x_9(k+1) &= (17 \otimes x_8(k-8)) \oplus (15,23 \otimes x_2(k-11)) \oplus (24,67 \otimes x_{11}(k-9)) \oplus (6,24 \otimes x_{13}(k-1)) \oplus (10,98 \otimes x_4(k-8)) \\ x_{10}(k+1) &= (15,86 \otimes x_9(k-7)) \oplus (3 \otimes 25,47 \otimes x_{21}(k-7)) \oplus (3 \otimes 11,47 \otimes x_{25}(k-2)) \\ x_{11}(k+1) &= 26,5 \otimes x_{14}(k-10) \\ x_{12}(k+1) &= 24,67 \otimes x_{11}(k-9) \oplus (15,23 \otimes x_2(k-11)) \oplus (10,98 \otimes x_4(k-8)) \oplus (17 \otimes x_8(k-8)) \\ x_{13}(k+1) &= 8 \otimes x_{12}(k-3) \\ x_{14}(k+1) &= (6,24 \otimes x_{13}(k-1)) \oplus (15,23 \otimes x_2(k-11)) \oplus (10,98 \otimes x_4(k-8)) \oplus (17 \otimes x_8(k-8)) \\ x_{15}(k+1) &= (25 \otimes x_{20}(k-7)) \oplus (16,75 \otimes x_{10}(k-7)) \\ x_{16}(k+1) &= (24,38 \otimes x_{15}(k-8)) \oplus (3 \otimes 15,3 \otimes x_{22}(k-3)) \oplus (3 \otimes 8,63 \otimes x_{24}(k-1)) \\ x_{17}(k+1) &= 12,61 \otimes x_{16}(k-3) \\ x_{19}(k+1) &= (2,64 \otimes x_{18}(k)) \oplus (37,69 \otimes x_{27}(k-12)) \\ x_{20}(k+1) &= (10,10 \otimes x_{19}(k-7)) \oplus (3 \otimes 15,3 \otimes x_{22}(k-3)) \oplus (3 \otimes 8,63 \otimes x_{24}(k-1)) \\ x_{21}(k+1) &= (15,33 \otimes x_{22}(k-7)) \oplus (3 \otimes 15,3 \otimes x_{22}(k-3)) \oplus (3 \otimes 8,63 \otimes x_{24}(k-1)) \\ x_{22}(k+1) &= (10,13 \otimes x_{23}(k-1)) \oplus (3 \otimes 15,3 \otimes x_{21}(k-7)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{23}(k+1) &= (10,13 \otimes x_{23}(k-1)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{24}(k+1) &= (10,13 \otimes x_{23}(k-1)) \oplus (3 \otimes 15,3 \otimes x_{22}(k-3)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{24}(k+1) &= (10,13 \otimes x_{23}(k-1)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{25}(k+1) &= (3,67 \otimes x_{21}(k-7)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{27}(k+1) &= (3,76 \otimes x_{21}(k-7)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{27}(k+1) &= (3,76 \otimes x_{21}(k-7)) \oplus (3 \otimes 15,86 \otimes x_{9}(k-7)) \\ x_{29}(k+1) &= (10$$

Selanjutnya, model (4) dapat dinyatakan dalam bentuk umum model aljabar max-plus pada persamaan (1), yaitu sebagai berikut:

$$x(k+1) = \bigoplus_{p=1}^{M} \left(A_p \otimes x(k+1-p) \right)$$
 (5)

dengan A_p adalah matriks berukuran $n \times n$ dan n adalah jumlah variabel. Matriks A_p adalah matriks yang berkaitan dengan x(k+1-p). Dan M dalam hal ini adalah jumlah bus maksimum di antara semua lintasan dalam grap pada Gambar 2. Berdasarkan Tabel 2 di atas, maka n adalah 31

dan M adalah 18 yaitu pada koridor 1 lintasan Blok M menuju Dukuh Atas 1. Sehingga, nantinya ada 18 buah matriks yaitu A_1 sampai dengan A_{18} .

Dalam hal ini, model pada (4) dapat dinyatakan dalam bentuk umum model max-plus pada persamaan (1) menjadi

$$\overline{x}(k+1) = \overline{A} \otimes \overline{x}(k) \tag{6}$$

dengan $\bar{x}(k)$ vektor berdimensi nM), yang didefinisikan sebagai

$$\bar{x}(k) = \begin{pmatrix} x_1(k) & \cdots & x_n(k) & x_1(k-1) & \cdots & x_n(k-1) & \cdots & x_1(k+1-M) & \cdots & x_n(k+1-M) \end{pmatrix}^T$$
(7)

di mana notasi T pada persamaan di atas menunjukkan transpose dan \overline{A} matriks berukuran (n.M) x (nM) yaitu

$$\overline{A} = \begin{pmatrix} A_1 & A_2 & \cdots & A_{M-1} & A_M \\ I_{\max} & \varepsilon & \cdots & \varepsilon & \varepsilon \\ \varepsilon & I_{\max} & \cdots & \varepsilon & \varepsilon \\ \vdots & \vdots & I_{\max} & \vdots & \vdots \\ \varepsilon & \varepsilon & \cdots & I_{\max} & \varepsilon \end{pmatrix}$$

dimana I_{\max} adalah matriks $n \times n$ dengan elemen diagonalnya adalah e dan elemen lainnya adalah e, dan e dalam matriks \overline{A} di atas adalah matriks $n \times n$ dengan semua elemennya adalah e. Dan $\overline{x}(k)$ seperti pada persamaan (7). Dalam permasalahan ini, vektor $\overline{x}(k)$ berdimensi 558 dan matriks \overline{A} berukuran 558 x 558)

Dengan Scilab dan Max-Plus Toolbox diperoleh bahwa nilai karakteristik matriks \overline{A} tersebut adalah 3.9542857 (λ = 3.9542857) dan eigen vektor dari matriks \overline{A} yaitu vx. Nilai karakteristik ini menunjukkan performa dari sistem penjadwalan keberangkatan bus, maksudnya bahwa setiap 3.9542857 menit sekali terjadi pemberangkatan bus di tiap-tiap halte atau dengan kata lain periode keberangkatan bus di tiap-tiap halte adalah 3.9542857 menit.

Jika jadwal keberangkatan bus adalah periodik dan diberikan waktu keberangkatan awal $\bar{x}(0)$ dengan jumlah bus yang beroperasi sama seperti pada Tabel 2, maka dapat disusun jadwal keberangkatan bus untuk keberangkatan-keberangkatan selanjutnya, dengan evolusi

$$\overline{x}(k+1) = \lambda^{\otimes (k+1)} \otimes \overline{x}(0)$$
 (8)

Nilai dalam vektor vx adalah mewakili menit, karena keterbatasan halaman vector vx tidak dituliskan dalam makalah ini, hal ini dapat dilihat selengkapnya pada (Winarni, 2009). Misalkan jaringan beroperasi pada pagi hari dimulai pukul 05.00, berarti yang berangkat pertama kali pada jaringan tersebut adalah x_3 yaitu pukul 05:00, keberangkatan x_1 (0) adalah pukul 05:30,001429, x_2 (0) pukul 05:34,932857,

dan seterusnya. Periode antar keberangkatan di masing-masing halte adalah sebesar eigenvalue yaitu 3,9542857.

Diperoleh pula bahwa critical circuit pada jaringan tersebut adalah Halte Dukuh Atas 2 – Halimun – Mantraman 2 – Mantraman 1 – Kp Melayu – Mantraman 1 – Mantraman 2 – Halimun – Dukuh Atas 2 karena bobot rata-rata circuit tersebut adalah sama dengan 3,9542857, yaitu maksimum dari bobot rata-rata semua circuit dalam jaringan (eigenvalue). Total waktu tempuh circuit tersebut adalah 55.36 menit dengan jumlah bus yang beroperasi pada circuit tersebut adalah 14 bus.

Semua pembahasan di atas adalah dengan mempertimbangkan halte-halte ujung koridor dan halte transit, belum memperhitungkan halte-halte 'kecil' yaitu halte-halte di sepanjang koridor selain halte ujung koridor dan halte transit. Untuk keberangkatan di halte-halte tersebut cukup ditambahkan waktu tempuh antara (Malte sebelumnya menuju halte tersebut. Sehingga desain jadwal keberangkatan bus untuk seluruh halte pada jaringan busway dengan 7 koridor dapat dilihat pada Tabel 3 di bagian lampiran.

PENUTUP

Kesimpulan

- Dalam penelitian ini telah disusun model Petrinet dan model aljabar max-plus untuk mendesain jadwal keberangkatan jaringan TransJakarta Busway. Petrinet yang dimaksudkan dapat dilihat pada Gambar 3 dan model aljabar max-plus dapat dilihat model (4). Dari model Petrinet dapat diterjemahkan menjadi model aljabar maxplus dan juga sebaliknya.
- 2. Model (4) dapat dinyatakan dalam bentuk umum model aljabar max-plus $\overline{x}(k+1) = \overline{A} \otimes \overline{x}(k)$ di mana matriks berukuran 558 x 558. Dengan Scilab dan Maxplus Algebra Toolbox (Subiono, 2008) diperoleh eigenvalue dari mariks \overline{A} sama dengan $\lambda(\overline{A}) = 3,9542857$. Eigenvalue ini menunjukkan bahwa setiap 3,9542857 menit sekali terjadi pemberangkatan bus di tiap-tiap halte atau dengan kata lain periode keberangkatan bus di tiap-tiap halte adalah 3,9542857 menit. Dengan mengambil eigenvektor matriks \overline{A} sebagai x(0) maka akan dapat ditentukan waktu keberangkatan bus ditiap-tiap halte ujung koridor dan halte transit yang ke-(k+1), untuk k = 0, 1, 2, 3, ...dengan $\overline{x}(k+1) = \lambda^{\otimes (k+1)} \otimes \overline{x}(0)$

- 3. Desain jadwal keseluruhan halte pada jaringan tersebut dapat dilihat pada Tabel 3.
- 4. Diperoleh bahwa critical circuit pada jaringan tersebut adalah Halte Dukuh Atas 2 Halimun Mantraman 2 Mantraman 1 Kp Melayu Mantraman 1 Mantraman 2 Halimun Dukuh Atas 2 karena bobot rata-rata circuit tersebut adalah sama dengan 3,9542857, yaitu maksimum dari bobot rata-rata semua circuit dalam jaringan (eigenvalue). Total waktu tempuh circuit tersebut adalah 55.36 menit dengan jumlah bus yang beroperasi pada circuit tersebut adalah 14 bus.

Saran

- 1. Observasi lapangan yang lebih lama dan pengumpulan data waktu tempuh yang lebih lengkap.
- 2. Melakukan reduksi matriks untuk efisiensi secara komputasi.
- 3. Dilakukan analisa lebih detail lagi pada Petrinet yang telah disusun tersebut.
- 4. Melakukan analisa jadwal jika terjadi keterlambatan.
- 5. Melakukan re-alokasi jumlah bus yang beroperasi pada jaringan, sehingga lebih optimal, misalnya dengan mengurangi alokasi bus pada circuit yang minimum dan menambahkannya pada critical circuit dan dengan mengoptimalkan alokasi bus yang disediakan pengelola.
- 6. Jika 8 koridor berikutnya (koridor 9 sampai dengan koridor 15) sudah terealisasi, penelitian ini dapat dikembangkan untuk seluruh koridor TransJakarta Busway.

DAFTAR PUSTAKA

- [1] Baccelli, F., Cohen, G., Olsder, G. J., dan Quadrat, J. P., (1992), *Synchronisation and Linearity, Algebra for Discrete Event Systems*. John Wiley and Sons, Inc., New York.
- [2] Batavia Busway, (16 Juni 2008, tanggal akses: 7 Agustus 2008), *Diskusi Busway di Veteran*, http://www.bataviabusway.blogspot.com.

- [3] Batavia Busway, (tanggal akses: 24 Juli 2008), Denah-Busway-v080116.jpg, http://www.bataviabusway.blogspot.com.
- [4] BLU TransJakarta Busway, (2007), *Company profile TransJakarta Busway*, Edisi3.
- [5] Braker, J.-G., (1991), "Max-algebra modelling and analysis of time-table dependent transportation networks". *Proceedings of the First European Control Conference (ECC'91*), Grenoble, France, hal. 1831–1836.
- [6] Cassandras, C.G., (1993), Discrete Event Systems: Modelling and Performance Analysis, Richard D. Irwin, Inc, and Aksen Associates Inc., Amherst.
- [7] Dieky, A., (2008), *Petrinet Toolbox*, Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember, Surabaya.
- [8] Heidergott, B., Olsder G. J., dan Woude, J. V. D., (2006), Max Plus at Work Modeling and Analysis of Synchronisation Systems: A Course on Max-Plus Algebra and Its Application, Princeton University Press, New Jersey.
- [9] Nait-Sidi-Moh, A., Manier, M. A., El Moudni, A., (2008), "Spectral analysis for performance evaluation in a bus network", *European Journal of Operational Research*, http://www.sciencedirect.com.
- [10] Suaratransjakarta, (20 Juni 2008, tanggal akses: 1 Agustus 2008), *Ketidakpastian menunggu bus*, http://www.TransJakartainfo.com.
- [11] Subiono, (2000), *On classes of min-max-plus systems and their application*, Thesis Ph.D., Technische Universiteit Delft, Delft.
- [12] Subiono, Dieky, A., (2008), *Max-plus Algebra Toolbox*, Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember, Surabaya.
- [13] Winarni, (2009), Penjadwalan Jalur Bus Dalam Kota Dengan Aljabar Max-Plus, Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember, Surabaya.

LAMPIRAN

Tabel 3. Desain Jadwal Periodik Keberangkatan Busway

No.	Variabel	Halte Keberangkatan	Halte Tujuan	Kendala
1	<i>X</i> ₁	Blok-M	Masjid Agung	14.21 + x ₆ atau 4.73 + x _{6,7}
2	X1,1	Masjid Agung	Bundaran Senayan	$8.75 + x_1$
3	X1,2	Bundaran Senayan	Gelora Bung Karno	$3.10 + x_{1,1}$
4	X _{1,3}	Gelora Bung Karno	Polda Metro	$1.02 + x_{1,2}$
5	X1,4	Polda Metro	Bendungan Hilir	$1.17 + x_{1,3}$
6	X1,5	Bendungan Hilir	Karet	$1.74 + x_{1,4}$
7	X _{1,6}	Karet	Setia budi	$1.37 + x_{1,5}$

0		Cotio hudi	Dulruh Atas 1	107.17
8	X1,7	Setia budi	Dukuh Atas 1	1.07 + $x_{1,6}$ 19,71+ x_1 , 10,07 + x_{17} , 10,07 + x_{28} atau
9	X2	Dukuh Atas 1	Tosari	1.5 + $x_{1,7}$, 10,07 + x_{17} , 10,07 + x_{28} atau 1.5 + $x_{1,7}$, 10,07 + x_{17} , 10,07 + x_{28}
10	X _{2,1}	Tosari	Bunderan HI	$1.47 + x_2$
11	X2,2	Bunderan HI	Sarinah	1.67 + x _{2,1}
12	X2,3	Sarinah	Bank Indonesia	1.41 + x _{2,2}
13	X _{2,4}	Bank Indonesia	Monumen Nasional	$3.07 + x_{2,3}$
14	X2,5	Monumen Nasional	Harmoni	$1.59 + x_{2,4}$
15	X 3	Harmoni	Sawah Besar	$15.23 + x_2, 17 + x_8, 24.67 + x_{11}, 6.24 + x_{13}$ atau $6.02 + x_{2,5}, 8 + x_{8,7}, 1.5 + x_{11,11}, 3.58 + x_{13,2}$
16	X3,1	Sawah Besar	Mangga Besar	$4.76 + x_3$
17	X3,2	Mangga Besar	Olimo	$2.57 + x_{3,1}$
18	X3,3	Olimo	Glodok	$1.05 + x_{3,2}$
19	X3,4	Glodok	Kota	$1.35 + x_{3,3}$
20	X4	Kota	Glodok	12.83 + x₃ atau 3.11 + x₃,₄
21	X4,1	Glodok	Olimo	$3.30 + x_4$
22	X4,2	Olimo	Mangga Besar	$1.34 + x_{4,1}$
23	X4,3	Mangga Besar	Sawah Besar	$1.26 + x_{4,2}$
24	X4,4	Sawah Besar	Harmoni	$2.53 + x_{4,3}$
25	X 5	Harmoni	Monumen Nasional	10.98 + x_4 , 17 + x_8 , 24.67 + x_{11} , 6.24 + x_{13} atau 2.54 + $x_{4,4}$, 8 + $x_{8,7}$, 1.5 + $x_{11,11}$, 3.58 + $x_{13,2}$
26	X5,1	Monumen Nasional	Bank Indonesia	$5.77 + x_5$
27	X5,2	Bank Indonesia	Sarinah	$4.82 + x_{5,1}$
28	X5,3	Sarinah	Bunderan HI	$2.33 + x_{5,2}$
29	X5,4	Bunderan HI	Tosari	$1.29 + x_{5,3}$
30	X5,5	Tosari	Dukuh Atas 1	3.08 + x _{5,4}
31	<i>X</i> ₆	Dukuh Atas 1	Setia Budi	$20.21 + x_5, 10.07 + x_{17}, 10.07 + x_{28}$ atau
32		Cotio Dudi	Vanat	$2.92 + x_{5,5}, 10.07 + x_{17}, 10.07 + x_{28}$
33	X6,1	Setia Budi Karet	Karet Bendungan Hilir	$0.94 + x_6$ $1.23 + x_{6,1}$
34	X _{6,2} X _{6,3}	Bendungan Hilir	Polda Metro Jaya	$1.25 + x_{6,1}$ $1.04 + x_{6,2}$
35	X _{6,4}	Polda Metro Jaya	Gelora Bung Karno	$1.46 + x_{6,2}$ $1.46 + x_{6,3}$
36	X _{6,4} X _{6,5}	Gelora Bung Karno	Bundaran Senayan	$1.40 + x_{6,3}$ $1.08 + x_{6,4}$
37	X6,6	Bundaran Senayan	Masjid Agung	$1.39 + x_{6,5}$
38	X _{6,7}	Masjid Agung	Blok M	2.33 + x _{6,6}
				$16.75 + x_{10}, 25 + x_{20}$ atau
39	X 7	Pulo Gadung	Bermis	$3.15 + x_{10,10}, 11 + x_{20,9}$
40	X7,1	Bermis	Pulo Mas	$3 + x_7$
41	X7,2	Pulo Mas	ASMI	$2.5 + x_{7,1}$
42	X7,3	ASMI	Pedongkelan	$1 + x_{7,2}$
43	X7,4	Pedongkelan	Cempaka Timur	$3 + x_{7,3}$
44	X7,5	Cempaka Timur	RS Islam	$3 + x_{7,4}$
45	X7,6	RS Islam	Cempaka Tengah	$1 + x_{7,5}$
46	X7,7	Cempaka Tengah	Ps. Cempaka Putih	$1 + x_{7,6}$
47	X7,8	Ps. Cempaka Putih	Rawa Selatan	0.75 + x _{7,7}
48	X7,9	Rawa Selatan	Galur	$0.75 + x_{7,8}$
49	X7,10	Galur	Senen	1 + $x_{7,9}$ 19.5 + x_7 , 15.86 + x_9 , 28.47 + x_{21} , 14.47 + x_{25} atau
50	<i>X</i> 8	Senen	Atrium	$3.5 + x_{7,10}, 3.53 + x_{9,3}, 12.82 + x_{21,4}, 9.58 + x_{25,3}$
51	X8,1	Atrium	RSPAD	$\begin{array}{c} 3, 3 + x_{7,10}, 3.33 + x_{9,3}, 12.02 + x_{21,4}, 9.30 + x_{25,3} \\ 1 + x_8 \end{array}$
52	X8,1 X8,2	RSPAD	DEPLU	$1 + \lambda_8$ $1 + \chi_{8,1}$
53	X8,3	DEPLU	Gambir 1	$1 + x_{0,1}$ $1 + x_{8,2}$
54	X8,4	Gambir 1	Istiglal	$2 + x_{8,3}$
55	X8,5	Istiqlal	Juanda	$2 + x_{8,4}$
56	X8,6	Juanda	Pecenongan	$1 + x_{8,5}$
57	X8,7	Pecenongan	Harmoni	$1 + x_{8,6}$
58	X9	Harmoni	Balai Kota	$17 + x_8, 15.23 + x_2, 10.98 + x_4, 24.67 + x_{11}, 6.24 + x_{13}$ atau $8 + x_{8,7}, 6.02 + x_{2,5}, 2.54 + x_{4,4}, 1.5 + x_{11,11}, 3.58 + x_{13,2}$
59	X9,1	Balai Kota	Gambir 2	$7.57 + x_9$
60	X9,2	Gambir 2	Kwitang	2.10 + x _{9,1}
61	X9,3	Kwitang	Senen	$2.66 + x_{9,2}$
62	X ₁₀	Senen	Galur	15.86 + x ₉ , 28.47 + x ₂₁ , 14.47 + x ₂₅ atau 3.53 + x _{9,3} , 12.82 + x _{21,4} , 9.58 + x _{25,3}
63	X10,1	Galur	Rawa Selatan	$\begin{array}{c} 3.33 + x_{9,3}, 12.02 + x_{21,4}, 3.30 + x_{25,3} \\ 2.11 + x_{10} \end{array}$
64	X _{10,1}	Rawa Selatan	Ps. Cempaka Putih	$1 + x_{10,1}$
65	X10,2	Ps. Cempaka Putih	Cempaka Tengah	$1.17 + x_{10,2}$
66	X10,3	Cempaka Tengah	RS Islam	$0.95 + x_{10,3}$
67	X10,5	RS Islam	Cempaka Timur	1.01 + <i>x</i> _{10,4}
68	X10,6	Cempaka Timur	Pedongkelan	1.15 + <i>x</i> _{10,5}
69	X10,7	Pedongkelan	ASMI	1.81 + <i>x</i> _{10,6}
			•	· · · · · · · · · · · · · · · · · · ·

	1	T	T =	1
70	X10,8	ASMI	Pulo Mas	$1.27 + x_{10,7}$
71	X10,9	Pulo Mas	Bermis	$1.03 + x_{10,8}$
72	X _{10,10}	Bermis	Pulo Gadung	$2.10 + x_{10,9}$
73	X11	Kalideres	Pesakih	26.5 + x ₁₄ atau 4.05 + x _{14,11}
74	X11,1	Pesakih	Sumur Bor	2.64 + x ₁₁
75	X _{11,2}	Sumur Bor	Rawa Buaya	$0.84 + x_{11,1}$
76	X11,3	Rawa Buaya	Jembatan Baru	$1.64 + x_{11,2}$
77	X11,4	Jembatan Baru	Dispenda	$1.36 + x_{11,3}$
78	X _{11,5}	Dispenda	Jembatan Gantung	$1.71 + x_{11,4}$
79	X11,6	Jembatan Gantung	Taman Kota	$1.6 + x_{11,5}$
80	X11,7	Taman Kota	Indosiar	$1.71 + x_{11,6}$
81	X _{11,8}	Indosiar	Jelambar	$3.3 + x_{11,7}$
82	X11,9	Jelambar	Grogol TriSakti	$4.32 + x_{11,8}$
83	X11,10	Grogol TriSakti	Rs.Sumber Waras	$2.55 + x_{11,9}$
84	X11,11	Rs.Sumber Waras	Harmoni	$1.50 + x_{11,10}$
85	X ₁₂	Harmoni	Pecenongan	$24.67 + x_{11}$, $15.23 + x_2$, $10.98 + x_4$, $17 + x_8$ atau
0.5	X12	Harmon	1 ecenongan	$1.5 + x_{11,11}$, $6.02 + x_{2,5}$, $2.54 + x_{4,4}$, $8 + x_{8,7}$
86	X _{12,1}	Pecenongan	Juanda	$3.68 + x_{12}$
87	X12,2	Juanda	Pasar Baru	$2.93 + x_{12,1}$
88	X13	Pasar Baru	Juanda	8 + x ₁₂ atau 1.38 + x _{12,2}
89	X _{13,1}	Juanda	Pecenongan	1.68 + x ₁₃
90	X13,2	Pecenongan	Harmoni	$0.98 + x_{13,1}$
91	V · ·	Harmoni	Rs.Sumber Waras	6.24 + x ₁₃ , 15.23 + x ₂ , 10.98 + x ₄ , 17 + x ₈ atau
91	X14			$3.58 + x_{13,2}, 6.02 + x_{2,5}, 2.54 + x_{4,4}, 8 + x_{8,7}$
92	X14,1	Rs.Sumber Waras	Grogol TriSakti	$4 + x_{14}$
93	X14,2	Grogol TriSakti	Jelambar	$1.5 + x_{14,1}$
94	X14,3	Jelambar	Indosiar	$2 + x_{14,2}$
95	X14,4	Indosiar	Taman Kota	$2 + x_{14,3}$
96	X14,5	Taman Kota	Jembatan Gantung	$3.47 + x_{14,4}$
97	X14,6	Jembatan Gantung	Dispenda	$1.03 + x_{14,5}$
98	X14,7	Dispenda	Jembatan Baru	$2.5 + x_{14,6}$
99	X14,8	Jembatan Baru	Rawa Buaya	$1.5 + x_{14,7}$
100	X14,9	Rawa Buaya	Sumur Bor	$2 + x_{14,8}$
101	X14,10	Sumur Bor	Pesakih	$1 + x_{14,9}$
102	X14,11	Pesakih	Kalideres	$1.45 + x_{14,10}$
103	X ₁₅	Pulo Gadung	Pasar Pulo Gadung	$25 + x_{20}$, $16.75 + x_{10}$ atau $11 + x_{20.9}$, $3.15 + x_{10.10}$
104	X15,1	Pasar Pulo Gadung	TU Gas	8.17 + x ₁₅
105	X15,2	TU Gas	Layur	3.18 + x _{15,1}
106	X15,3	Layur	Velodrome	$1.32 + x_{15,2}$
107	X15,4	Velodrome	Sunan Giri	$2.92 + x_{15,3}$
108	X15,5	Sunan Giri	UNI	$1.43 + x_{15.4}$
109	X15,6	UNI	Pramuka LIA	$1 + x_{15.5}$
110	X15,7	Pramuka LIA	Utan Kayu	$3.24 + x_{15.6}$
111	X15,8	Utan Kayu	Pasar Genjing	$0.99 + x_{15,7}$
112	X _{15,9}	Pasar Genjing	Mantraman 2	$0.88 + x_{158}$
	13,5		1	15,0
113	X ₁₆			$24.38 + x_{15}$, $18.3 + x_{22}$, $11.63 + x_{24}$ atail
114	A16	Mantraman 2	Manggarai	24.38 + <i>x</i> ₁₅ , 18.3 + <i>x</i> ₂₂ , 11.63 + <i>x</i> ₂₄ atau 1.25 + <i>x</i> ₁₅ , 8.28 + <i>x</i> _{22,3} , 5.18 + <i>x</i> _{24,3}
1.14				$1.25 + x_{15}, 8.28 + x_{22,3}, 5.18 + x_{24,3}$
114 115	X16,1	Manggarai	Pasar Rumput	1.25 + <i>x</i> ₁₅ , 8.28 + <i>x</i> _{22,3} , 5.18 + <i>x</i> _{24,3} 6.69 + <i>x</i> ₁₆
115	X16,1 X16,2	Manggarai Pasar Rumput	Pasar Rumput Halimun	$1.25 + x_{15}, 8.28 + x_{22,3}, 5.18 + x_{24,3}$ $6.69 + x_{16}$ $4.12 + x_{16,1}$
115 116	X16,1 X16,2 X17	Manggarai Pasar Rumput Halimun	Pasar Rumput Halimun Dukuh Atas 2	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$
115	X16,1 X16,2	Manggarai Pasar Rumput	Pasar Rumput Halimun	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau
115 116 117	X16,1 X16,2 X17 X18	Manggarai Pasar Rumput Halimun Dukuh Atas 2	Pasar Rumput Halimun Dukuh Atas 2 Halimun	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$
115 116	X16,1 X16,2 X17	Manggarai Pasar Rumput Halimun	Pasar Rumput Halimun Dukuh Atas 2	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau
115 116 117 118	X16,1 X16,2 X17 X18 X19	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$
115 116 117	X16,1 X16,2 X17 X18 X19 X19,1	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput	Pasar Rumput Halimun Dukuh Atas 2 Halimun	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19}
115 116 117 118 119 120	X16,1 X16,2 X17 X18 X19 X19,1 X19,2	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$
115 116 117 118 119	X16,1 X16,2 X17 X18 X19 X19,1	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau
115 116 117 118 119 120 121	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$
115 116 117 118 119 120 121	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20}
115 116 117 118 119 120 121 122 123	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{17} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$
115 116 117 118 119 120 121 122 123 124	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$
115 116 117 118 119 120 121 122 123 124 125	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$
115 116 117 118 119 120 121 122 123 124 125 126	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$ 1 + $x_{20,4}$
115 116 117 118 119 120 121 122 123 124 125 126 127	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12+ $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$ 1 + $x_{20,4}$ 1 + $x_{20,5}$
115 116 117 118 119 120 121 122 123 124 125 126 127	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6 X20,7	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12+ $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$ 1 + $x_{20,4}$ 1 + $x_{20,5}$ 3 + $x_{20,6}$
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6 X20,7 X20,8	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12+ $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,4}$ 1 + $x_{20,5}$ 3 + $x_{20,6}$ 1 + $x_{20,7}$
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6 X20,7 X20,8 X20,9	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Pulo Gadung	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12+ $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,6}$ 1 + $x_{20,6}$ 1 + $x_{20,7}$ 1 + $x_{20,8}$
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6 X20,7 X20,8 X20,9 X21	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Ancol	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Pulo Gadung Pademangan	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12+ $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$ 1 + $x_{20,4}$ 1 + $x_{20,5}$ 3 + $x_{20,6}$ 1 + $x_{20,7}$ 1 + $x_{20,8}$ 17.39 + x_{26} atau 3 + $x_{26,4}$
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6 X20,7 X20,8 X20,9 X21 X21,1	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Ancol Pademangan	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Pulo Gadung Pademangan Jembatan Merah	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12 + $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$ 1 + $x_{20,6}$ 1 + $x_{20,7}$ 1 + $x_{20,8}$ 17.39 + x_{26} atau 3 + $x_{26,4}$ 4 + x_{21}
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	X16,1 X16,2 X17 X18 X19 X19,1 X19,2 X20 X20,1 X20,2 X20,3 X20,4 X20,5 X20,6 X20,7 X20,8 X20,9 X21	Manggarai Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Ancol	Pasar Rumput Halimun Dukuh Atas 2 Halimun Pasar Rumput Manggarai Mantraman 2 Pasar Genjing Utan Kayu Pramuka LIA UNJ Sunan Giri Velodrome Layur TU Gas Pasar Pulo Gadung Pulo Gadung Pademangan	1.25 + x_{15} , 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 6.69 + x_{16} 4.12+ $x_{16,1}$ 12.61 + x_{16} atau 1.8 + $x_{16,2}$ 5.07 + x_{17} , 24.71 + x_{1} , 25.21 + x_{5} atau 5.07 + x_{17} , 6.5 + $x_{1,7}$, 7.92 + $x_{5,5}$ 2.64 + x_{18} , 37.69 + x_{27} atau 2.64 + x_{18} , 4.83 + $x_{27,17}$ 2.43 + x_{19} 1.73 + $x_{19,1}$ 10.1 + x_{19} , 18.3 + x_{22} , 11.63 + x_{24} atau 5.93 + $x_{19,2}$, 8.28 + $x_{22,3}$, 5.18 + $x_{24,3}$ 2 + x_{20} 1 + $x_{20,1}$ 1 + $x_{20,2}$ 3 + $x_{20,3}$ 1 + $x_{20,4}$ 1 + $x_{20,5}$ 3 + $x_{20,6}$ 1 + $x_{20,7}$ 1 + $x_{20,8}$ 17.39 + x_{26} atau 3 + $x_{26,4}$

		1 =	T =	1=
135	X21,4	Budi Utomo	Senen Sentral	$1.65 + x_{21,3}$
136	X22	Senen Sentral	Pal Putih	$25.47 + x_{21}, 22.5 + x_7, 18.86 + x_9$ atau
137	V	Pal Putih	Kramat Sentiong	$9.82 + x_{21,4}, 6.5 + x_{7,10}, 6.53 + x_{9,3}$ $5.42 + x_{22}$
138	X _{22,1} X _{22,2}	Kramat Sentiong	Salemba UI	$1.58 + x_{22,1}$
139	X22,2 X22,3	Salemba UI	Mantraman 1	$3.02 + x_{22,2}$
				$15.3 + x_{22}$, $27.38 + x_{15}$, $13.1 + x_{19}$ atau
140	X23	Mantraman 1	Tegalan	$5.28 + x_{22,3}, 4.25 + x_{15,9}, 8.93 + x_{19,2}$
141	X23,1	Tegalan	Slamet Riyadi	$1.3 + x_{23}$
142	X23,2	Slamet Riyadi	Kebon Pala	$1.08 + x_{23,1}$
143	X23,3	Kebon Pala	Pasar Jatinegara	$1.66 + x_{23,2}$
144	X23,4	Pasar Jatinegara	Kampung Melayu	$2.48 + x_{23,3}$
145	X24	Kampung Melayu	Kebon Pala	$10.31 + x_{23}$, $43.14 + x_{31}$ atau $3.8 + x_{23,4}$, $4,29 + x_{31,12}$
146	X24,1	Kebon Pala	Slamet Riyadi	$3.78 + x_{24}$
147	X24,2	Slamet Riyadi	Tegalan	$1.61 + x_{24,1}$
148	X24,3	Tegalan	Mantraman 1	$1.05 + x_{24,2}$
149	V	Mantraman 1	Salemba UI	8.63 + x_{24} , 27.38 + x_{15} , 13.1 + x_{19} atau 2.18 + $x_{24,3}$, 4.25 + $x_{15,9}$, 8.93 + $x_{19,2}$
150	X25 X25,1	Salemba UI	Kramat Sentiong	$2.10 + x_{24,3}, 4.23 + x_{15,9}, 6.73 + x_{19,2}$ $2 + x_{25}$
151	X25,1 X25,2	Kramat Sentiong	Pal Putih	$1.58 + x_{25,1}$
152	X25,3	Pal Putih	Senen Sentral	$1.30 + x_{25,2}$
				$11.47 + x_{25}$, $22.5 + x_7$, $18.86 + x_9$ atau
153	X26	Senen Sentral	Budi Utomo	$6.58 + x_{25,3}, 6.5 + x_{7,10}, 6.53 + x_{9,3}$
154	X26,1	Budi Utomo	Pasar Baru Timur	$3.28 + x_{26}$
155	X26,2	Pasar Baru Timur	Jembatan Merah	$1.83 + x_{26,1}$
156	X26,3	Jembatan Merah	Pademangan	$3.6 + x_{26,2}$
157	X26,4	Pademangan	Ancol	$5.69 + x_{26,3}$
158	X27	Ragunan	Dep. Pertanian	34.32 + x ₂₉ atau 3.13 + x _{29,16}
159	X27,1	Dep. Pertanian	SMK 57	$2.86 + x_{27}$
160	X27,2	SMK 57	Jati Padang	$2.32 + x_{27,1}$
161	X27,3	Jati Padang	Pejaten	$1.48 + x_{27,2}$
162	X27,4	Pejaten	Buncit Indah	$2.27 + x_{27,3}$
163 164	X27,5	Buncit Indah Warung Jati	Warung Jati Imigrasi	1.16 + <i>x</i> _{27,4} 2.34 + <i>x</i> _{27,5}
165	X27,6	Imigrasi	Duren Tiga	$2.34 + x_{27,5}$ $2.38 + x_{27,6}$
166	X _{27,7} X _{27,8}	Duren Tiga	Mampang Prapatan	$\begin{array}{c} 2.36 + \chi_{27,6} \\ 1.72 + \chi_{27,7} \end{array}$
167	X27,8 X27,9	Mampang Prapatan	Kuningan Timur	$2.91 + x_{27,8}$
168	X27,10	Kuningan Timur	Patra Kuningan	$3.12 + x_{27,9}$
169	X27,11	Patra Kuningan	DepKes	$1.23 + \chi_{27,10}$
170	X27,12	DepKes	GOR Sumantri	$1.37 + x_{27,11}$
171	X _{27,13}	GOR Sumantri	Karet Kuningan	$1.87 + x_{27,12}$
172	X27,14	Karet Kuningan	Kuningan Madya A	$1.29 + x_{27,13}$
173	X27,15	Kuningan Madya Ai	Setia Budi Utara	$0.96 + x_{27,14}$
174	X27,16	Setia Budi Utara	Latuharhari	$1.09 + x_{27,15}$
175	X27,17	Latuharhari	Halimun	$2.48 + x_{27,16}$
176	X28	Halimun	Dukuh Atas 2	37.69 + x ₂₇ atau 4.83 + x _{27,16}
177	X29	Dukuh Atas 2	Setia Budi Utara	$5.07 + x_{28}$, $24.71 + x_1$, $25.21 + x_5$, $5.07 + x_{17}$ atau
				$5.07 + x_{28}, 6.5 + x_{1,7}, 7.92 + x_{5,5}, 5.07 + x_{17}$
178	X29,1	Setia Budi Utara	Kuningan Madya A	$3.59 + x_{29}$
179 180	X29,2	Kuningan Madya A Karet Kuningan	Karet Kuningan GOR Sumantri	1.27 + x _{29,1}
180	X29,3 X29,4	GOR Sumantri	DepKes	$ \begin{array}{c} 1.08 + x_{29,2} \\ 1.27 + x_{29,3} \end{array} $
182	X29,4 X29,5	DepKes	Patra Kuningan	$\begin{array}{c} 1.27 + x_{29,3} \\ 2.07 + x_{29,4} \end{array}$
183	X29,5 X29,6	Patra Kuningan	Kuningan Timur	$1.36 + \chi_{29,5}$
184	X29,6 X29,7	Kuningan Timur	Mampang Prapatan	$1.34 + \chi_{29,6}$ $1.34 + \chi_{29,6}$
185	X _{29,8}	Mampang Prapatan	Duren Tiga	$4.03 + x_{29,7}$
186	X29,9	Duren Tiga	Imigrasi	$2.29 + \chi_{29,8}$
187	X29,10	Imigrasi	Warung Jati	$1.93 + x_{29,9}$
188	X _{29,11}	Warung Jati	Buncit Indah	$1.33 + x_{29,10}$
189	X29,12	Buncit Indah	Pejaten	$2.89 + x_{29,11}$
190	X29,13	Pejaten	Jati Padang	$1.02 + x_{29,12}$
191	X29,14,	Jati Padang	SMK 57	$2 + x_{29,13}$
192	X29,15	SMK 57	Dep Pertanian	$2.11 + x_{29,14}$
193	X29,16	Dep Pertanian	Ragunan	$1.62 + x_{29,15}$
194	X30	Kampung Melayu	Bidara Cina	43.14 + <i>x</i> ₃₁ , 10.31 + <i>x</i> ₂₃ atau
195		Bidara Cina	Colonggang Dm:	$4.29 + x_{31,12}, 3.8 + x_{23,4}$ $2.65 + x_{30}$
196	X30,1	Gelanggang Rmj	Gelanggang Rmj Cawang Otista	$3.07 + x_{30,1}$
196	X30,2	Cawang Otista	BNN	$\begin{array}{c} 3.07 + x_{30,1} \\ 2.87 + x_{30,2} \end{array}$
198	X30,3 X30,4	BNN	Cawang UKI	$\begin{array}{c} 2.07 + x_{30,2} \\ 1.4 + x_{30,3} \end{array}$
199	X30,4 X30,5	Cawang UKI	BKN	$3.11 + x_{30,4}$
-//	لرناده		1	1 NJU/T

200	X30,6	BKN	PGC (Cililitan)	$2.46 + x_{30,5}$
201	X30,7	PGC (Cililitan)	Pasar Kramat Jati	$2.4 + x_{30,6}$
202	X30,8	Pasar Kramat Jati	Pasar Induk	$6.43 + x_{30,7}$
203	X30,9	Pasar Induk	RS. Har. Bunda	$11.03 + x_{30,8}$
204	X30,10	RS. Har. Bunda	Fly Over Ry Bogor	$2.7 + x_{30,9}$
205	X30,11	Fly Over Ry Bogor	Kamp.Rambutan	$2.65 + x_{30,10}$
206	X31	Kamp. Rambutan	Tanah Merdeka	52.81 + <i>x</i> ₃₀ atau 12.06 + <i>x</i> _{30,11}
207	X31,1	Tanah Merdeka	Fly Over Ry Bogor	$3.5 + x_{31}$
208	X31,2	Fly Over Ry Bogor	RS. Har.Bunda	$2.25 + x_{31,1}$
209	X31,3	RS. Har. Bunda	Pasar Induk	$3.08 + x_{31,2}$
210	X31,4	Pasar Induk	Pasar Kramat Jati	$2.71 + x_{31,3}$
211	X31,5	Pasar Kramat Jati	PGC (Cililitan)	$12.02 + x_{31,4}$
212	X31,6	PGC (Cililitan)	BKN	$3.44 + x_{31,5}$
213	X31,7	BKN	Cawang UKI	$1.92 + x_{31,6}$
214	X31,8	Cawang UKI	BNN	$2.21 + x_{31,7}$
215	X31,9	BNN	Cawang Otista	$2.05 + x_{31,8}$
216	X31,10	Cawang Otista	Gelanggang Rmj	$2.02 + x_{31,9}$
217	X31,11	Gelanggang Rmj	Bidara Cina	$2.48 + x_{31,10}$
218	X31,12	Bidara Cina	Kampung Melayu	$1.18 + x_{31,11}$