

m-Polar Fuzzy B-ideal of B-algebra

Dian Kartika Amandani*, Noor Hidayat, Abdul Rouf

Departement of Mathematics, University of Brawijaya, Indonesia

Email: diankartika.dka@gmail.com

ABSTRACT

B-algebra is an algebraic structure related to BCI/BCK-algebra. Many researchers have studied fuzzy B-ideal on B-algebra, m-polar fuzzy set on BCI-algebra and B-algebra, m-polar fuzzy subalgebra on BCI-algebra and B-algebra, m-polar fuzzy ideal on BCI-algebra, m-polar (\in, \in) -fuzzy p-ideal on BCI-algebra, m-polar (\in, \in) -fuzzy q-ideal on BCI-algebra, and m-polar (\in, \in) -fuzzy a-ideal on BCI-algebra. We build a new structure, namely m-polar (\in, \in) -fuzzy B-ideal on B-algebra. This research aims to extend the knowledge of m-polar fuzzy sets, which can be combined with other algebraic structures, besides BCI-algebra. In this study, we investigate and describe the properties of m-polar (\in, \in) -fuzzy B-ideal of B-algebra, and m-polar fuzzy ideal. We serve a condition that causes an m-polar fuzzy subalgebra, and m-polar fuzzy ideal. We also serve expansion properties of an m-polar (\in, \in) -fuzzy B-ideal. Futhermore, examples showing the modification of π_i formula are added. The properties of m-polar (\in, \in) -fuzzy B-ideal of B-algebra are obtained by combining and modifying the properties of m-polar (\in, \in) -fuzzy a-ideal of B-algebra are obtained by combining and modifying the properties of m-polar (\in, \in) -fuzzy B-ideal, m-polar (\in, \in) -fuzzy a-ideal of BCI-algebra.

Keywords: B-algebra; B-ideal; m-polar fuzzy set; m-polar fuzzy ideal; m-polar fuzzy B-ideal

Copyright © 2023 by Authors, Published by CAUCHY Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0/)

INTRODUCTION

Algebra is closely related to sets. The set that has been generally recognized is the crisp set. The crisp set distinguishes its members with a value of zero or one, a member of the set or not. Then, Zadeh [1] proposed a new notion, namely fuzzy sets as a development of crisp sets. In fuzzy sets, membership values for each member lies in [0,1]. A fuzzy set is a set that contain x and the membership degree of x. Then, Zhang [2] introduced a new idea, namely bipolar fuzzy sets. In bipolar fuzzy set, membership values for each member lies in [-1,1]. This notion of bipolar information arises because data for problems in real life sometimes comes from 2 factors, positives and negatives.

Chen, et al [3] proposed the m-polar fuzzy set which is an extended version of the bipolar fuzzy set. A mapping $\delta: X \to [0,1]^m$ is named the m-polar fuzzy set of X. Chen et al. explained that bipolar fuzzy sets and 2-polar fuzzy sets are identical. This notion of multipolar information arises because data for complex problems in real life sometimes comes from multiple n factors ($n \ge 2$). For example, Brawijaya University is a good

university. A university is said to be good if it can fulfill several requirements, such as campus accreditation, adequate facilities, appropriate curriculum, and others. Each of these components has a value in the interval [0,1]. If *n* denotes the amount of components, then the elements of $[0,1]^n$ denote the values of truth of a fuzzy assertion.

BCK-algebra and BCI-algebra are constructed by Imai and Iseki [4]. B-algebra was first proposed by Neggers and Kim [5] as an algebraic class related to BCK/BCI/algebra. B-algebra is an unempty sets equipped with operations * and 0 as the identity element that satisfies several axioms, then denoted by (X,*,0). Fuzzy B-algebra was first proposed by Jun, et al [6], which is a combination of B-algebra and fuzzy set theory. After that, many researchers developed the notion of fuzzy B-algebra. In 2003, Ahn and Bang [7] investigated the fuzzy subalgebra of B-algebra and classified the subalgebra based on the subalgebra level in B-algebra. Two years later, Yamini and Kailasavalli [8] constructed fuzzy B-ideals and B-ideals of B-algebras.

Al-Masarwah and Ahmad [9] examined m-polar fuzzy sets applied to BCK/BCIalgebras. In the article, they introduced m-polar fuzzy subalgebra and (closed, commutative) m-polar fuzzy ideals, then they investigated the related properties. Continuing the research of Masarwah and Ahmad, Takallo, et al. [10] presented the idea of (normal) m-polar (\in , \in)- fuzzy p-ideal and they examined its properties. A year after investigating m-polar (\in , \in)-fuzzy p-ideals in BCI-algebra, Miuhuddin, et al [11] built a new structure, the m-polar (\in , \in)-fuzzy q-ideals in BCI-algebra and its characteristics are examined. After that, the concept of normal m-polar (\in , \in)-fuzzy a-ideal and its properties were established by Borzooei, et al. [12].

In this paper, we combine the ideas of Yamini and Kailasavalli [8], Takallo et al [10], Muhiuddin et al. [11], and Borzooei, et al. [12] to obtain a new idea and structure, namely m-polar (\in , \in)-fuzzy B-ideal of B-algebra. This research aims to extend the knowledge of m-polar fuzzy sets, which can be combined with other algebraic structures, besides BCI-algebra. In addition, we investigate the properties of m-polar (\in , \in)-fuzzy B-ideal on B-algebra, i.e general properties obtained by giving a special condition on m-polar (\in , \in)-fuzzy B-ideal so that for each m-polar (\in , \in)-fuzzy B-ideal a certain inequality holds. We investigate the connection among m-polar (\in , \in)-fuzzy B-ideal, m-polar fuzzy ideal and m-polar fuzzy subalgebra. We give a condition that causes an m-polar fuzzy ideal to become an m-polar (\in , \in)-fuzzy B-ideal. Futhermore, we give expansion properties of an m-polar (\in , \in)-fuzzy B-ideal. This article also introduces a modification of the π_i formula in proving whether an m-polar fuzzy subset *A* is an m-polar (\in , \in)-fuzzy B-ideal of B-algebra (*X*,*,0) or not (in Example 3.6 and Example 3.11), which is missing in the previous research.

METHODS

We conduct a literature review on [8], [10], [11], and [12] and deepen our understanding of B-algebra, B-ideal on B-algebra, fuzzy B-algebra, fuzzy B-ideal on B-algebra, m-polar fuzzy set, and m-polar fuzzy ideal. We combine the concept of fuzzy B-ideal on B-algebra with m-polar fuzzy set to obtain a new structure, namely m-polar (\in , \in)-fuzzy B-ideal of B-algebra. We replace the existing structure in [10], [11], and [12] with B-ideal, so we obtain properties for m-polar (\in , \in)-fuzzy B-ideal which are modifications and combinations of the properties in [10], [11], and [12]. Then, we add a new idea which is the addition of a modified π_i formula in proving whether an m-polar fuzzy subset *A* is an m-polar fuzzy B-ideal of B-algebra (*X*,*,0) or not (in Example 3.6 and Example 3.11).

Definition 2.1 [5] A set *X*, which is unempty set, with 0 and operation *, denoted by (*X*,*,0), can be considered a B-algebra if it fulfills the below axioms.

B1. u * u = 0. B2. u * 0 = u. B3. (u * v) * w = u * (w * (0 * v)). for all $u, v, w \in X$.

Example 2.2 [5] Suppose $X = \{0,1,2,3,4,5\}$ is a set with operation * which can be shown in the corresponding Cayley table below.

*	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	4	1	0	2
5	5	3	3	2	1	0

Table 1: Definition of operation * for $X = \{0,1,2,3,4,5\}$

Then, (X, *, 0) is a B-algebra.

Propotition 2.3 [14] If (*X*,*,0) is a B-algebra, then the conditions below are satisfied.

i.
$$(u * v) * (0 * v) = u$$
.

- ii. v * w = v * (0 * (0 * w)).
- iii. u * (v * w) = (u * (0 * w)) * v.
- iv. u * w = v * w, implies u = v.
- v. If u * v = 0, then u = v.
- vi. If 0 * u = 0 * v, maka u = v.
- vii. 0 * (0 * u) = u.
- viii. 0 * (u * v) = v * u.
 - ix. (u * w) * (v * w) = u * v.

for all $u, v, w \in X$.

Assume (*X*,*,0) is a B-algebra and S is a subset of *X*. *S* can be said as a subalgebra of *X* if $u * v \in S$, for all $u, v \in S$ ([14]).

Assume (X, *, 0) is a B-algebra and *I* is a subset of *X*. *I* can be said as an ideal of *X* if it fulfills the axioms below.

i. $0 \in I$. ii. If $(u * v) \in I$, $(v) \in I$, then $(u) \in I$. for all $u, v, w \in X$ ([14]).

Definition 2.4 [13] Suppose (*X*,*,0) is a B-algebra and *I* is a subset of *X*. *I* can be said as a B-ideal of *X* if it fulfills the axioms below.

i. $0 \in I$. ii. If $(u * v) \in I$, $(w * u) \in I$, then $(v * w) \in I$. for all $u, v, w \in X$.

Example 2.5 Suppose $X = \{0,1,2,3,4,5\}$ is a B-algebra by the operation * as in Table 1 and $I = \{0,3\}$ is a subset of B-algebra (X, *, 0). So, I is B-ideal of X.

Definition 2.6 [6] Suppose *A* is a fuzzy subset of B-algebra (*X*,* ,0). *A* can be said as a fuzzy B-algebra if it fulfills the condition below.

$$\delta_A(u * v) \ge \min\{\delta_A(u), \delta_A(v)\}$$

for all $u, v \in X$.

Example 2.7 Suppose (X,*,0) with $X = \{0,1,2,3\}$ is a B-algebra with operation * as shown in the corresponding Cayley table below.

2:	Dennin	1011 01	operat	1011×1	01 A -	įυ
	*	0	1	2	3	
	0	0	1	2	3	
	1	1	0	3	2	
	2	2	3	0	1	
	3	3	2	1	0	

Table 2: Definition of operation * for $X = \{0,1,2,3\}$ *012

Then, *A* is determined as a fuzzy subset of *X* which can be written as follows.

 $A = \{(0,0.8), (1,0.7), (2,0.6), (3,0.6)\}$

Then, *A* is fuzzy B-algebra.

Suppose *A* is a fuzzy subset of B-algebra (X, *, 0). *A* can be said to be a fuzzy ideal of *X* if it fulfills the axioms below.

i. $\delta_A(0) \ge \delta_A(u)$. ii. $\delta_A(u) \ge \min\{\delta_A(u * v), \delta_A(v)\}.$ for all $u, v \in X$ ([11]).

Definition 2.8 [13] Suppose *A* is a fuzzy subset of B-algebra (*X*,*,0). *A* can be considered as a fuzzy B-ideal of *X* if it fulfills the axioms below.

i. $\delta_A(0) \ge \delta_A(u)$. ii. $\delta_A(v * w) \ge \min\{\delta_A(u * v), \delta_A(w * u)\}.$ for all $u, v, w \in X$.

Example 2.9 Suppose $X = \{0,1,2,3\}$ is a B-algebra with the operation * as in Table 2. So, *A* is determined as a fuzzy subset of *X* which can be written as follows.

$$A = \{(0,0.6), (1,0.6), (2,0.5), (3,0.5)\}$$

Then, *A* is fuzzy B-ideal of *X*.

Definition 2.10 [16] The m-polar fuzzy subset *A* of *X* is written down as follows.

$$A = \{(u, \delta_A(u)) | u \in X\}$$

where δ_A is a function with domain *X* and codomain m-tuples of real numbers in [0,1]. δ_A is written down as follows.

$$\delta_A: X \to [0,1]^m$$

Note that *m* is a real number. $\tilde{A}(u)$ is the assigned membership value for each $u \in X$ which is written as the statement below.

$$\tilde{A}(u) = ((\pi_1 \circ \delta_A)(u), \dots, (\pi_m \circ \delta_A)(u))$$

where $\pi_i: [0,1]^m \to [0,1]$ for all $i = 1,2,3,4, \dots, m$ and \circ is composition function.

Definition 2.11 [17] A m-polar fuzzy set *A* on set *X* is given with $\bar{\alpha}_A$ as the membership function of *A*. The m-polar level set of *A* may be written as condition (1) below.

$$U(\tilde{A}, \hat{t}) = \{ u \in X | \tilde{A}(u) \ge \hat{t} \}$$
(1)

Based Definition 2.10, condition (1) can be expressed as below.

$$U(\tilde{A}, \hat{t}) = \{ u \in X | (\pi_1 \circ \delta_A)(u) \ge t_1, (\pi_2 \circ \delta_A)(u) \ge t_2, \dots, (\pi_m \circ \delta_A)(u) \ge t_m \}$$

Definition 2.12 [17] m-polar fuzzy set *A* on set *X* with $\bar{\alpha}_A$, as the membership function of *A*, in the following form.

$$\tilde{A}(v) = \begin{cases} \hat{r} = (r_1, r_2, \dots, r_m) \in (0, 1]^m, v = u \\ 0 = (0, 0, \dots, 0), v \neq u \end{cases}$$

is an m-polar fuzzy point with support u and value \hat{r} , denoted by $u_{\hat{r}}$.

If $\tilde{A}(u) \ge \hat{r}$, which based on Definition 2.10 can also be written $(\pi_i \circ \delta_A)(u) \ge r_i$, then mpolar fuzzy point $u_{\hat{r}}$ belongs to m-polar fuzzy set A, notated by $u_{\hat{r}} \in A$ for each i = 1,2,3,4...,m (the notion belonginess (\in) of an m-polar fuzzy point to an m-polar fuzzy set).

Definition 2.13 [19] Suppose *A* is an m-polar fuzzy subset of B-algebra (*X*,*,0). *A* can be said as an m-polar fuzzy subalgebra of *X* if it fulfills inequality (2) below.

$$\tilde{A}(u * v) \ge \inf\{\tilde{A}(u), \tilde{A}(v)\}$$
(2)

for all $u, v \in X$. Based on Definition 2.10, inequality (2) is the same as the inequality below.

$$(\pi_1 \circ \delta_A)(u * v) \ge \inf\{(\pi_1 \circ \delta_A)(u), (\pi_1 \circ \delta_A)(v)\}$$

for all $f, g \in X$ and $i = 1, 2, 3, 4, \dots, m$.

RESULTS AND DISCUSSION

Here, we will examine the structure of m-polar (\in, \in) -fuzzy B-ideal of B-algebra. We give examples and properties of m-polar (\in, \in) -fuzzy B-ideal with proofs.

The concept of fuzzy ideal and m-polar fuzzy set of B-algebra (X,*,0) has been explained in the method section. Then, we introduce a new idea, namely m-polar fuzzy ideal of Balgebra (X,*,0) as a combination of the concept of fuzzy ideal and m-polar fuzzy set.

Definition 3.1 Suppose *A* is an m-polar fuzzy subset of B-algebra (X,*,0) and $\tilde{A}(u)$ is the membership value for each $u \in X$. *A* can be said as an m-polar fuzzy ideal of *X* if it fulfills inequality (3) below.

$$\tilde{A}(0) \ge \tilde{A}(u) \ge \inf\{\tilde{A}(u * v), \tilde{A}(v)\}$$
(3)

for all $u, v \in X$. Based on Definition 2.10, inequality (3) can also be written as follows.

$$(\pi_1 \circ \delta_A)(u) \ge \inf\{(\pi_1 \circ \delta_A)(u * v), (\pi_1 \circ \delta_A)(v)\}$$

for all $u, v \in X$ and $i = 1, 2, 3, 4 \dots, m$.

The next lemma explains the notion of belonginess (\in) of an m-polar fuzzy point with an m-polar fuzzy subset.

Lemma 3.2 An m-polar fuzzy subset *A* of B-algebra (X,*,0) can be said to be an m-polar fuzzy ideal of *X* if and only if it fulfills the statements below.

i. $(\forall u \in X) (\forall \hat{r} \in [0,1]^m) (u_{\hat{r}} \in A \Rightarrow 0_{\hat{r}} \in A).$

ii. $(\forall u, v \in X)(\forall \hat{r}, \hat{t} \in [0,1]^m)((u * v)_{\hat{r}} \in A, v_{\hat{t}} \in A \Rightarrow u_{\inf\{\hat{r},\hat{t}\}} \in A).$

If an m-polar fuzzy set A of B-algebra (X, *, 0) satisfies conditions (i) and (ii), then A is called an m-polar (\in, \in) -fuzzy ideal of X.

After discussing m-polar fuzzy ideal, we define m-polar (\in, \in) -fuzzy B-ideal of B-algebra. The following definition of m-polar (\in, \in) -fuzzy B-ideal is related to m-polar fuzzy points (note Definition 2.12 and Lemma 3.2).

Definition 3.3 Suppose *A* is an m-polar fuzzy subset of B-algebra (X,*,0). *A* is considered as an m-polar (\in , \in)-fuzzy B-ideal of *X* if it fulfills the statement below.

$$u_{\hat{\mathbf{r}}} \in A \Rightarrow \mathbf{0}_{\hat{\mathbf{r}}} \in A \tag{4}$$

for all $u \in X$ and $\hat{\mathbf{r}} \in [0,1]^m$.

$$(u * v)_{\hat{\mathbf{f}}} \in A, (w * u)_{\hat{t}} \in A \Rightarrow (v * w)_{\inf\{\hat{\mathbf{f}},\hat{t}\}} \in A$$
(5)

for all $u, v, w \in X$ and $\hat{r}, \hat{t} \in [0,1]^m$.

Referring to Definition 2.12 (explaining the notion of belonginess of an m-polar fuzzy point to an m-polar fuzzy set), we construct Proposition 3.4 and Proposition 3.5 which prove that condition (4) and (5) written as m-polar fuzzy points can be written as m-polar fuzzy subset.

Propotition 3.4 For an m-polar fuzzy set *A*, condition (4) is equivalent to the following inequality.

$$\tilde{A}(0) \ge \tilde{A}(u) \tag{6}$$

for all $u \in X$. Based on Definition 2.10, inequality (6) can also be written as follows.

$$(\pi_i \circ \delta_A)(0) \ge (\pi_i \circ \delta_A)(u) \tag{7}$$

for all $u \in X$ and i = 1, 2, ..., m.

Proof. Suppose A satisfies condition (4). If it is assumed that $(\pi_i \circ \delta_A)(0) < (\pi_i \circ \delta_A)(u)$, then there exists $p \in X$ and $r_i \in (0,1]$ for $i \in \{1,2,...,m\}$ such that $(\pi_i \circ \delta_A)(0) < r_i \le (\pi_i \circ \delta_A)(p)$. It follows that $p_{r_i} \in A$, but $0_{r_i} \notin A$. This statement contradicts condition (4). Thus, $(\pi_i \circ \delta_A)(0) \ge (\pi_i \circ \delta_A)(u)$, for all $u \in X$ and i = 1,2,3,4,...,m.

Otherwise, it is assumed that *A* satisfies condition (6). Suppose $u \in X$ and $\hat{r} \in [0,1]^m$ such that $u_{\hat{r}} \in A$ which means $\tilde{A}(u) \ge \hat{r}$ (by Definition 2.12), which can also be written $(\pi_i \circ \delta_A)(u) \ge r_i$ (by Definition 2.10), for every i = 1,2,3,4,...,m. According to (7), we have the condition below.

$$(\pi_i \circ \delta_A)(0) \ge (\pi_i \circ \delta_A)(u) \ge r_i$$

So, it can be concluded that $(\pi_i \circ \delta_A)(0) \ge r_i$, which means $0_{\hat{r}} \in A$ (by Definition 2.12).

Propotition 3.5 For an m-polar fuzzy set *A*, axiom (5) is equivalent to the inequality below.

$$\tilde{A}(v * w) \ge \inf\{\tilde{A}(u * v), \tilde{A}(w * u)\}$$
(8)

for all $u, v, w \in X$. Based on Definition 2.10, inequality (8) is the same as the inequality below.

$$(\pi_i \circ \delta_A)(v * w) \ge \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\}$$
(9)

for all $u, v, w \in X$ and $i = 1, 2, 3, 4, \dots, m$.

Proof. Suppose A satisfies axiom (5). If we assume that $(\pi_i \circ \delta_A)(v * w) < \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\}$, then there exists $p, q, s \in X$ and $r_i \in (0,1]$ for $i \in \{1,2, ..., m\}$, so we obtain the condition below.

$$(\pi_i \circ \delta_A)(q * s) < t_i \le \inf\{(\pi_i \circ \delta_A)(p * q), (\pi_i \circ \delta_A)(s * p)\}$$

It follows that $(p * q)_{t_i} \in A$ and $(s * p)_{t_i} \in A$, but $(q * s)_{t_i} \notin A$. This statement contradicts axiom (5). Thus, $(\pi_i \circ \delta_A)(v * w) \ge \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\}$, for all $u, v, w \in X$ and i = 1, 2, 3, 4, ..., m.

Otherwise, we assume that *A* satisfies inequality (8). Suppose $u, v, w \in X$ and $\hat{r}, t \in [0,1]^m$ then we obtain $(u * v)_{\hat{r}} \in A$ and $(w * u)_{\hat{t}} \in A$ which means $\hat{A}(u * v) \ge \hat{r}$ and $\tilde{A}(w * u) \ge \hat{t}$ (by Definition 2.12), which can also be written $(\pi_i \circ \delta_A)(u * v) \ge r_i$ and

 $(\pi_i \circ \delta_A)(w * u) \ge t_i$ (by Definition 2.10), for each $i = 1, 2, 3, 4 \dots, m$. According to (9), we have the condition below.

$$(\pi_i \circ \delta_A)(v * w) \ge \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\} \ge \inf\{r_i, t_i\}$$

So, it can be concluded that $(\pi_i \circ \delta_A)(v * w) \ge \inf\{r_i, t_i\}$, which means $(v * w)_{\inf\{r_i, t_i\}} \in A$ (by Definition 2.12).

In Example 3.6 below, a modification of the π_i formula is included to determine whether the m-polar fuzzy subset *A* is an m-polar (\in, \in)-fuzzy B-ideal of B-algebra (*X*,*,0).

Example 3.6. Suppose (X, *, 0) with $X = \{0, a, b, c\}$ is a B-algebra with operation * shown in the table below.

le 3:	Defini	tion of	peratio	n * for	$X = \{$	0, a,
	*	0	а	b	С	
	0	0	а	b	С	
	а	а	0	С	b	
	b	b	С	0	а	
	С	С	b	а	0	

Table 3: Definition operation * for $X = \{0, a, b, c\}$

Suppose *A* is a 4-polar fuzzy set with $\delta_A: X \to [0,1]^4$ and $\pi_i: [0,1]^4 \to [0,1]$ defined as follows.

$$\delta_A: X \to [0,1]^4$$

$$\delta_A(0) = (0.8,0.7,0.8,0.7)$$

$$\delta_A(a) = (0.6,0.4,0.6,0.4)$$

$$\delta_A(b) = (0.6,0.4,0.6,0.4)$$

$$\delta_A(c) = (0.8,0.7,0.8,0.7)$$

$$\pi_i: [0,1]^4 \to [0,1]$$

$$\pi_1(w_1, w_2, w_3, w_4) = \max(w_1, w_2, w_3, w_4)$$

$$\pi_2(w_1, w_2, w_3, w_4) = \min(w_1, w_2, w_3, w_4)$$

$$\pi_3(w_1, w_2, w_3, w_4) = \max(w_1, w_2, w_3, w_4)$$

$$\pi_4(w_1, w_2, w_3, w_4) = \min(w_1, w_2, w_3, w_4)$$

Then, *A* is an 4-polar (\in, \in) -fuzzy B-ideal of *X*.

In Proposition 3.7 and Proposition 3.8, we discuss the general properties obtained by giving special condition on axiom (9) such that for every m-polar (\in, \in) -fuzzy B-ideal a certain inequality holds.

Propotition 3.7. If (*X*,*,0) is a B-algebra , then every m-polar (\in , \in)-fuzzy B-ideal *A* of *X* with membership function δ_A satisfies the following inequality.

$$(\pi_i \circ \delta_A)(v) \ge (\pi_i \circ \delta_A)(0 * v)$$

for all $v \in X$ and i = 1, 2, ..., m.

Proof. In inequality (9), it is asserted that u = v and w = 0. By using axioms B1 and B2 (in Definition 2.1) and inequality (6), we have the following condition.

$$(\pi_i \circ \delta_A)(v) = (\pi_i \circ \delta_A)(v * 0) \ge \inf\{(\pi_i \circ \delta_A)(v * v), (\pi_i \circ \delta_A)(0 * v)\}$$

= $\inf\{(\pi_i \circ \delta_A)(0), (\pi_i \circ \delta_A)(0 * v)\}$
= $(\pi_i \circ \delta_A)(0 * v)$

for all $v \in X$ and $i = 1, 2, 3, 4 \dots, m$.

Propotition 3.8 If (X, *, 0) is a B-algebra, then every m-polar (\in, \in) -fuzzy B-ideal A of X with membership function δ_A satisfies the following inequality.

$$(\pi_i \circ \delta_A)(0 * u) \ge (\pi_i \circ \delta_A)(u)$$

for all $u \in X$ and $i = 1, 2, 3, 4 \dots, m$.

Proof. In inequality (9), it is asserted that v = 0 and w = u. By using axioms B1 and B2 (in Definition 2.1) and inequality (6), we have the following condition.

$$(\pi_i \circ \delta_A)(0 * u) \ge \inf\{(\pi_i \circ \delta_A)(u * 0), (\pi_i \circ \delta_A)(u * u)\} = \inf\{(\pi_i \circ \delta_A)(u), (\pi_i \circ \delta_A)(0)\} = (\pi_i \circ \delta_A)(u)$$

for all $u \in X$ and $i = 1,2,3,4 \dots, m$.

Based on Propotition 3.7 and Propotition 3.8, we have the corollary below.

Corollary 3.9 If (X, *, 0) is a B-algebra , then every m-polar (\in, \in) -fuzzy B-ideal A of X satisfies the following equation.

$$(\pi_i \circ \delta_A)(u) = (\pi_i \circ \delta_A)(0 * u) \tag{10}$$

for all $u \in X$ and $i = 1, 2, 3, 4, \dots, m$.

Futhermore, Theorem 3.10 explains the relationship between m-polar (\in, \in) -fuzzy B-ideal with m-polar fuzzy ideal dan m-polar fuzzy subalgebra.

Theorem 3.10 Any m-polar (\in, \in) -fuzzy B-ideal *A* of *X* is an m-polar fuzzy ideal and an m-polar fuzzy subalgebra.

Proof. Suppose *A* is an m-polar (\in, \in) -fuzzy B-ideal of B-algebra (X, *, 0) with membership function δ_A .

By using equality (9), equation (10), and Propotition 2.3 (viii), we have the following condition.

$$(\pi_i \circ \delta_A)(v) = (\pi_i \circ \delta_A)(v * 0) \ge \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(0 * u)\}$$

= $\inf\{(\pi_i \circ \delta_A)(0 * (v * u)), (\pi_i \circ \delta_A)(0 * (u * 0))\}$
= $\inf\{(\pi_i \circ \delta_A)(v * u), (\pi_i \circ \delta_A)(u)\}$

for all $u, v \in X$ and $i = 1,2,3,4 \dots, m$. So, any m-polar (\in, \in) -fuzzy B-ideal A is an m-polar fuzzy ideal.

In equality (9), we assume that u = 0. Futhermore, by using axiom B2 (in Definition 2.1) and equation (10), we have the following condition

$$(\pi_i \circ \delta_A)(v * w) \ge \inf\{(\pi_i \circ \delta_A)(0 * v), (\pi_i \circ \delta_A)(w * 0)\} \\= \inf\{(\pi_i \circ \delta_A)(v), (\pi_i \circ \delta_A)(w)\}\$$

for all $v, w \in X$ and $i = 1, 2, 3, 4 \dots, m$. So, any m-polar (\in, \in) -fuzzy B-ideal A is an m-polar fuzzy subalgebra.

In Example 3.11 below, we provide a case where the m-polar fuzzy set *A* is an m-polar fuzzy ideal and an m-polar fuzzy subalgebra of *X*, but *A* is not an m-polar (\in , \in)-fuzzy B-ideal of *X*. Moreover, in Example 3.11, the modified π_i formula is also included to prove that *A* is an m-polar (\in , \in)-fuzzy B-ideal of B-algebra (*X*,*,0) or not.

Example 3.11 Suppose (X,*,0) with $X = \{0,2, a, b\}$ is a B-algebra with operation * shown in the table below.

Table 4 : Definition operation $*$ for $X = \{0, 2, a, b\}$							
	*	0	2	а	b		
	0	0	0	а	b		
	2	2	0	b	а		
	а	а	b	0	2		
	b	b	а	2	0		

Suppose *A* is a 4-polar fuzzy set with membership function $\delta_A: X \to [0,1]^4$ and $\pi_i: [0,1]^4 \to [0,1]$ defined as follows.

$$\delta_A: X \to [0,1]^4$$

$$\delta_A(0) = (0.6,0.7,0.8,0.9)$$

$$\delta_A(2) = (0.5,0.6,0.7,0.8)$$

$$\delta_A(a) = (0.4,0.5,0.6,0.7)$$

$$\delta_A(b) = (0.4,0.5,0.6,0.7)$$

$$\pi_i: [0,1]^4 \to [0,1]$$

$$\pi_1(w_1, w_2, w_3, w_4) = \min(w_1, w_2, w_3, w_4) + 0.1$$

$$\pi_3(w_1, w_2, w_3, w_4) = \min(w_1, w_2, w_3, w_4) + 0.2$$

$$\pi_4(w_1, w_2, w_3, w_4) = \min(w_1, w_2, w_3, w_4) + 0.3$$

Then, *A* is an 4-polar fuzzy ideal and 4-polar fuzzy subalgebra of *X*, but *A* is not 4-polar (\in, \in) -fuzzy B-ideal of *X* because there are u = 0, v = 2, w = 0 and u = 2, v = 2, w = 0 that do not satisfy condition (9).

Based on Theorem 3.10 and Example 3.11, it can be seen that every m-polar (\in, \in)-fuzzy B-ideal is an m-polar fuzzy ideal but every m-polar fuzzy ideal is not necessarily an m-polar (\in, \in)-fuzzy B-ideal. Therefore, in Theorem 3.12 and Theorem 3.14, a condition is given for an m-polar fuzzy ideal to be an m-polar (\in, \in)-fuzzy B-ideal of *X*.

Theorem 3.12 Suppose *A* is an m-polar fuzzy ideal of B-algebra (X,*,0) with membership function δ_A . *A* can be said as an m-polar (\in , \in)-fuzzy B-ideal of *X* if it fulfills the condition below.

$$(\pi_i \circ \delta_A)((v * w) * (w * u)) \ge (\pi_i \circ \delta_A)(u * v)$$
(11)

for all $u, v, w \in X$ and $i = 1, 2, 3, 4, \dots, m$.

Proof. By using the axioms B1 and B2 (in Definition 2.1) and inequality (9), we have the following condition.

$$(\pi_i \circ \delta_A)(v) = (\pi_i \circ \delta_A)(v * 0) = (\pi_i \circ \delta_A)((v * 0) * 0) = (\pi_i \circ \delta_A)((v * 0) * (w * w)) = (\pi_i \circ \delta_A)((v * w) * (0 * w))$$

Assume 0 * w = 0 so that we have the following condition.

$$(\pi_i \circ \delta_A)(v * w) \ge \inf\{(\pi_i \circ \delta_A)((v * w) * (w * u)), (\pi_i \circ \delta_A)(w * u)\}$$

$$\ge \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\}$$

for all $u, v, w \in X$ and $i = 1, 2, 3, 4 \dots, m$.

Lemma 3.13 If (X, *, 0) is a B-algebra, then any m-polar fuzzy ideal dari X fulfills inequality (12) below.

$$(\pi_i \circ \delta_A)(u * v) \ge (\pi_i \circ \delta_A)(v * u)$$
(12)

for all $u, v \in X$ and i = 1, 2, 3, 4, ..., m.

Proof. By applying Propotition 2.3 (viii), inequality (6), inequality (9), and equation (10) we have the following condition.

$$(\pi_i \circ \delta_A)(u * v) = (\pi_i \circ \delta_A)(0 * (u * v))$$

$$\geq \inf\{(\pi_i \circ \delta_A) \left(\left(0 * (u * v) \right) * (v * u) \right), (\pi_i \circ \delta_A)(v * u) \}$$

$$= \inf\{(\pi_i \circ \delta_A) \left((v * u) * (v * u) \right), (\pi_i \circ \delta_A)(v * u) \}$$

$$= \inf\{(\pi_i \circ \delta_A)(0), (\pi_i \circ \delta_A)(v * u) \} = (\pi_i \circ \delta_A)(v * u)$$

for all $u, v \in X$ and i = 1, 2, 3, 4, ..., m.

Theorem 3.14 Suppose *A* is an m-polar fuzzy ideal of B-algebra (X, *, 0) with membership function δ_A . *A* is an m-polar (\in , \in)-fuzzy B-ideal of X if it fulfills inequality (13) below.

$$(\pi_i \circ \delta_A)(0 * ((v * w) * (u * w))) \le (\pi_i \circ \delta_A)((v * w) * (w * u))$$
(13)

for all $u, v, w \in X$ and $i = 1, 2, 3, 4, \dots, m$.

Proof. Based on Propotition 2.3 (viii), Propotition 2.3 (ix), and Theorem 3.12, we have the following condition.

-

$$(\pi_i \circ \delta_A)(u * v) = (\pi_i \circ \delta_A)((u * w) * (v * w))$$

= $(\pi_i \circ \delta_A)(0 * ((v * w) * (u * w)))$
 $\leq (\pi_i \circ \delta_A)(0 * ((w * u) * (v * w)))$
= $(\pi_i \circ \delta_A)((v * w) * (w * u))$

for all $u, v, w \in X$ and i = 1, 2, 3, 4, ..., m. So, based on Theorem 3.12, A is m-polar fuzzy B-ideal of X.

In the following theorem, we discuss one of the properties of m-polar (\in, \in) -fuzzy B-ideal of B-algebra (X, *, 0) involving m-polar level set.

Theorem 3.15 Suppose (X,*,0) is a B-algebra. A is an m-polar (\in , \in)-fuzzy B-ideal of X with membership function δ_A if and only if the m-polar set $U(\bar{A}, \hat{r})$ of A is a B-ideal of X, for each $\hat{r} \in [0,1]^m$.

Proof. (\Rightarrow) We assume *A* is an m-polar (\in , \in)-fuzzy B-ideal of X and $\hat{\mathbf{r}} = (r_1, r_2, ..., r_m) \in (0,1]^m$. It is obvious that $0 \in U(\tilde{A}, \hat{\mathbf{r}})$. Suppose $u, v, w \in X$, so we obtain $(u * v) \in U(\tilde{A}, \hat{\mathbf{r}})$ and $(w * u) \in U(\tilde{A}, \hat{\mathbf{r}})$, hence $(\pi_i \circ \delta_A)(u * v) \ge r_i$ and $(\pi_i \circ \delta_A)(w * u) \ge r_i$. Based on (9), we have the following condition.

$$(\pi_i \circ \delta_A)(v * w) \ge \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\} \ge r_i$$

for i = 1, 2, 3, 4, ..., m. Therefore, $(w * u) \in U(\tilde{A}, \hat{r})$ and $U(\tilde{A}, \hat{r})$ are B-ideal of X.

(\Leftarrow) We assume the set of polar levels $U(\tilde{A}, \hat{r})$ of A is a B-ideal of X, for all $\hat{r} \in [0,1]^m$. If $\tilde{A}(0) < \tilde{A}(p)$, for $p \in X$ and suppose $\hat{r} \in \tilde{A}(p)$, then $p \in U(\tilde{A}, \hat{r})$ and $0 \notin U(\tilde{A}, \hat{r})$. The statement is a contradiction and we get $\tilde{A}(0) \ge \tilde{A}(u)$, for all $u \in X$. Next, we assume that there exists $p, q, s \in X$ such that $\tilde{A}(q * s) < \inf{\{\tilde{A}(p * q), \tilde{A}(s * p)\}}$. If $\hat{r} = \inf{\{\tilde{A}(p * q), \tilde{A}(s * p)\}}$, then $(p * q) \in U(\tilde{A}, \hat{r})$ and $(s * p) \in U(\tilde{A}, \hat{r})$. Because $U(\tilde{A}, \hat{r})$ of A is a B-ideal of X, then $(q * s) \in U(\tilde{A}, \hat{r})$. Therefore, we get $\tilde{A}(q * s) \ge \hat{r}$, which is a contradiction, so we get $\tilde{A}(v * w) \ge \inf{\{\tilde{A}(u * v), \tilde{A}(w * u)\}}$, for all $u, v, w \in X$. Thus, A is an m-polar (\in, \in) -fuzzy B-ideal of X.

Next, in Theorem 3.16 and Theorem 3.17, we provide the expansion properties of m-polar fuzzy B-ideal.

Theorem 3.16 Suppose *A* is an m-polar fuzzy set of B-algebra (X, *, 0) and $f: X \to X$ is an epimorphism. The composition $A \circ f$ is an m-polar (\in, \in)-fuzzy B-ideal of X if *A* is a m-polar (\in, \in)-fuzzy B-ideal of X with membership function δ_A .

Proof. Suppose *A* is an m-polar (\in, \in) -fuzzy B-ideal of X with membership function δ_A . Then, for $A \circ f$ we have the following condition.

$$(\pi_i \circ (\delta_A \circ f))((v * w) * (w * u)) = \pi_i((\delta_A \circ f)((v * w) * (w * u)))$$

$$= \pi_i(\delta_A (f((v * w) * (w * u))))$$

$$= (\pi_i \circ \delta_A)(f((v * w) * (w * u)))$$

$$\ge (\pi_i \circ \delta_A)(0 * f((v * w) * (u * w)))$$

$$= (\pi_i \circ \delta_A)(f(0) * (f(v * w) * f(u * w)))$$

$$= (\pi_i \circ \delta_A)(f(0) * ((v * w) * (u * w)))$$

$$= (\pi_i \circ (\delta_A \circ f))(0 \ast ((\nu \ast w) \ast (u \ast w)))$$

for all $u, v, w \in X$ and i = 1, 2, 3, 4, ..., m. Thus, by Theorem 3.14, $A \circ f$ is an m-polar (\in, \in) -fuzzy B-ideal of X.

Theorem 3.17 Suppose $g: X \to Y$ is an epimorphism of B-algebra. If *B* is an m-polar (\in, \in) -fuzzy B-ideal of *Y* with membership function δ_B , then the m-polar fuzzy set *A* of *X* with membership function δ_A can be written down as below.

$$\delta_A: X \to [0,1]^m$$
$$u \mapsto \delta_B(g(u))$$

that is, $(\pi_i \circ \delta_A)(u) = (\pi_i \circ \delta_B)(g(u))$, for all $u \in X$ and i = 1,2,3,4, ..., m is an m-polar (ϵ, ϵ) -fuzzy B-ideal of X.

Proof. We have

$$(\pi_i \circ \delta_A)(u) = (\pi_i \circ \delta_B)(g(u)) \le (\pi_i \circ \delta_B)(0) = (\pi_i \circ \delta_B)(g(0)) = (\pi_i \circ \delta_A)(0)$$

for $u \in X$ and $i = 1, 2, 3, 4, \dots, m$. We also have

$$(\pi_i \circ \delta_A)(v * w) = (\pi_i \circ \delta_B)(g(v * w)) = (\pi_i \circ \delta_B)(g(v) * g(w))$$

$$\geq \inf\{(\pi_i \circ \delta_B)(g(u) * g(v)), (\pi_i \circ \delta_B)(g(w) * (g(u)))$$

$$= \inf\{(\pi_i \circ \delta_B)(g(u * v)), (\pi_i \circ \delta_B)(g(w * u))\}$$

$$= \inf\{(\pi_i \circ \delta_A)(u * v), (\pi_i \circ \delta_A)(w * u)\}$$

for $u, v, w \in X$ and i = 1, 2, 3, 4, ..., m. So, A is an m-polar (\in, \in) -fuzzy B-ideal of X.

CONCLUSIONS

In this paper, we contruct a new structure, an m-polar (\in, \in) -fuzzy B-ideal of B-algebra which is a combination of the concept of fuzzy B-ideal and m-polar fuzzy set. We elaborate and explain some properties which include the general properties obtained by giving special condition on m-polar (\in, \in) -fuzzy B-ideal, the connection among m-polar (\in, \in) fuzzy B-ideal,m-polar fuzzy ideal, and m-polar fuzzy subalgebra. We give a condition that causes an m-polar fuzzy ideal to become an m-polar m-polar (\in, \in) -fuzzy B-ideal. Futhermore, we give expansion properties of an m-polar (\in, \in) -fuzzy B-ideal. We also add a π_i formula in proving whether an m-polar fuzzy subset *A* is an m-polar (\in, \in) -fuzzy Bideal of B-algebra (X, *, 0) (in Example 3.6 and Example 3.11). For future research, the structure of m-polar fuzzy B-ideal of B-algebra can be developed into m-polar intuitionistic fuzzy B-ideal of B-algebra. In addition, for the next research, the concept of bipolar fuzzy sets and m-polar fuzzy sets can be combined so it can be called m-bipolar fuzzy.

REFERENCES

- [1] L.A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, no. 3, pp. 338-353, 1965.
- [2] W. R. Zhang, "Bipolar fuzzy sets and relations," *Proceedings of the Fuzzy Information Processing Society Biannua Conference*, San Antonio, USA, pp. 305-309, 1994.
- [3] J. Chen, S. Li, S. Ma, X, Wang, "m-polar fuzzy sets: extension of bipolar fuzzy sets," *Science Worlds Journal*, pp. 41530, 2014.
- [4] Y. Imai and K. Iseki, "On axiom system of propositional calculi," *Japan Acad*, no. 42, pp. 19-22, 1966.
- [5] Neggers and H. S. Kim, "On B-algebras," *Mathematic International Journal*, no.54, pp. 21-29, 2002.
- [6] Y. B. Jun, E. H. Roh, and H. S. Kim, "On fuzzy B-algebras," *Chzechoslovak Mathematical Journal*, vol. 52, no. 2, pp. 375-384, 2002.
- [7] S. S. Ahn and K. Bang, "On fuzzy subalgebras in B-algebra," Community Korean Math, no. 3, pp. 429-437.
- [8] C. Yamini and S. Kailasavalli, "Fuzzy B-ideals on B-algebras," *International Journal Mathematical Archieve*, pp. 227-233, 2014.
- [9] A. Al-Marsawah and A. G. Ahmad, "m-polar fuzzy ideal of BCI/BCK-algebras," *Journal of King Sand University-Science*, no. 31, pp. 1220-1226, 2019.
- [10] M. M. Takallo, S. S. Ahn, R. A. Borzooei, and Y. B. Jun, "Multipolar fuzzy p-ideals of BCI-algebras," *Mathematics*, no. 7, pp. 1094, 2019.
- [11] G. Muhiuddin, M. M. Takallo, R. A. Borzooei, and Y. B. Jun, "m-polar fuzzy q-ideal in BCI-algebras," *Journal of King Saud University-Science*, 2020.
- [12] R. A. Borzooei, G. R. Rezaei G. Muhiuddin, and Y. B. Jun, "Multipolar fuzzy a-ideal in BCI-algebras," *Journal of Machine Learning and Cybernetics*, 2021.
- [13] Y. Huang "BCI-Algebras," *Science Press*, Beijing, China, 2006.
- [14] R. A. Senapati, M. Bhowmik, and M. Pal, "Fuzzy closed ideal of B-alegbras with interval-valued membership function," *International Journal of Fuzzy Mathematical Arc Archive.* vol. 1, pp. 79-91, 2013.
- [15] H. K. Abdullah and A. A. Atshan, "Complete ideal and n-ideal of B-algebra," *Applied Mathematical Journal*, vol. 11, no. 35, pp. 1705-1713, 2017.
- [16] R. A. Borzooei, H. S. Kim, Y. B. Jun, and S. S. Ahn, "On multipolar intuitionistic fuzzy B-algebras," *Mathematics*, no, 8, pp. 907, 2020.
- [17] J. Zhan, Y. B. Jun, B. Davvaz, "On (∈,∈∨q)-fuzzy ideals of BCI-algebras," *Iranian Journal of Fuzzy Systems*, vol. 6, no, 1, pp. 81-94.