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ABSTRACT 

The theory of the Riemann integral was not fully satisfactory. Many important functions do not have a 

Riemann integral. So, Henstock and Kurzweil make the new theory of integral. From the background, the 

writer will be research about Henstock-Kurzweil integral and also theorems of Henstock- Kurzweil 

Integral. Henstock- Kurzweil Integral is generalized from Riemann integral. In this case the writer uses 

research methods literature or literature study carried out by way explore, observe, examine and identify 

the existing knowledge in the literature. In this thesis explain about partition which used in Henstock- 

Kurzweil Integral, definition and some property of Henstock- Kurzweil Integral. And  some properties  of  

Henstock- Kurzweil integral as follows: value of the Henstock- Kurzweil integral is unique, linearity of the 

Henstock-Kurzweil integral, Additivity of the Henstock-Kurzweil integral, Cauchy criteria, nonnegativity of 

Henstock-Kurzweil integral and primitive function. 

Keywords: Riemann Integral, � � ���� partition, Henstock-Kurzweil Integral. 

 

 

INTRODUCTION 

We have already mentioned the 

developments, during the 1630’s, by Fermat and 

Descrates leading to analytic geometry and the 

theory of the derivatives. However, the subject 

we know as calculus did not begin to take shape 

until the late 1660’s when Issac Newton (1642-

1727) created his theory of fluxions and invented 

the method of inverse tangents to find areas 

under curves. The reversal of the process for 

finding tangent lines to find areas was also 

discovered in the 1680’s by Leibniz (1646-1716), 

who was unaware of Newton unpublished work 

and who arrived at the discovery by a very 

different route. Leibniz introduced the 

terminology calculus differential and calculus 

integral, since finding tangents lines involved 

differences and finding areas involved 

summations. Thus they had discovered that 

integration, being a process of summation, was 

inverse to the operation of differentiation. 

During a century and a half of development 

and refinement of techniques, calculus consisted 

of these paired operations and their applications, 

primarily to physical problems. In the 1850s, 

Bernhard Riemann (1826-1866) adopted a new 

and different viewpoint. He separated the 

concept of integration from its companion, 

differentiation, and examined the motivating 

summation and limit process of finding areas by 

itself. He broadened the scope by considering all 

functions on an interval for which this process of 

integration could be defined: the class of 

integrable functions. The fundamental Theorem 

of calculus became a result that held only for a 

restricted set of integrable functions. The 

viewpoint of Riemann led others to invent other 

integration theories, the most significant being 

Lebesgue’s theory of integration.    

The theory of the Riemann integral was not 

fully satisfactory. Many important functions do 

not have a Riemann integral even after we extend 

the class of integrable functions slightly by 

allowing "improper" Riemann integrals. For 

example Characteristic function.  

In 1957, the Czech mathematician Jaroslav 

Kurzweil discovered a new definition of this 

integral elegantly similar in nature to Riemann's 

original definition which he named the gauge 

integral; the theory was developed by Ralph 

Henstock. Due to these two important 

mathematicians, it is now commonly known as 

Henstock-Kurzweil integral. The simplicity of 

Kurzweil's definition made some educators 

advocate that this integral should replace the 

Riemann integral in introductory calculus 

courses, but this idea has not gained traction.  

Concerning the background of the study, 

the writer formulates the statement of the 

problems as follows:  

1. How does the concept δ-fine partition of 

Henstock-Kurzweil Integral? 

2. How does the definition of Henstock-

Kurzweil Integral? 

3. How does the fundamental properties of 

Henstock-Kurzweil Integral? 

 

 

REVIEW OF THE RELATED LITERATURE 

1.  Supremum and Infimum 

We start with a straightforward definition 

similar to many others in this course. Read the 
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definitions carefully, and note the use of ≤ and ≥ 

here rather than <   and   > . 

Definition 1  

Let S be a subset of ℜ  

1. A number ℜ∈u  is said to be an upper 

bound of S if  us ≤ for all Ss ∈  

2. A number ℜ∈w  is said to be a lower 

bound of S if  sw ≤ for all Ss ∈  

Definition 2  

Let S be a subset of ℜ . 

1. If S is bounded above, then an upper bound 

u is said to be supremum (or a least upper 

bound) of S if no number smaller than u is 

an upper bound of S.  

2. If S is bounded below, then a lower bound 

w is said to be infimum (or a greatest lower 

bound) of S if no number greater than w  is 

a lower bound of S.  

2. Limit of Function 

The essence of the concept of limit for real 

valued functions of a real variable is this: if L is a 

real number, then ( ) Lxf
xx

=
→ 0

lim  means that the 

value f(x) can be made as close to L as we wish by 

taking x sufficiently close to x0. This is made 

precise in the following definition. 

 
Figure 1. The limit of  f   at  x0 is L 

 

Definition 3  

We say that f(x) approaches the limit L as x 

approaches 0x , and write 

( ) Lxf
xx

=
→ 0

lim
 

If f  is defined on some deleted neighborhood of  

0x , and for every 0>ε , there is a 0>δ  such 

that 

( ) ε<− Lxf
 

If  

δ<−< 00 xx
 

3. Compact Sets 

Definition 4 

A subset K of R is said to be compact if every 

open cover of K has a finite sub cover. 

In other words, a set K is compact if, whenever 

it is contained in the union of a collection G

{ }αG=  of open sets in R  , then it is contained 

in the union of some finite number of sets in G. 

Theorem 1 

If K is a compact subset of R, then K is closed 

and bounded. 

Proof:  

We shall first show that K is bounded. For 

each  � � 	, let 
�: 
 ���,��. Since each 


�  is open and since   � � � 
����� 
 �, we 

see that the collection �
�: � � 	� is an open 

cover of K.  since K is compact, this collection 

has a finite sub cover , so there exists � � 	 

such that, 

� � �
�
�

���

 
� 
 ���,�� 

Therefore K is bounded, since it is contained 

in the bounded interval ���,��. 
We show that K is bounded, by showing that 

its complement � 
 ���� is open. To do so, 

let � 
 ���� be arbitrary and for each � � 	, 

we let � ! "# � �: |# � �| % 1 �' (. Since  

� ) �, we have � � � � ~ �� . Since K is 

compact, there exists � � 	 such that 

� ��� 
~

 ��

 �� 

Now it follows from this that  

� + ,� � 1 �' , � - 1 �' . 
 /, 

so that ,� � 1 �' , � - 1 �' . � ���� . but since 

u was an arbitrary point in ����, we infer that 

���� is open. 

4. Continuity 

Definition 5 

a) We say that f is continuous at 0x  if  f is 

defined on an open interval ( )ba,  

containing 0x  and ( ).)(lim 0
0

xfxf
xx

=
→

 

b) We say that f is continuous from the left at 

0x  if  f is defined on an open interval 

( )0,xa   and ( ).)( 00 xfxf =−  

c) We say that f is continuous from the right 

at 0x  if  f is defined on an open interval  

( )bx ,0  and ( )00 )( xfxf =+  

 

 



Siti Nurul Afiyah  

 

26 Volume 2 No. 1 November 2011  

Theorem 2 

a) A function f is continuous at  0x  if and only if f  

is defined on an open interval ( )ba,  

containing 0x  and for each 0>ε , there is a 

0>δ  such that ε<− )()( 0xfxf ,  

whenever δ<− 0xx  

b) A function f is continuous from the right at  

0x  if and only if f is defined on an open 

interval [ )bx ,0  and for each 0>ε , there is a 

0>δ  such that ε<− )()( 0xfxf
 

holds 

whenever δ+≤≤ 00 xxx  

c) A function f is continuous from the left at  0x  

if and only if f is defined on an open interval 

( ]0,xa  and for each 0>ε , there is a 0>δ  

such that ε<− )()( 0xfxf
 
holds whenever 

00 xxx ≤≤−δ  

Definition 6  

A function f is continuous on an open interval 

( )ba,  if it is continuous at every  point in ( )ba, . 

if, in addition. 

( ) ( )bfbf =−  or  
( ) ( )afaf =+

 

Then f is continuous on ( ] [ )baorba ,, , 

respectively, if f continuous on ( )ba,
 
and  

( ) ( )bfbf =−  or  
( ) ( )afaf =+

 both hold, then f 

is continuous on [ ]ba, . 

 

Definition 7 

A function f is piecewise continuous on [ ]ba,  if  

a) ( ).0 +xf exist for all 0x  in [ )ba, ; 

b) ( ).0 −xf exist for all 0x  in ( ]ba, ; 

c) ( ) ( ) ( )000 xfxfxf =−=+  for all but 

finitely many points 0x  in ( )ba, .  

If c) fails to hold at some 0x  in ( )ba, , f has a 

jump discontinuity at 0x . Also, f has a jump 

discontinuity at a if ( ) ( )afaf ≠=+ or at b if 

( ) ( )bfbf ≠− . 

 

5. Uniform Continuity 

Definition 8 

Let RA ⊆ , let RAf →: ,we say that f is 

uniformly continuous on A if for each 0>ε there 

is a ( ) 0>εδ  such that if  x, u A∈ are any 

number satisfying , then ( ) ( ) ε<− ufxf . 

Theorem 3 

 If  f  is continuous on a closed interval [ ]ba, , 

then f is uniformly continuous on [ ]ba, . 

Proof:   

Suppose that 0>ε  . Since   f   is continuous on 

[ ]ba, , for each t  in [ ]ba,  there is a positive 

number tδ  such that 

( ) ( )
2

ε<− tfxf
  

if   

ttx δ2<−     

and    

[ ]bax ,∈  

If 

( )ttt ttI δδ +−= ,
,  

the collection 

[ ]{ }batIH t ,∈=
 

Is an open covering of [ ]ba, . Since [ ]ba,  is 

compact, the Heine-Borel theorem implies that 

there are finitely many points nttt ,...,, 21 an 

[ ]ba,  such that  
nttt III ,...,,

21
cover [ ]ba, . 

Now define  

{ }
nttt δδδδ ,...,,min

21
=

 
We will show that if 

δ<− 'xx
  

and  

[ ]baxx ,', ∈  

Then 

( ) ( ) ε<− 'xfxf
 

From the triangle inequality. 

( ) ( ) ( ) ( )( ) ( ) ( )( )'' xftftfxfxfxf rr −+−=−
 

( ) ( )( ) ( ) ( )( )'xftftfxf rr −+−≤
 

Since 
nttt III ,...,,

21
 cover [ ]ba, , x  must be in 

one of these intervals. Suppose that 
rt

Ix ∈ ; 

That is, 

rtrtx δ<−
 

With  

rtt =
, 

( ) ( ) .
2

ε<− rtfxf
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Such that, 

( ) ( ) .2'''
rr ttrrr txxxtxxxtx δδγ ≤+<−+−≤−+−=−

 

Therefore with rtt = and x replaced by x’ implies 

that 

( ) ( ) .
2

'
ε<− rtfxf

 

This imply that 
( ) ( ) ε<− 'xfxf

. 

 

Definition 9 (Lipschitz Functions) 

Let RA ⊆ , let RAf →: . If there exist a 

constant 0>K such that  

( ) ( ) uxKufxf −≤−
 

For all Aux ∈, , then f is said to be a Lipschitz 

Functions on A 

 

Theorem 4  

If RAf →:  is a  Lipschitz Functions, then f is 

uniform continuous on A. 

Proof:  

If the a Lipschitz conditions satisfied with 

constant K, then given 0>ε , we can take 

K
εδ =: . If Aux ∈, satisfy  δ<−ux , then 

( ) ( ) εε =⋅<−
K

Kufxf
 

Therefore f is uniformly continuous on A. 

 

6. Upper And Lower Integral 

Definition 10 

 If f is bounded on [ ]ba,  and { }nxxxP ,...,, 10  is 

a partition of  [ ]ba, , let  

( )xfM
jj xxx

j
≤≤−

=
1

sup
 

And  

( )xfm
jj xxx

j ≤≤−

=
1

inf
 

The upper sum of f over P is  

( ) ( )∑
=

−−=
n

j
jjj xxMPS

1
1

 

And the upper integral of f  over [ ]ba, , denoted 

by 

( )dxxf
b

a∫
−−−−

 
Is the infimum of all upper sums. The lower sum 

of f over P is  

( ) ( )∑
=

−−=
n

j
jjj xxmPs

1
1

 

And  the lower integral of f over [ ]ba, , denoted 

by 

( )dxxf
b

a∫
−−−  

Is the supremum off all lower sums. 

 

7. Riemann Integral 

Riemann integral, defined in 1854, was the 

first of the modern theories of integration and 

enjoys many of the desirable properties of an 

integration theory. The groundwork for the 

Riemann integral of a function f over the interval 

[ ]ba,  begins with dividing the interval into 

smaller subintervals. 

 

With infimum and suprimum taken include 

all partitions P on [ ]ba, , if the upper integral and 

lower  integral same, then f can be said integrable 

on [ ]ba, . And called Riemann function f on 

[ ]ba,  and denoted by [ ]baf ,∈   This same 

value is called the Riemann integral function  f on 

[ ]baf ,∈  and written 

( ) ( )dxxfR
b

a
∫

 
Definition 11 

Let [ ] ℜ⊂ba, . A partition of [ ]ba,  is a finite set 

of numbers { }nxxxP ,...,, 10=  such that 

bxax n == ,0  and ii xx <−1  for ni ,...,2,1= . 

For each subinterval [ ]ii xx ,1− , define its length 

to be [ ]( ) 11, −− −= iiii xxxxℓ . The mesh of the 

partition is then the length of the largest 

subinterval, [ ]ii xx ,1− : 

( ) { }nixxP ii ,...,2,1:max 1 =−= −µ  

Thus the point { }nxxx ,...,, 10  form an increasing 

sequence of numbers in [ ]ba,  that divides the 

interval [ ]ba,  into contiguous subintervals. 

Let  [ ] ℜ→baf ,: , { }nxxxP ,...,, 10=  be a 

partition of [ ]ba, , and [ ]iii xxt ,1−∈  for each i. 

Riemann began by considering the approximating 

(Riemann) sums 

{ }( ) ( )( ),,, 1
1

1 −
=

= −=∑ ii

n

i
i

n

ii xxtftPfS  
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Defined with respect  to the partition P and the 

set of sampling points { }n

iit 1= . Riemann 

considered the integral of f over [ ]ba,  to be a 

“limit” of the sums { }( ),,, 1

n

iitPfS =  in the 

following sense. 

 

Definition 12 

A function [ ] ℜ→baf ,:  is Riemann integrable 

over [ ]ba,  if there is an ℜ∈A  such that for all 

0>ε there is a 0>δ  so that if P is any 

partition of [ ]ba,  with ( ) δµ <P  and 

[ ]iii xxt ,1−∈  for all i then 

{ }( ) ε<−= AtPfS n

ii 1,,  

We write ( )∫∫ ==
b

a

b

a

dttffA or, if we set 

[ ] ∫=
I
fbaI .,,  

This definition defines the integral as a limit of 

sums as the mesh of the partition approaches 0. 

 

 

DISCUSSION 

1. Concept δδδδ-fine Partition of Henstock-

Kurzweil Integral 

Let [ ]ba, be a compact interval in ℜ . Let D be a 

finite collection of interval-point pairs 

[ ]( ){ }n

iiii vu 1,, =ξ , where [ ]( ){ }n

iii vu 1, =  are non-

overlapping subintervals of [ ]ba, . Let ( )ξδ  be a 

positive function on [ ]ba, , 

( ) [ ] +ℜ→baei ,:.. ξδ . We say 

[ ]( ){ }n

iiii vuD 1,, == ξ  is δ-fine Henstock-

Kurzweil partition of [ ]ba,  if 

[ ] ( )( ) ( ) ( )( )iiiiiiiii Bvu ξδξξδξξδξξ +−=⊂∈ ,,,
 for all ni ,...,3,2,1=  

Given an δ-fine Henstock-Kurzweil partition 

[ ]( ){ }n

iiii vuD 1,, == ξ  we write  

( ) ( )( )ii

n

i
i uvfDfS −=∑

=1

, ξ
  

For integral sum over D , whenever 

[ ] ℜ→baf ,:   

 

Example 1 

Let ( ) xxf =  Consider a division 

bxxxa n =<<<= ...10  and { }nξξξ ,...,, 21 . 

And this time choose the  points  

( )12

1
−+= iii xxξ , Clearly [ ]iii xx ,1−∈ξ  For 

ni ,,2,1 ⋅⋅⋅=  

 

 

Then,  

( ) ( )( ) ( )( )

( )

( )

( )22

0
2

1

2
1

2

1
1

11
1

2

1
2

1

2

1

2

1
,

ab

xx

xx

xxxxxxfDfS

n
n

n

i
ii

ii

n

i
iiii

n

i
i

−=

−=

−=

−+=−=

∑

∑∑

=
−

−
=

−−
=

ξ

 

Then,  

( ) ( )( ) ( )22
1

1 2

1
, abxxfDfS ii

n

i
i −=−= −

=
∑ ξ

 

2. Definition Of Henstock-Kurzweil Integral 

Definition 13  

A function [ ] ℜ→baf ,:  is said to be 

Henstock-Kurzweil integrable on [ ]ba,  if there 

exists a real number A such that for every 0>ε  

there exists [ ] +ℜ→ba,:δ  such that for every 

δ-fine Henstock-Kurzweil partition 

[ ]( ){ }n

iiii vuD 1,, == ξ  of [ ]ba, , we have 

( )( ) εξ <−−∑
=

Auvf ii

n

i
i

1  
We denote the Henstock-KurzweilIntegral (also 

write as HK-integral) A  by ( ) ( )dxxfHK
b

a∫ . 

 

Example 2  

Define [ ] ℜ→1,0:f the Dirichlet’s function (= 

the characteristic function of the rational 

numbers in [ ]1,0 ),  by 

( )




∉
∈

=
Qxif

Qxif
xf

0

1

 

Then ( )xf  is Henstock-Kurzweil integrable on 

[ ]1,0 . And ( ) 0
1

0

=∫ xf  

To Prove this assertion, we will define an 

appropriate gauge εδ , First we enumerate these 

rational numbers as ,..., 21 rr . We define 
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( ) ,...2,12 1 == −− iforr i
i εδ , and if [ ]1,0∈x  is 

irrational we define ( ) 1=ξδ ; clearly εδ  is a 

gauge on [ ]1,0 . If  P  is a δ-fine tagged partition, 

there can be at most two subintervals in P  that 

have the number ir  as tag, and the length of each 

of those subintervals is 
12 −−≤ iε . Hence the 

contribution to ( )PfS ,  from subintervals with 

tag ir  is 
i−≤ 2ε . Since the terms in ( )PfS ,  

with tags at irrational points contribute 0, we 

readily see that 

( ) εε =<≤ ∑
∞

=1 2
,0

i
iPfS

 
Since 0>ε  is arbitrary, this shows that ( )xf  is 

Henstock-Kurzweil integrable on [ ]1,0 . And 

( ) 0
1

0

=∫ xf  

 

3. Fundamental Properties Of Henstock-

Kurzweil Integral 

Theorem 5  (Unique Property) 

if f is Henstock-Kurzweil integrable over [ ]ba, , 

then the value of the integral is unique. 

Proof:  

Suppose that f is Henstock-Kurzweil integrable 

on [ ]ba,   and both real number A and B  satisfy 

Definition 3.2.1. Fix  0>ε  choose Aδ  and Bδ  

corresponding to A and B, respectively, in the 

definition with 
2

'
εε = . Let ( )BA δδδ ,min=  

and suppose for every δ-fine Henstock-Kurzweil 

partition [ ]( ){ }n

iiii vuD 1,, == ξ  of [ ]ba, , Then 

( )( ) ( )( )

( )( ) ( )( )

εεε

ξξ

ξξ

=+<

−−+−−≤








 −−−






 −−=−

∑∑

∑∑

==

==

''
11

11

BuvfuvfA

AuvfBuvfBA

n

i
iii

n

i
iii

n

i
iii

n

i
iii

 
Since ε  was arbitrary, it follows that BA = . 

Thus, the value of the integral is unique. 

 

Theorem 6 (Linearity of the Henstock-

Kurzweil  integral) 

If f and g are Henstock-Kurzweil integrable on 

[ ]ba, , then so are gf + and fα where α  is 

real. Furthermore, 

( ) ∫ ∫∫ +=+
b

a

b

a

b

a

gfgf
  and  

( ) ∫∫ =
b

a

b

a

ff αα
 

Proof: Let A and B denote respectively the 

integrals of f and g on [ ]ba, . given   0>ε , there 

is a ( ) 01 >ξδ such that for any δ1-fine division 

[ ]( )ξ;,vuD = we have 

( )( )
2

εξ <−−∑ Auvf
 

Similarly, there is a ( ) 02 >ξδ  such that for any δ2-

fine division [ ]( )ξ;,vuD = we have 

( )( )
2

εξ <−−∑ Buvg
 

Now  put ( ) ( ) ( )( )ξδξδξδ 21 ,min= . Note that any 

δ-fine division is also δ1-fine and δ2-fine. 

Therefore   for any δ-fine division [ ]( )ξ;,vuD =  

we have 

( ) ( )( )( ) ( )

( )( ) ( )( )

f g v u A B

f v u A g v u B

ξ ξ

ξ ξ ε

+ − − + ≤

− − + − − <

∑

∑ ∑
 

The proof is complete. 

  

Example 3 

valuate ∫ +
1

0

gf  where ( ) 2xxf =  and 

( ) xxg = . 

Solution: 

By theorem 3.3.3, 

dxxdxxdxxxgf ∫∫∫∫ +=+=+
1

0

1

0

2
1

0

2
1

0  

Now, we evaluate value dxx∫
1

0

2
 

 Consider a division 1...0 10 =<<<= nxxx  and 

{ }nξξξ ,...,, 21 . And this time choose the 

intermediate points  

( ) 2
1

2
11

2

3

1





 ++= −− iiiii xxxxξ
, 

 then 

( ) ( ) ( ) iiiiiiii xxxxxxxx =<




 ++<=≤ −−−−
2

1
2

2
1

2
11

22
1

2
11 3

1
0

 
For ni ,,2,1 ⋅⋅⋅= ; that is  ( )iii xx ,1−∈ξ  for each i .  

So 

3

11

0

2 =∫ dxx
 

And then , we evaluate value dxx∫
1

0

 

Consider a division 1...0 10 =<<<= nxxx  and 

{ }nξξξ ,...,, 21 . And this time choose the  points  



Siti Nurul Afiyah  

 

30 Volume 2 No. 1 November 2011  

( )12

1
−+= iii xxξ , Clearly [ ]iii xx ,1−∈ξ  For 

ni ,,2,1 ⋅⋅⋅=  

Now 

( ) ( )( ) ( )( )

( )

( )

2

1
1

2

1

1
2

1
2

1

2

1

2

1
,

2

0
2

1

2
1

2

1
1

11
1

=⋅=

⋅=

−=

−=

−+=−=

∑

∑∑

=
−

−
=

−−
=

n
n

n

i
ii

ii

n

i
iiii

n

i
i

xx

xx

xxxxxxfDfS ξ

 

So, 
2

11

0

=∫ dxx
that,  

6

5

2

1

3

11

0

1

0

2
1

0

2
1

0

=+=+=+=+ ∫∫∫∫ dxxdxxdxxxgf
 

Theorem 7 (Additivity of the henstock-

Kurzweil Integral) 

Let bca << . If  f  is Henstock-Kurzweil 

integrable on [ ]ca, and on [ ]bc,  and  

∫∫∫ +=
b

c

c

a

b

a

fff
 

Proof:  

Let A denote the integral of f on [ ]ca, and B that 

of f on [ ]bc, . Given 0>ε , there is a ( ) 01 >ξδ , 

defined on [ ]ca, , such that for any δ1-fine 

division [ ]( )ξ;,vuD =  of [ ]ca,  we have 

( )( )
2

εξ <−−∑ Auvf
 

Similarly, there is a 
( ) 02 >ξδ defined on [ ]bc,  

such that for any δ2-fine division 0 
 �1�, 23; 5� of 

[ ]bc,  we have 

( )( )
2

εξ <−−∑ Buvf
 

Define ( ) ( )( )ξξδξδ −= c,min 1  when [ )ca,∈ξ , 

( )( )c−ξξδ ,min 2  when ( ]bc,∈ξ , and 

( ) ( )( )cc 21 ,min δδ  when c−ξ . Note for any δ-fine 

division D of 16, 73, c is always a division point of 

D. therefore for any δ-fine division 0 
 �1�, 23; 5� 
of 16, 73 with Σ  over D, writing 21 Σ+Σ=Σ

 

where 1Σ
 is the partial sum over 

[ ]ca,
and 2Σ

 

over 
[ ]bc,

 we have  

( ) ( ) ( )

( ) ( ) ( ) ( )1 2

f v u A B

f v u A f v u B

ξ

ξ ξ ε

− − + ≤

− − + − − <

∑

∑ ∑
 

Hence f is Henstock-Kurzweil integrable to A+B 

on [ ]ba, . 

Alternatively, Let [ ]ca,χ  denote the characteristic 

function of [ ]ca, and [ ]caff ,1 χ= . Similarly, let  

[ ]bcff ,2 χ=  . Then it follows from Theorem 3.3.1 

that 

( ) ∫ ∫∫∫ +=+=
c

a

b

c

b

a

b

a

fffff 21

 
 

Example 7 

Let ( ) xxf =  and Let 1
2

1
0 << .and, If  f  is 

Henstock-Kurzweil integrable on [ ] 




=
2

1
,0,ca

and on [ ] 




= 1,
2

1
,bc and  

∫∫∫ +=
b

c

c

a

b

a

fff
 

Solution: 

Consider a division 1...0 10 =<<<= nxxx  and 

{ }nξξξ ,...,, 21 . And this time choose the  points  

( )12

1
−+= iii xxξ , Clearly [ ]iii xx ,1−∈ξ  For 

ni ,,2,1 ⋅⋅⋅=  

Now 

( ) ( )( ) ( )( )

( )

( )

( )22

2
0

2

1

2
1

2

1
1

11
1

2

1
2

1

2

1

2

1
,

ab

xx

xx

xxxxxxfDfS

n

n

i
ii

ii

n

i
iiii

n

i
i

−=

−=

−=

−+=−=

∑

∑∑

=
−

−
=

−−
=

ξ

 
With same procedure we get; on  

[ ] 




=
2

1
,0,ca  
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( ) ( )( ) ( )( )

( )

( )

( )

1 1 1
1 1

2 2
1

1

2 2
0

2 2

1
,

2

1

2

1

2

1

2

n n

i i i i i i i
i i

n

i i
i

n

S f D f x x x x x x

x x

x x

c a

ξ − − −
= =

−
=

= − = + −

= −

= −

= −

∑ ∑

∑
 

So 0>ε , there is a ( ) 01 >ξδ , defined on 10, �: 3, 
such that for any δ1-fine division 0 
 �1�, 23; 5� of 

10, �: 3 we have 

( )
28

1

2

1 22 ε<−− ac
 

And on 1;, 73 
 1�: , 13, we get 

( ) ( )( ) ( )( )

( )

( )

( )22

2
0

2

1

2
1

2

1
1

11
1

2

1
2

1

2

1

2

1
,

cb

xx

xx

xxxxxxfDfS

n

n

i
ii

ii

n

i
iiii

n

i
i

−=

−=

−=

−+=−=

∑

∑∑

=
−

−
=

−−
=

ξ

 

0>ε , there is a ( ) 02 >ξδ , defined on 1�: , 13, 
such that for any δ1-fine division 0 
 �1�, 23; 5� of 

1�: , 13 we have 

( )
28

3

2

1 22 ε<−− cb
 

therefore for any δ-fine division 0 
 �1�, 23; 5� of 

10,13  
 with Σ  over D, writing 21 Σ+Σ=Σ

 where 1Σ
 

is the partial sum over 
[ ]ca,

 and 2Σ
 over 1�: , 13  

we have  

( )

( ) ( ) ( ) ( )

2
2

1 2

1 1 3

2 8 8

1 3

8 8

b a

f v u f v uξ ξ ε

 − − + ≤ 
 

− − + − − <∑ ∑

 

Hence f is Henstock-Kurzweil integrable to 
�
: on 

10,13  
 

Lemma 8 (Cauchy Criteria)  

A function is Henstock-kurzweil integrable on 

[ ]ba,  if and only if for every  0>ε , there is a 

( ) 0>ξδ such that for any δ-fine division 

[ ]( )ξ;,vuD = and [ ]( )';','' ξvuD = we have 

( )( ) ( )( ) εξξ <−−− ∑∑ ''' uvfuvf
 

Where the first sum is over D and the second over 

D’. 

Proof   

( )⇒  we will prove that  if A function is Henstock-

kurzweil integrable on [ ]ba,  Then for every  

0>ε , there is a ( ) 0>ξδ such that for any δ-

fine division [ ]( )ξ;,vuD = and [ ]( )';','' ξvuD =
we have 

( )( ) ( )( ) εξξ <−−− ∑∑ ''' uvfuvf
 

A function is Henstock-kurzweil integrable on 

[ ]ba,  Then for every  0>ε , there is a 

( ) 0>ξδ such that for any δ-fine division 

[ ]( )ξ;,vuD = and [ ]( )';','' ξvuD =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

' ' ' ' ' 'f v u f v u f v u A A f v u

f v u A A f v u

ξ ξ ξ ξ

ξ ξ

ε

− − − = − − + − −

≤ − − + − −

<

∑ ∑ ∑ ∑

∑ ∑
 

Analogous to the situation for real-valued 

sequences, the condition that 

( )( ) ( )( ) εξξ <−−− ∑∑ ''' uvfuvf
 

( )⇐  We have already proved that the 

integrability of f implies the Cauchy criterion. So, 

assume the Cauchy criterion holds. We will prove 

that f is Henstock-kurzweil integrable . 

if for every  0>ε , there is a ( ) 0>ξδ such that 

for any δ-fine division [ ]( )ξ;,vuD = and

[ ]( )';','' ξvuD = we have 

( )( ) ( )( ) εξξ <−−− ∑∑ ''' uvfuvf
 

Then A function is Henstock-Kurzweil integrable 

on [a,b]. 

For each Ν∈k , choose a 0>kδ  so that for any 

two division [ ]( )ξ;,vuD = and [ ]( )';','' ξvuD = , 

and corresponding sampling points, we have 

( )( ) ( )( )
k

uvfuvf
1

''' <−−− ∑∑ ξξ
 

Replacing kδ
 by 

{ }kδδδ ,...,,min 21 , we may 

assume that 1+≥ kk δδ
. 

Next for each k, fix a partition 

[ ]( )kkkk vuD ξ;,=  and set of sampling point 

{ }n

ii 1=ξ  . Note for kj >  Thus 

( )( ) ( )( ) { }kj
uvfuvf jjjkkk ,min

1<−−− ∑∑ ξξ

, 
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Which implies that sequence ( )( )∑
∞

=

−
1k

kkk uvf ξ  

is a Cauchy sequence in R, and hence converges. 

Let A be a limit of this sequence. it follows from 

the previous inequality that  

( )( )
k

Auvf
1<−−∑ ξ

 
It remains to show that A satisfies Definition 3.2.1  

Fix 0>ε  and let division [ ]( )ξ;,vuD = . Then 

( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

ε

ξξξ

ξξξ

ξ

=+<

−−+−−−≤

−−+−−−=

−−

∑∑∑

∑∑∑

∑

===

===

kk

Auvfuvfuvf

Auvfuvfuvf

Auvf

n

k
kkk

n

k
kkk

n

i
iii

n

k
kkk

n

k
kkk

n

i
iii

11
111

111

 

It now follows that f is Henstock-Kurzweil 

integrable on [ ]ba,  

Theorem  9  

If f is Henstock-Kurzweil integrable on [ ]ba, , 

then so it is on a subinterval [ ]dc,  of [ ]ba, . 

Proof : 

Since f is Henstock-Kurzweil integrable on [ ]ba, , 

the Cauchy condition holds. Take any two δ-fine 

divisions of [ ]dc, . say D1 and D2, and denote by 

s1 and s2 respectively the Riemann sums of f over 

D1 and D2. similarly, take another δ-fine division 

D3 of [ ] [ ]bdca ,, ∪  and denote by s3 the 

corresponding Riemann sums. Then the union 

31 DD ∪  forms a δ-fine division of [ ]ba, . Here 

the division points and associated points of 

31 DD ∪  are the union of those from D1 and D3. 

The Riemann sum of f over 31 DD ∪  is 31 ss + . 

And similarly that over 32 DD ∪  is 32 ss +
.Therefore by the Cauchy condition we have  

( ) ( ) ε<+−+≤− 323121 ssssss
 

Hence the result follows from lemma 3.3.7 with 

[ ]ba, replaced by [ ]dc,  

Theorem 10 (Nonnegativity of The Henstock-

Kurzweil integral) 

If f and g are Henstock-Kurzweil integrable on 

[ ]ba, and if ( ) ( )xgxf ≤  for almost all in x in 

[ ]ba, ,  then 

∫∫ ≤
b

a

b

a

gf
 

Proof: 

In view of theorem 3.3.9 we may assume that 

( ) ( )xgxf ≤  for all x. Given 0>ε , as in the 

proof of theorem 3.2.1, there is a  ( ) 0>ξδ  such 

that for any δ-fine division [ ]( )ξ;,vuD =  we 

have 

( )( ) εξ <−− ∫∑
b

a

fuvf

, 

( )( ) εξ <−− ∫∑
b

a

guvg

 
It follows that 

( )( ) ( )( ) εξξε +<−<−<− ∫∑∑∫
b

a

b

a

guvguvff
 

Since ε  is arbitrary, we have the required 

inequality. 

Theorem 11  

If f is Henstock-Kurzweil integrable on [ ]ba, with 

the primitive F, then for every 0>ε , there is a 

( ) 0>ξδ such that for any δ-fine division 

[ ]( )ξ;,vuD = we have  

( ) ( ) ( )( ) εξ <−−−∑ uvfuFvF
 

We shall make a few remarks. Before proof, from 

the computational point of view, we may regard 

( )( )uvf −ξ  as an approximation of 

( ) ( )uFvF − . Then the difference 

( ) ( ) ( )( )uvfuFvF −−− ξ  is an error. The 

definition of the Henstock-Kurzweil integral says 

that the absolute error is also small, whereas 

Henstock’Lemma. In fact, the two are equivalent 

by theorem 3.3.8. Another way of putting it is that 

taking any partial sum 1Σ  of  Σ  we still have 

( ) ( ) ( )( )1F v F u f v uξ εΣ − − − <  

That is to say, the selected error is again small, 

and indeed it is equivalent to the above two. 

Proof: 

Given  0>ε , there is a ( ) 0>ξδ such that for 

any δ-fine division [ ]( )ξ;,vuD = we have  

( ) ( ) ( )( ) 4
εξ <−−−Σ uvfuFvF

 

Let 1Σ  be a partial sum of Σ  and E1 the union of 

[ ]vu,   from  1Σ . Suppose E2. thus we can choose 

a δ-fine division [ ]( )ξ;,2 vuD = of E2 such that 
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( ) ( ) ( )( ) 42
εξ <−−−Σ uvfuFvF

 

Where 2Σ  is over D2. Now writing 

213 Σ+Σ=Σ  we have  

( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
1

3 2 2

F v F u f v u

F v F u f v u F v F u f v u

ξ

εξ ξ

Σ − − − ≤

Σ − − − +Σ − − − <
Consequently the result follows. 

Example 8 

Let ( )
x

xf 1=  for 10 ≤< x . Given 0>ε , 

we shall construct ( )ξδ  so that f is Henstock- 

Kurzweil integrable on [ ]1,0 . Consider a division 

1...0 10 =<<<= nxxx
 and 

{ }nξξξ ,...,, 21  

With 01 =ξ  and iii xx ≤≤− ξ1  for ni ,...,2= . 

Note that the primitive of 
x

1  is x2 . Then 

we can write  

( )( )

( ) ( )

( )( )

1

1
1

1

1 1
2

1 1 1
2

2

2 2

2 1 1 .

n

i i i
i

n

i i ix
i

n

i i i i
i

f x x

x dx x x x

x x x x x

ξ

ξ

−
=

−
=

− −
=

− − ≤

− − + − − ≤

+ − −

∑

∑∫

∑

 

We shall prove that above is less than ε  for 

suitable fine−δ  divisions. Suppose ( ) ξξδ c− for 

10 ≤< ξ  and 210 << c  so that 01 =ξ  always. 

If the above division is fine−δ  and [ ]vu,  is a 

typical interval [ ]ii xx ,1−  in the division with 

0≠u  and vu ≤≤ ξ , then  

( ) cvuv 220 ≤<−< ξδ , 

re-arranging we get ( )cuv 211 −≤ , and finally  

( ) ( ).2122 ccucvuvuv −≤<−  
Now choose c so that 210 << c  and 

( ) 2212 ε≤− cc . In addition, put ( ) 160 2εδ ≤ . 

Then for the given fine−δ division the above 

inequality is less than  

( ) ( ) εδ <−
−

+ ∑
=

−

n

i
ii xx

c

c

2
121

2
02

 
For example, when 10 ≤< ε  we may choose 

6

ε=c . Hence the function is Henstock-Kurzweil 

integrable on [ ]1,0 . 

CONCLUSION 

From the discussion we get conclusion that: 

1. δ-fine Henstock-Kurzweil partition 

[ ]( ){ }n

iiii vuD 1,, == ξ  we write  

( ) ( )( )ii

n

i
i uvfDfS −=∑

=1

, ξ  

where D be a finite collection of interval-point 

pairs  [ ]( ){ }n

iiii vu 1,, =ξ , where [ ]( ){ }n

iii vu 1, =  

are non-overlapping subintervals of [ ]ba, . 

Let ( )ξδ  be a positive function on [ ]ba, , 

( ) [ ] +ℜ→baei ,:.. ξδ .  

And if   

[ ] ( )( ) ( ) ( )( )iiiiiiiii Bvu ξδξξδξξδξξ +−=⊂∈ ,,,

 for all ni ,...,3,2,1= . 

 

2. A function [ ] ℜ→baf ,:  is said to be 

Henstock-Kurzweil integrable on [ ]ba,  if 

there exists a real number fS such that for 

every 0>ε  there exists [ ] +ℜ→ba,:δ  such 

that for every δ-fine Henstock-Kurzweil 

partition [ ]( ){ }n

iiii vuD 1,, == ξ  of [ ]ba, , we 

have 

( ) ., ε<− fSDfS
 

3. And the fundamental properties of  Henstock- 

Kurzweil integral as follows: value of the 

Henstock- Kurzweil integral is unique, 

linearity of the Henstock-Kurzweil integral, 

Additivity of the Henstock-Kurzweil integral, 

Cauchy criteria, nonnegativity of Henstock-

Kurzweil integral,  and primitive function. 
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