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ABSTRACT 

Quaternions are extensions of complex numbers that are four-dimensional objects. Quaternion 
consists of one real number and three complex numbers, commonly denoted by the standard 
vectors 𝑖, 𝑗, and 𝑘. Quaternion algebra over the field is an algebra in which the multiplication 
between standard vectors is non-commutative and the multiplication of standard vector with itself 
is a member of the field. The field considered in this study is the quadratic field and its extensions 
are biquadratic and composite. There have been many studies done to show the existence of split 
properties in quaternion algebras over quadratic fields. The purpose of this research is to prove a 
theorem about the existence of split properties on three field structures, namely quaternion 
algebras over quadratic fields, biquadratic fields, and composite of 𝑛 quadratic fields. We propose 
two theorems about biquadratic fields and composite of 𝑛 quadratic fields refer to theorems about 
the properties of the split on quadratic fields. The result of this research is a theorem proof of three 
theorems with different field structures that shows the different conditions of the three field 
structures. The conclusion is that the split property on quaternion algebras over fields exists if 
certain conditions can be met. 
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INTRODUCTION 

Quaternions are a useful tool for comprehending a variety of physics and kinematic 
concepts. Quaternion are frequently employed to address optimization issues involving 
predicting rigid body transformations, particularly in the disciplines of computer vision, 
computer graphics, and animation [1]. Quaternions are extensions of complex numbers. 
Complex numbers denoted by ℂ are a subset of quaternion numbers with the notation ℍ. 
Quaternion numbers are also called hypercomplex numbers because they are a 
generalization of the complex number system. Quaternion numbers are applied in various 
applications such as color image filtering, segmentation, and 3-dimensional impulse 
response filter design [2]. Quaternion numbers have four components, namely one real 
number and three imaginary numbers that have the form: 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, where 
𝑎, 𝑏, 𝑐, and 𝑑 are real numbers and 𝑖, 𝑗, and 𝑘 are imaginary numbers [3]. 
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Quaternion algebra is a generalization of vector algebra. Quaternion algebra was 
first presented by Hamilton more than a hundred years ago but has only been practically 
applied recently, especially in the industrial field. A four-dimensional vector can be used 
to symbolize quaternion algebra [4]. A vector space 𝑉 over a field 𝐹 with a bilinear 
mapping makes up a quaternion algebra. An algebra 𝐴 is said to be a division algebra if 
for every 𝑎, 𝑏 ∈ 𝐴, with 𝑎 ∙ 𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0. In other words, there are no zero 
divisors in division algebra. Any field 𝔽 can be used to generalize quaternion algebra in 
place of the real number field 𝔽. A quaternion algebraic system is a non-commutative 
algebraic system defined the multiplication of its imaginary vectors, i.e., 𝑖2 = 𝑎, 𝑗2 =
𝑏, 𝑘2 = −𝑎𝑏, and 𝑖𝑗 = −𝑗𝑖 = 𝑘, where 𝑎, 𝑏 ∈ 𝔽 [5]. 

A quadratic field is a two-degree field over a rational number ℚ. A quadratic field 

has the form 𝑎 + 𝑏√𝑑, where 𝑎, 𝑏 ∈ ℚ and 𝑑 is a square-free integer. An integer that has 
no repeating elements in its prime decomposition is said to be square-free. The symbol 

for a quadratic field is ℚ(√𝑑). A biquadratic field is a quadratic field that contains two 

different square-free integer elements. Suppose ℚ is a rational number and 𝑚, 𝑝 are 

distinct square-free integers; the field formed by √𝑚 and √𝑝 to ℚ is denoted by 

ℚ(√𝑚, √𝑝). The notation ℚ(√𝑚, √𝑝) can be defined as a quadratic field over rational 

numbers ℚ if ℚ(√𝑚, √𝑝) = ℚ(√𝑚 + √𝑝) and √𝑚 + √𝑝 has unique minimal polynomial 

𝑥4 − 2(𝑚 + 𝑝)𝑥2 + (𝑚 + 𝑝)2. The term “integer of the field ℚ(√𝑚, √𝑝)” refers to any 

element in ℚ(√𝑚, √𝑝) that has a monic equation of degree ≥ 1 with rational integral 

coefficients [6]. A composite number is a natural number greater than one and is the 
inverse of a prime number. The composite of 𝑛 quadratic fields is the quadratic field of 

number 𝑛 and is denoted by ℚ(√𝑑1, √𝑑2, … , √𝑑𝑛) [7]. 

A lot of research has been done to study quaternion algebras over a field. Research 
[8] discusses the characteristics of quaternion numbers. This research studies the 
properties of quaternion numbers in general but has not studied them further in the field. 
Research [9] discusses the split quaternion algebra over a certain field. This research 
further studies the split properties of quaternion algebras over certain fields. The second 
research [10] discusses the class of quaternion algebra in the field. This research studies 
the special properties of division algebra in quaternion algebra. The characteristics of 
quaternion algebras over quadratic fields are covered in research [11]. This study 
explores the properties of quaternion algebras over quadratic fields as well as the 
prerequisites and requirements for using quaternion algebras over quadratic fields as 
division algebras. Research [7] discusses the development of previous research, namely 
the characteristics of the quaternion algebra over the composite of 𝑛 quadratic fields. This 
research reveals the characteristics of quaternion algebra and its application to Fibonacci 
numbers. Based on this research, a study is formed that discusses the characteristics of 
the quaternion algebra over the composite of 𝑛 quadratic fields in a division algebra. 

From these studies, we found a research gap that needs to be developed further. 
We will develop a theorem on split existence for a wider field, namely quaternion algebra 
over the composite of 𝑛 quadratic fields. The purpose of this research is to prove the 
theorem about split existence on three algebraic structures over the field, namely a 
quadratic field, a biquadratic field, and a composite of 𝑛 quadratic field. Since split 
properties on quaternion algebras over quadratic fields have already been theorized, this 
study will focus on split properties on quaternion algebras over biquadratic fields and 
composites of 𝑛 quadratic fields, two areas of unexplored research. A theorem on the split 
properties of quaternion algebras over quadratic fields was described by Acciaro and 
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Savin in 2018 [12]. Two theorems regarding the split properties on biquadratic fields and 
a composite of 𝑛 quadratic fields that are related to theorems about the split properties 
on quadratic fields are proposed. The results of this study will show the existence of split 
properties that always exist in quaternion algebras under certain conditions. In addition, 
the results of this study show the different conditions required for quaternion algebras to 
be split. Larger fields tend to require more conditions for the split existence theorem on 
quaternion algebras to hold. This research can be useful for the advancement of algebraic 
science studies, especially in the field of algebra over the field. 

 

METHODS 

This section describes the definitions, theorems, lemmas, and propositions used in this 
research to answer the main research problem, namely answering the characteristics 
through theorem proving of the quaternion algebra over the composite of 𝑛 quadratic 
fields that have split properties. The method used in answering this main problem is a 
literature study that focuses on the material of quaternion algebra over the composite of 
𝑛 quadratic fields and its properties. First, we will prove the theorem about the sufficient 
condition of quaternion algebra over quadratic fields having split properties. Then, the 
research will be extended by proving the theorem about the sufficient condition that the 
quaternion algebra over the biquadratic fields has split properties. Finally, the research 
will be extended again by proving the theorem about the sufficient condition of 
quaternion algebra over the composite of 𝑛 quadratic fields that also has the split 
property. The following is a definition that becomes the theoretical basis for answering 
research problems about quaternion algebra. 
 

Definition 1. (See [13]) (Quaternion) 

Quaternions are an extension of complex numbers. Quaternions have number elements 
consisting of one real number and three imaginary numbers. Quaternions mathematically, 
can be written as follows: 

ℍ = {𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘; ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}; 
where the following multiplication rule conditions apply: 

1. 𝑖2 = 𝑗2 = 𝑘2 = −1; 

2. 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗, 𝑘𝑗 = −𝑖, 𝑗𝑖 = −𝑘; 

3. Each 𝑎 ∈ ℝ is commutative with 𝑖, 𝑗, and 𝑘. 

Definition 2. (See [14]) (Quaternion from complex number) 

Suppose 𝐴 = 𝑎 + 𝑏𝑖 and 𝐶 = 𝑐 + 𝑑𝑖 are two complex numbers. Construct the number 𝑞 =
𝐴 + 𝐶𝑗 and define 𝑘 = 𝑖𝑗, so as to produce a number in a four-dimensional vector space 
denoted by ℍ. 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∈ ℍ; 
where {𝑎, 𝑏, 𝑐, 𝑑} ∈ ℝ, and {𝑖, 𝑗, 𝑘} are three imaginary numbers defined as follows 

𝑖2 = 𝑗2 = 𝑘2 = −1; 
As a result, the following equation may be deduced:  

𝑖𝑗 = −𝑗𝑖 = 𝑘,   𝑗𝑘 = −𝑘𝑗 = 𝑖,   𝑘𝑖 = −𝑖𝑘 = 𝑗. 
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Definition 3. (See [15]) (Algebra over field) 

Assume that 𝐾 is a field and that 𝐴 is a vector space over 𝐾 with an addition operation in 
binary form from 𝐴 × 𝐴 to 𝐴. Vector space 𝐴 is an algebra over a field 𝐾 if it satisfies the 
following axioms: 

(𝜆𝑎)𝑏 = 𝑎(𝜆𝑏) = 𝜆(𝑎𝑏),   ∀𝜆 ∈ 𝐾 𝑎𝑛𝑑 ∀𝑎, 𝑏 ∈ 𝐴. 
 
Definition 4. (See [16]) (Quaternion Algebra) 

A quaternion algebra is an algebra 𝐴 over a field 𝐹 if there exist 𝑖, 𝑗 ∈ 𝐴 such that 1, 𝑖, 𝑖𝑗 is 
a basis for algebra 𝐴 and holds: 

𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑘2 = −𝑎𝑏, 𝑎𝑛𝑑 𝑗𝑖 = −𝑖𝑗 = 𝑘; 
For every 𝑎, 𝑏 ∈ 𝐹. 
 
Definition 5. (See [17]) (Conjugate) 

Consider 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 to be a quaternion number. The conjugate of quaternion 
can be defined as follows: 

𝑞∗ = (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘)∗ = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘. 
 
Definition 6. (See [17]) (Norm) 

Consider 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 to be a quaternion number. The norm of quaternion can be 
defined as follows: 

𝑁(𝑞) = 𝑞𝑞∗ = (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘)(𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘) = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2. 
 
Definition 7. (See [17]) (Inverse) 

Consider 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 to be a quaternion number. The multiplication inverse of 
quaternion denoted by 𝑞−1 may be defined as follows: 

𝑞−1 =
𝑞∗

𝑁(𝑞)
; 

and the multiplication of the inverse holds 𝑞𝑞−1 = 1 = 𝑞−1𝑞. The inverse operation 
contains the properties of the inverse of multiplication, namely: (𝑞−1)−1 = 𝑞 and 
(𝑝𝑞)−1 = 𝑞−1𝑝−1, where 𝑝 is a quaternion number. 
 
Definition 8. (See [18]) (Field Extension) 

Suppose 𝐸 and 𝐹 are fields. If and only if 𝐹 is a subfield of 𝐸, then field 𝐸 is an extension 
of 𝐹. Field 𝐸 is a vector space over a field 𝐹 denoted by 𝐸/𝐹 and its dimension is denoted 
by [𝐸: 𝐹]. 
 
Definition 9. (See [19]) (Quadratic Field) 

The field of rational numbers ℚ of degree two extends into the quadratic field. The 

quadratic field has the form 𝑎 + 𝑏√𝑑, where 𝑑 is a square-free integer represented by 

ℚ(√𝑑) in the form of a quadratic field. If 𝑑 > 0, the field is referred to as a real quadratic 

field. If 𝑑 < 0, it is referred to as an imaginary quadratic field. 
 
Definition 10. (See [20]) (Square-free) 

A number is said to be squarefree if its prime decomposition does not contain repeated 
factors. Therefore, all prime numbers are squarefree. 
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Definition 11. (See [11]) (Division Algebra) 

Associative algebra 𝐴 is a kind of algebra. 𝐴 over a field 𝐹 is a division algebra if and only 
if it has a multiplication identity element of 1 ≠ 0 and a left and right multiplication 
inverse for each non-zero element in 𝐴. If 𝐴 is a finite-dimensional algebra, it is a division 
algebra if and only if it has no zero divisors. 
Definition 12. (See [16]) (Division Ring) 

Division algebra is an algebra over the division ring 𝐾 (every nonzero element has an 
inverse). 
 
Definition 13. (See [6]) (Biquadratic Field) 

Let ℚ indicate the rational number field. ℚ(√𝑚, √𝑛) denotes the field produced by √𝑚 

and √𝑛 to ℚ if √𝑚 and √𝑛 are separate square-free integers. ℚ(√𝑚, √𝑛) = ℚ(√𝑚 + √𝑛), 

and √𝑚 + √𝑛 has a unique minimum polynomial 𝑥4 − 2(𝑚 + 𝑛)𝑥2 + (𝑚 + 𝑛)2, implying 

that ℚ(√𝑚, √𝑛) is a biquadratic field over ℚ. Members of the field ℚ(√𝑚, √𝑛) have the 

following formula: 𝑎0 + 𝑎1√𝑚 + 𝑎2√𝑛 + 𝑎3√𝑚𝑛, where 𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℚ. 
 
Definition 14. (See [21]) (Discriminant) 

Suppose 𝐾 to be a field of degree 𝑛 with complex insertions 𝜎1, … , 𝜎𝑛 and let 𝛼1, … , 𝛼𝑛 ∈
𝐾. The discriminant ∆(𝛼1, … , 𝛼𝑛) of these 𝑛-tuples is defined as the square of the 
determinant of an 𝑛 × 𝑛 matrix. 

(𝜎𝑖(𝛼𝑗)) 

 
Definition 15. (See [22]) (Legendre Symbol) 

Assume that 𝑝 is an odd prime integer and that 𝑎 ∈ ℤ. This is how the legendre symbol 

(
𝑎

𝑝
) is defined: 

(
𝑎

𝑝
) = {

1,   𝑖𝑓 𝑥2 ≡ 𝑎 (𝑚𝑜𝑑 𝑝) ℎ𝑎𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
0,   𝑖𝑓 𝑝|𝑎
−1,   𝑒𝑙𝑠𝑒

 

If 𝑝 is prime and 𝑎 ∈ ℤ satisfies (
𝑎

𝑝
) = 1 then 𝑎 is a quadratic residue, while if (

𝑎

𝑝
) = −1 

[11]then 𝑎 is a non-quadratic residue. 
 
Definition 16. (See [11])  (Quadratic Residue Symbol) 

Suppose 𝒫 is a prime ideal of the ring 𝒪𝐾 . If 𝛼 is quadratic in 𝐾, then its quadratic residue 
symbol is 

(
𝛼

𝒫
) = {

1,   𝑖𝑓 𝒫 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛 𝐾(√𝛼)

−1,   𝑖𝑓 𝒫 𝑖𝑛𝑒𝑟𝑡 𝑖𝑛 𝐾(√𝛼)

0,   𝑖𝑓 𝒫 𝑟𝑎𝑚𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝐾(√𝛼)

 

 
Definition 17. (See [23]) (Hilbert Equation) 

For the field 𝔽 and 𝑎, 𝑏 ∈ 𝔽∗ = 𝔽\{0}. We state that 
𝑎𝑋2 + 𝑏𝑌2 = 𝑍2 
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is a Hilbert Equation and the solution (𝑥, 𝑦, 𝑧) ∈ 𝔽3 is trivial if and only if 𝑥 = 𝑦 = 𝑧 = 0, 
otherwise it is nontrivial. 
 
Definition 18. (See [23]) (Hilbert Symbol) 

Suppose 𝐹 is a field and 𝑅 ⊆ 𝐹 is a subring. Define the mapping that resolves a quadratic 
diagonal equation in three variables with coefficients in 𝐹 and is nontrivial 𝑅 solvable: 

ℎ𝑅,𝐹(∙,∙) ∶ 𝐹∗ × 𝐹∗ → {−1,1} 

(𝑎, 𝑏) ⟼ {
1,   𝑖𝑓 ∃(𝑥, 𝑦, 𝑧) ∈ 𝑅3\{0} ∶ 𝑎𝑥2 + 𝑏𝑦2 = 𝑧2

−1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

If 𝑅 = 𝐹, then write ℎ𝐹(∙,∙) ∶= ℎ𝐹,𝐹(∙,∙). 

 
Proposition 19. (See [24]) (Discriminant of quadratic field) 

Let ∆𝐾 be the discriminant of a square-free integer 𝑑 in the quadratic field 𝐾 = ℚ(√𝑑). 

The following conditions hold: 
1. If 𝑑 = 2,3 (𝑚𝑜𝑑 4) then ∆𝐾= 4𝑑; 

2. If 𝑑 = 1 (𝑚𝑜𝑑 4) then ∆𝐾= 𝑑. 

Theorem 20. (See [6]) (Discriminant of biquadratic field) 

Assume that 𝑙 = (𝑚, 𝑛) is a Hilbert Symbol, 𝑚 = 𝑙𝑚1, and that 𝑛 = 𝑙𝑛1, and that (𝑚1, 𝑛1) =

1. ℚ(√𝑚, √𝑛) has the following discriminant: 

1. 𝑙2𝑚1
2𝑛1

2, if (𝑚, 𝑛) = (1,1)(𝑚𝑜𝑑 4); 

2. 16𝑙2𝑚1
2𝑛1

2, if (𝑚, 𝑛) = (1,2) 𝑜𝑟 (3,3)(𝑚𝑜𝑑 4); 

3. 64𝑙2𝑚1
2𝑛1

2, if (𝑚, 𝑛) = (2,3)(𝑚𝑜𝑑 4). 

Theorem 21. (See [25]) (Split Properties) 

Suppose 𝐾 is an extension quadratic field of 𝔽 and 𝐻𝔽 is a quaternion algebra over 𝔽. If no 
ramified prime of 𝔽 in 𝐻𝔽 is split in 𝐾, then there is an insertion of 𝐾 into 𝐻𝔽. 
 
Theorem 22. (See [12]) (Prime decomposition in the quadratic field) 

Suppose 𝑑 ≠ 0,1 is an integer with no squares (square-free integer). Suppose ∆𝐾 is the 

discriminant of 𝐾 and 𝒪𝐾  is the integer ring of the quadratic field 𝐾 = ℚ(√𝑑). Assume that 

𝑝 is an odd prime number. Next, we have: 

a. If and only if 𝑝|∆𝐾, 𝑝 is ramified in 𝒪𝐾 . Therefore, 𝑝𝒪𝐾 = (𝑝, √𝑑)
2

; 

b. If (
∆𝐾

𝑝
) = 1, then and only if 𝑝 is split in 𝒪𝐾 . If 𝑃1 and 𝑃2 are different prime ideals 

in 𝒪𝐾 , then 𝑝𝒪𝐾 = 𝑃1 ∙ 𝑃2. 

c. If (
∆𝐾

𝑝
) = −1, then and only if, 𝑝 is inert in 𝒪𝐾; 

d. If and only if 𝑑 ≡ 2 (𝑚𝑜𝑑 4) or 𝑑 ≡ 3 (𝑚𝑜𝑑 4) are true, the prime number 2 is 

ramified in 𝒪𝐾 . 2𝒪𝐾 = (2, √𝑑)
2

 in the first instance and 2𝒪𝐾 = (2,1 + √𝑑)
2

 in the 

second; 

e. If and only if 𝑑 ≡ 1 (𝑚𝑜𝑑 8) exists, the prime 2 is split in 𝒪𝐾 . Given that 𝑃1 =

(2,
1+√𝑑

2
), 𝑃2 is a separate prime ideal in 𝒪𝐾 , and 2𝒪𝐾 = 𝑃1 ∙ 𝑃2; 

f. If and only if 𝑑 ≡ 5 (𝑚𝑜𝑑 8), the prime 2 is inert in 𝒪𝐾 . 
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Theorem 23. (See [12]) (Split properties of prime numbers in a biquadratic field) 

Suppose 𝑑1 and 𝑑2 are two distinct square-free integers not equal to one, and suppose 

𝑑3 =
𝑙𝑐𝑚(𝑑1,𝑑2)

gcd(𝑑1,𝑑2)
. Suppose 𝒪𝐾  is the integer ring of the quadratic field 𝐾 and 𝒪𝐾𝑖

 is the integer 

ring of the quadratic subfield 𝐾𝑖 = ℚ(√𝑑𝑖), where 𝑖 = 1,2,3. Let’s assume 𝑝 is a prime 

number. When 𝑝 is split in every 𝒪𝐾𝑖
, where 𝑖 = 1,2,3, then and only then 𝑝 is split in 𝒪𝐾 . 

 
Theorem 24. (See [12]) (Split for composite field) 

Suppose 𝑝 is a prime of ℚ that is split in every field 𝐹1, 𝐹2, … , 𝐹𝑛 . Then 𝑝 is split in the 
composite field 𝐹1𝐹2 … 𝐹𝑛 . 
 
Lemma 25. (See [12]) (Discriminant of prime number) 

Suppose 𝑝 and 𝑞 are prime numbers, and 𝐻ℚ(√𝑑)(𝑝, 𝑞) is quaternion algebra with 

discriminant ∆𝐻. 

a. If 𝑝 ≡ 𝑞 ≡ 3 (𝑚𝑜𝑑 4) and (
𝑞

𝑝
) ≠ 1, then ∆𝐻= 2𝑝; 

b. If 𝑞 = 2 and 𝑝 ≡ 3 (𝑚𝑜𝑑 8), then ∆𝐻= 𝑝𝑞 = 2𝑝; 

c. If 𝑝 ≡ 1 (𝑚𝑜𝑑 4) or 𝑞 ≡ 1 (𝑚𝑜𝑑 4) with 𝑝 ≠ 𝑞 and (
𝑝

𝑞
) = −1, then ∆𝐻= 𝑝𝑞. 

RESULTS AND DISCUSSION  

A development of complex algebra known as quaternion algebra may be created in a 
number of areas of mathematics, including algebra, analysis, geometry, and arithmetic. In 
the field of algebra, quaternion algebra can be developed based on algebraic properties, 
namely split, inert, and ramified. Split quaternion algebras tend to be easier to decompose 
into simpler algebras. Therefore, a sufficient condition is needed so that a quaternion 
algebra is said to be a split algebra. First, what will be reviewed in this result and 
discussion is the existence of split properties on quaternion algebras over quadratic fields 
have been proved by Acciaro and Savin [12]. Then proceed to prove the split properties 
for a wider field, namely the biquadratic field and the composite of 𝑛 quadratic fields. The 
theorem on the split properties of the quaternion algebra over the quadratic field is 
shown as follows: 
 
Theorem 26 (See [12]) 

Suppose 𝑑 ≠ 0,1 are square-free integers, 𝑑 ≢ 1 (𝑚𝑜𝑑 8), and 𝑝, 𝑞 are prime integers, 
with 𝑞 ≥ 3, 𝑝 ≠ 𝑞. Let ∆𝐾 is the discriminant of 𝐾 and 𝒪𝐾  is the ring of integers for the 

quadratic field 𝐾 = ℚ(√𝑑). Then: 

a. If 𝑝 ≥ 3 and the legendre symbol (
∆𝐾

𝑝
) ≠ 1, (

∆𝐾

𝑞
) ≠ 1, then 𝐻ℚ(√𝑑)(𝑝, 𝑞) is split; 

b. If 𝑝 = 2 and legendre symbol (
∆𝐾

𝑞
) ≠ 1, then 𝐻ℚ(√𝑑)(2, 𝑞) is split; 

Proof: 
a. According to Proposition 19, ∆𝐾 = 𝑑 (if 𝑑 ≡ 1 (𝑚𝑜𝑑 4)) or ∆𝐾 = 4𝑑 (if 𝑑 ≡

2,3 (𝑚𝑜𝑑 4)). Because (
∆𝐾

𝑝
) ≠ 1 and (

∆𝐾

𝑞
) ≠ 1, by Definition 15, (

∆𝐾

𝑝
) = −1 or 0 and 

(
∆𝐾

𝑞
) = −1 or 0. According to Definition 16, 𝑝 and 𝑞 are both ramified in 𝒪𝐾  or inert 

in 𝒪𝐾 , therefore 𝑝 and 𝑞 are not split in the quadratic field 𝐾. 
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Suppose ∆ is the discriminant of the quaternion algebra 𝐻ℚ(√𝑑)(𝑝, 𝑞). 

A prime positive integer 𝑝′ is known to be ramified in 𝐻ℚ(√𝑑)(𝑝, 𝑞) if 𝑝′|2∆, 

indicating that 𝑝′|2𝑝𝑞. 
Since 𝑑 ≢ 1 (𝑚𝑜𝑑 8) and the decomposition of 2 in ring 𝒪𝐾  yield that 2 is not split 
in 𝐾. Applying Theorem 21, there is no ramified prime such that 𝐻ℚ(√𝑑)(𝑝, 𝑞) is 

split. Based on the above proof, it can be concluded that the quaternion algebra is 
split under this condition. 

b. According to Proposition 19, ∆𝐾 = 𝑑 (if 𝑑 ≡ 1 (𝑚𝑜𝑑 4)) or ∆𝐾= 4𝑑 (if 𝑑 ≡

2,3 (𝑚𝑜𝑑 4)). Because (
∆𝐾

𝑞
) ≠ 1 then by Definition 15, (

∆𝐾

𝑞
) = −1 or 0. According 

to Definition 16, 𝑞 is ramified or inert in 𝒪𝐾  so 𝑞 is not split in the quadratic field 
𝐾. 
Suppose ∆ is the discriminant of the quaternion algebra 𝐻ℚ(√𝑑)(2, 𝑞) and a prime 

positive integer 𝑝′ is known to be ramified in 𝐻ℚ(√𝑑)(2, 𝑞) if 𝑝′|2∆, indicating that 

𝑝′|2𝑞. 
Since 𝑑 ≢ 1 (𝑚𝑜𝑑 8) and the decomposition of 2 in ring 𝒪𝐾  yield that 2 is not split 
in 𝐾. Applying Theorem 21, no prime is ramified, so 𝐻ℚ(√𝑑)(2, 𝑞) is split. Based on 

the above proof, it can be concluded that the quaternion algebra is split with this 
condition. 

So, the sufficient condition for quaternion algebra to be split is when 𝑝 ≥ 3, (
∆𝐾

𝑝
) ≠

1, (
∆𝐾

𝑞
) ≠ 1 or when 𝑝 = 2 and (

∆𝐾

𝑞
) ≠ 1. 

 
Furthermore, a new theorem is given that will be proved about the split properties 

of quaternion algebras over biquadratic fields. The biquadratic field is wider and more 
complicated than the quadratic field, so it requires some additional conditions on this 
theorem compared to the previous theorem. The theorem on the split property of a 
biquadratic field is a research novelty formed from Theorem 26. The establishment of this 
theorem is done to guarantee the existence of sufficient conditions that make a quater-
nion algebra over biquadratic field is split. The following is the content and proof of the 
theorem on the existence of split properties on quaternion algebras over biquadratic 
fields. 
 
Theorem 27 

Suppose 𝑑1, 𝑑2 ≠ 0,1 are square-free integers, where 𝑑1, 𝑑2 ≢ 1 (𝑚𝑜𝑑 8) and 𝑑3 =
𝑙𝑐𝑚(𝑑1,𝑑2)

𝑔𝑐𝑑(𝑑1,𝑑2)
. Suppose 𝑝, 𝑞 are prime integers, with 𝑞 ≥ 3, 𝑝 ≠ 𝑞. Suppose 𝒪𝐾  is the ring of 

integers for the biquadratic field 𝐾 = ℚ(√𝑑1, √𝑑2) and that 𝒪𝐾𝑖
 is the ring of integers for 

the quadratic subfield 𝐾𝑖 = ℚ(√𝑑𝑖), where 𝑖 = 1,2,3, with discriminant ∆𝐾𝑖
. Then: 

a. If 𝑝 ≥ 3 and legendre symbol (
∆𝐾𝑖

𝑝
) ≠ 1, (

∆𝐾𝑖

𝑞
) ≠ 1, then 𝐻ℚ(√𝑑1,√𝑑2)

(𝑝, 𝑞) is split in 

𝒪𝐾𝑖
; 

b. If 𝑝 = 2 and legendre symbol (
∆𝐾𝑖

𝑞
) ≠ 1, then 𝐻ℚ(√𝑑1,√𝑑2)

(2, 𝑞) is split in 𝒪𝐾𝑖
. 

Proof: 
a. According to Theorem 23, a prime 𝑝′ split in 𝒪𝐾  only if 𝑝′ split in 𝒪𝐾𝑖

, where 𝑖 = 1,2, 

and 3. We will prove that both prime 𝑝 and 𝑞 split in 𝒪𝐾1
, 𝒪𝐾2

, and 𝒪𝐾3
. 
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First case for 𝒪𝐾1
: 

By Proposition 19, it is known that the discriminant of ∆𝐾1
 is 𝑑1 (if 𝑑1 ≡ 1 (𝑚𝑜𝑑 4)) 

or 4𝑑1 (if 𝑑1 ≡ 2,3 (𝑚𝑜𝑑 4)). Since in the theorem it is known that (
∆𝐾1

𝑝
) ≠ 1 and 

(
∆𝐾2

𝑞
) ≠ 1, then by Definition 15, the quadratic residue symbol (

∆𝐾1

𝑝
) = −1 or 0 as 

well as the quadratic residue symbol (
∆𝐾1

𝑞
) = −1 or 0. Based on Definition 16, the 

primes 𝑝 and 𝑞 are ramified or inert in 𝒪𝐾1
 so they are not split in the quadratic 

subfield 𝐾1. 
In Theorem 22, it is known that 𝑝 is ramified in 𝒪𝐾1

 if and only if 𝑝|∆𝐾1
. By Lemma 

25 points (a) and (c), the discriminant of the quadratic subfield 𝐾1 is ∆𝐾1
= 2𝑝 or 

𝑝𝑞. Since 𝑝|2𝑝 or 𝑝|𝑝𝑞, 𝑝 is ramified in 𝒪𝐾1
. It is also true for 𝑞 which is also ramified 

in 𝒪𝐾1
. 

Since 𝑑1 ≢ 1 (𝑚𝑜𝑑 8) and the decomposition of primes 𝑝, 𝑞 imply that 𝑝, 𝑞 are not 
split in 𝐾1. By Theorem 21, it is clear that there are no ramified primes such that 
𝐻ℚ(√𝑑1)

(𝑝, 𝑞) is split. 

 
Second case for 𝒪𝐾2

: 

The proof is the same as in the first case (for 𝒪𝐾1
) by replacing 𝐾1 with 𝐾2 and 𝑑1 

with 𝑑2. This happens because the criteria for the reviewed square-free integers 
𝑑1 and 𝑑2 are the same. 
 
Third case for 𝒪𝐾3

: 

By Proposition 19, it is known that the discriminant of ∆𝐾1
 is 𝑑1 (if 𝑑1 ≡ 1 (𝑚𝑜𝑑 4)) 

or 4𝑑1 (if 𝑑1 ≡ 2,3 (𝑚𝑜𝑑 4)) and the discriminant of ∆𝐾2
 is 𝑑2 (if 𝑑2 ≡ 1 (𝑚𝑜𝑑 4)) 

or 4𝑑2 (if 𝑑2 ≡ 2,3 (𝑚𝑜𝑑 4)). Lemma 25 explains that the discriminant of a 

quadratic field is 2𝑝 (if 𝑝 ≡ 𝑞 ≡ 3 (𝑚𝑜𝑑 4) and (
𝑞

𝑝
) ≠ 1) or 𝑝𝑞 (if 𝑝 ≡ 1 (𝑚𝑜𝑑 4) or 

𝑞 ≡ 1 (𝑚𝑜𝑑 4) with 𝑝 ≠ 𝑞 and (
𝑝

𝑞
) = −1). From Proposition 19 and Lemma 25, the 

relation of the discriminant of the quadratic field is 𝑑1 = 2𝑝 or 𝑑1 = 𝑝𝑞 or 4𝑑1 =
2𝑝 or 4𝑑1 = 𝑝𝑞, and the same is true for 𝑑2. Since 𝑑1, 𝑑2 are square-free integers, 

the relationship 𝑑1 =
2𝑝

4
 or 𝑑1 =

𝑝𝑞

4
 does not hold, and neither does 𝑑2. It follows 

that 𝑑1 ≡ 1 (𝑚𝑜𝑑 4) and 𝑑2 ≡ 1 (𝑚𝑜𝑑 4). 

It is known in the theorem that 𝑑3 =
𝑙𝑐𝑚(𝑑1,𝑑2)

𝑔𝑐𝑑(𝑑1,𝑑2)
. 

1. Consider the cases 𝑑1 = 2𝑝 and 𝑑2 = 2𝑝′ so that 

𝑑3 =
𝑙𝑐𝑚(𝑑1, 𝑑2)

𝑔𝑐𝑑(𝑑1, 𝑑2)
=

𝑙𝑐𝑚(2𝑝, 2𝑝′)

𝑔𝑐𝑑(2𝑝, 2𝑝′)
=

2𝑝𝑝′

2
= 𝑝𝑝′ 

2. Consider the cases 𝑑1 = 2𝑝 and 𝑑2 = 𝑝′𝑞′ so that 

𝑑3 =
𝑙𝑐𝑚(𝑑1, 𝑑2)

𝑔𝑐𝑑(𝑑1, 𝑑2)
=

𝑙𝑐𝑚(2𝑝, 𝑝′𝑞′)

𝑔𝑐𝑑(2𝑝, 𝑝′𝑞′)
=

2𝑝𝑝′𝑞′

1
= 2𝑝𝑝′𝑞′ 

3. Consider the cases 𝑑1 = 𝑝𝑞 and 𝑑2 = 2𝑝′ so that 

𝑑3 =
𝑙𝑐𝑚(𝑑1, 𝑑2)

𝑔𝑐𝑑(𝑑1, 𝑑2)
=

𝑙𝑐𝑚(𝑝𝑞, 2𝑝′)

𝑔𝑐𝑑(𝑝𝑞, 2𝑝′)
=

𝑝𝑞2𝑝′

1
= 2𝑝𝑝′𝑞 

4. Consider the cases 𝑑1 = 𝑝𝑞 and 𝑑2 = 𝑝′𝑞′ so that 

𝑑3 =
𝑙𝑐𝑚(𝑑1, 𝑑2)

𝑔𝑐𝑑(𝑑1, 𝑑2)
=

𝑙𝑐𝑚(𝑝𝑞, 𝑝′𝑞′)

𝑔𝑐𝑑(𝑝𝑞, 𝑝′𝑞′)
=

𝑝𝑞𝑝′𝑞′

1
= 𝑝𝑝′𝑞𝑞′ 
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From these four cases, it can be concluded that 𝑑3 is the product of two or more 
primes once, so that the prime decomposition is not repeated. Therefore, 𝑑3 is also 
a square-free integer. 

In the theorem, it was mentioned that (
∆𝐾3

𝑝
) ≠ 1 and (

∆𝐾3

𝑞
) ≠ 1, so by Definition 15, 

the quadratic residue symbol (
∆𝐾3

𝑝
) = −1 or 0 as well as the quadratic residue 

symbol (
∆𝐾3

𝑞
) = −1 or 0. By Definition 16, the primes 𝑝 and 𝑞 are ramified or inert 

in 𝒪𝐾3
 so they are not split in the quadratic subfield of 𝐾3. 

In Theorem 22, it is known that 𝑝 is ramified in 𝒪𝐾3
 if and only if 𝑝|∆𝐾3

. The 

discriminant of the quadratic subfield of 𝐾3 is 𝑝𝑝′, 2𝑝𝑝′𝑞′, or 𝑝𝑝′𝑞𝑞′. Since 𝑝|𝑝𝑝′ or 
𝑝|2𝑝𝑝′𝑞′ or 𝑝|𝑝𝑝′𝑞𝑞′ so 𝑝 is ramified in 𝒪𝐾3

. The same holds for 𝑞 which is also 

ramified in 𝒪𝐾3
. Since 𝑑1, 𝑑2 ≢ 1 (𝑚𝑜𝑑 8) then 𝑑3 ≢ 1 (𝑚𝑜𝑑 8). 

Since 𝑑3 ≢ 1 (𝑚𝑜𝑑 8) and the decomposition of primes 𝑝 and 𝑞 imply that 𝑝 and 𝑞 
are not split in 𝐾3. Based on Theorem 21, it is clear that there are no ramified 
primes such that 𝐻ℚ(√𝑑3)(𝑝, 𝑞) is split. 

 
From these three cases, it can be concluded that the primes 𝑝 and 𝑞 split in the ring 
of integers 𝒪𝐾1

, 𝒪𝐾2
, and 𝒪𝐾3

. Since primes 𝑝 and 𝑞 split in every 𝒪𝐾𝑖
 (𝑖 = 1,2,3), 

then by Theorem 23 it can be said that primes 𝑝 and 𝑞 split in 𝒪𝐾 , where 𝐾 =

ℚ(√𝑑1, √𝑑2). So, it is proved that quaternion algebra over biquadratic field is split. 

 
b. According to Theorem 23, a prime 𝑝′ split in 𝒪𝐾  only if 𝑝′ split in 𝒪𝐾𝑖

, where 𝑖 = 1,2, 

and 3. We will prove that prime 𝑞 is split in 𝒪𝐾1
, 𝒪𝐾2

, and 𝒪𝐾3
. 

 
First case for 𝒪𝐾1

: 

By Proposition 15, it is known that the discriminant of ∆𝐾1
 is 𝑑1 (if 𝑑1 ≡ 1 (𝑚𝑜𝑑 4)) 

or 4𝑑1 (if 𝑑1 ≡ 2,3 (𝑚𝑜𝑑 4)). Since in the theorem it is known that (
∆𝐾1

𝑞
) ≠ 1, then 

by Definition 17, the quadratic residue symbol (
∆𝐾1

𝑞
) = −1 or 0. Based on 

definition 18, the prime 𝑞 is ramified or inert in 𝒪𝐾1
 so it is not split in the quadratic 

subfield 𝐾1. 
In Theorem 22, it is known that 𝑞 is ramified in 𝒪𝐾1

 if and only if 𝑞|∆𝐾1
. By Lemma 

24 point (b), the discriminant of the quadratic subfield 𝐾1 is ∆𝐾1
= 2𝑞. Since 𝑞|2𝑞, 

then 𝑞 is ramified in 𝒪𝐾1
. 

Since 𝑑1 ≢ 1 (𝑚𝑜𝑑 8) and the decomposition of prime 𝑞 imply that 𝑞 is not split in 
𝐾1. By Theorem 21, it is clear that there are no ramified primes such that 
𝐻ℚ(√𝑑1)

(2, 𝑞) is split. 

 
Second case for 𝒪𝐾2

: 

The proof is the same as in the first case (for 𝒪𝐾1
) by replacing 𝐾1 with 𝐾2 and 𝑑1 

with 𝑑2. This happens because the criteria for the reviewed square-free integers 
𝑑1 and 𝑑2 are the same. 
 
Third case for 𝒪𝐾3

: 

By Proposition 15, it is known that the discriminant of ∆𝐾1
 is 𝑑1 (if 𝑑1 ≡ 1 (𝑚𝑜𝑑 4)) 
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or 4𝑑1 (if 𝑑1 ≡ 2,3 (𝑚𝑜𝑑 4)) and the discriminant of ∆𝐾2
 is 𝑑2 (if 𝑑2 ≡ 1 (𝑚𝑜𝑑 4)) 

or 4𝑑2 (if 𝑑2 ≡ 2,3 (𝑚𝑜𝑑 4)). Lemma 19 explains that the discriminant of a 
quadratic field is 2𝑞 (if 𝑝 = 2 and 𝑞 ≡ 3 (𝑚𝑜𝑑 8)). From proposition 15 and 
Lemma 19, the relation of the discriminant of the quadratic field is 𝑑1 = 2𝑞 or 
4𝑑1 = 2𝑞 and 𝑑2 = 2𝑞 or 4𝑑2 = 2𝑞. Since 𝑑1, 𝑑2 are square-free integers, the 

relationship 𝑑1 =
2𝑞

4
 and 𝑑2 =

2𝑞

4
 does not hold. It follows that 𝑑1 ≡ 1 (𝑚𝑜𝑑 4) and 

𝑑2 ≡ 1 (𝑚𝑜𝑑 4). 

It is known in the theorem that 𝑑3 =
𝑙𝑐𝑚(𝑑1,𝑑2)

𝑔𝑐𝑑(𝑑1,𝑑2)
 so that 

𝑑3 =
𝑙𝑐𝑚(𝑑1, 𝑑2)

𝑔𝑐𝑑(𝑑1, 𝑑2)
=

𝑙𝑐𝑚(2𝑞, 2𝑞′)

𝑔𝑐𝑑(2𝑞, 2𝑞′)
=

2𝑞𝑞′

2
= 𝑞𝑞′ 

Discriminant 𝑑3 is the product of two distinct primes, such that its prime 
decomposition does not repeat. Since the prime decomposition is non-repeating, 
𝑑3 is a square-free integer. 

In the theorem, it was mentioned that (
∆𝐾3

𝑞
) ≠ 1, so by definition 17, the quadratic 

residue symbol (
∆𝐾3

𝑞
) = −1 or 0. By definition 18, the prime 𝑞 is ramified or inert 

in 𝒪𝐾3
 so it is not split in the quadratic subfield of 𝐾3. 

In theorem 22, it is known that 𝑞 is ramified in 𝒪𝐾3
 if and only if 𝑞|∆𝐾3

. The 

discriminant of the quadratic subfield of 𝐾3 is 𝑞𝑞′. Since 𝑞|𝑞𝑞′, so that 𝑞 is ramified 
in 𝒪𝐾3

. Since 𝑑1, 𝑑2 ≢ 1 (𝑚𝑜𝑑 8) then 𝑑3 ≢ 1 (𝑚𝑜𝑑 8). 

Since 𝑑3 ≢ 1 (𝑚𝑜𝑑 8) and the decomposition of prime 𝑞 imply that 𝑞 is not split in 
𝐾3. Based on theorem 21, it is clear that there are no ramified primes such that 
𝐻ℚ(√𝑑3)(2, 𝑞) is split. 

 
From these three cases, it can be concluded that the primes 2 and 𝑞 split in the ring 
of integers 𝒪𝐾1

, 𝒪𝐾2
, and 𝒪𝐾3

. Since primes 2 and 𝑞 split in every 𝒪𝐾𝑖
 (𝑖 = 1,2,3), 

then by Theorem 23 it can be said that primes 2 and 𝑞 split in 𝒪𝐾 , where 𝐾 =

ℚ(√𝑑1, √𝑑2). So, it is proved that quaternion algebra over biquadratic field is split. 

 
Quaternion algebras over quadratic fields and biquadratic fields can be split under 

certain conditions, as has been demonstrated in the previous theorem. After that, it will 
be demonstrated that splitting the quaternion algebra over the composite of 𝑛 quadratic 
fields is adequate. The goal of this theorem’s proof to establish the prerequisites for 
splitting the quaternion algebra over the composite of 𝑛 quadratic fields. This theorem is 
a new statement that builds on Theorem 26 by studying the split properties of composites 
fields. The following is the content of the theorem and its proof of existence of split on 
quaternion algebra over the composite of 𝑛 quadratic fields. 
 
Theorem 28 

Suppose 𝑑1, 𝑑2, … , 𝑑𝑛 be separate square-free numbers that are not equal to zero or one, 
where 𝑑1, 𝑑2, … , 𝑑𝑛 ≢ 1 (𝑚𝑜𝑑 8). Suppose 𝑝, 𝑞 are distinct prime integers, with 𝑞 ≥ 3, 𝑝 ≠
𝑞. Prime 𝑝 and 𝑞 does not divide 𝑑𝑖 , for 𝑖 = 1,2, … , 𝑛. Suppose 𝒪𝐾  is the ring of integers for 

the composite of 𝑛 quadratic field 𝐾 = ℚ(√𝑑1, √𝑑2, … , √𝑑𝑛) and 𝒪𝐾𝑖
 is the ring of integers 

for the quadratic subfield 𝐾𝑖 = ℚ(√𝑑𝑖), where 𝑖 = 1,2, … , 𝑛, with discriminant ∆𝐾𝑖
. Then: 

a. If 𝑝 ≥ 3 and legendre symbol (
∆𝐾𝑖

𝑝
) ≠ 1, (

∆𝐾𝑖

𝑞
) ≠ 1, then 𝐻ℚ(√𝑑1,√𝑑2,…,√𝑑𝑛)

(𝑝, 𝑞) is 
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split in 𝒪𝐾𝑖
; 

b. If 𝑝 = 2 and legendre symbol (
∆𝐾𝑖

𝑞
) ≠ 1, then 𝐻ℚ(√𝑑1,√𝑑2,…,√𝑑𝑛)

(2, 𝑞) is split in 𝒪𝐾𝑖
. 

Proof: 
a. To respond to this theorem’s proof, use mathematical induction. 

1. Establish the validity of the statement for 𝑛 = 1 
Suppose 𝑛 = 1, in which case the quadratic field’s form is 

𝐾 = ℚ(√𝑑1) 

The form of the field is a quadratic field. In Theorem 26, it has been proved that 
the split property of quaternion algebra over quadratic fields holds under these 
conditions. 
So, the theorem is proved true for 𝑛 = 1. 
 

2. Assume that the theorem is valid or accurate for 𝑛 = 𝑘 
Suppose 𝑛 = 𝑘, in which case the composite of quadratic field’s form is 

𝐾 = ℚ(√𝑑1, √𝑑2, … , √𝑑𝑘) 

This theorem is assumed to be true for 𝑛 = 𝑘. 
 

3. Prove that the theorem also holds true for 𝑛 = 𝑘 + 1 
Suppose 𝑛 = 𝑘 + 1, in which case the composite of quadratic field’s form is 

𝐾 = ℚ(√𝑑1, √𝑑2, … , √𝑑𝑘, √𝑑𝑘+1) 

Based on Definition 13, the form of the composite of quadratic field is obtained: 

ℚ(√𝑑1, √𝑑2, … , √𝑑𝑘, √𝑑𝑘+1) = ℚ ((√𝑑1 + √𝑑2 + ⋯ + √𝑑𝑘), √𝑑𝑘+1) 

Then, from the composite of the quadratic field, the form of the biquadratic 
field is obtained. According to Theorem 23, prime 𝑝′ splits in 𝒪𝐾  only if prime 
𝑝′ splits in 𝒪𝐾𝑖

. 

Suppose 𝒪𝐿 is the ring of integers for the biquadratic field 𝐿 = ℚ(√𝑑, √𝑑𝑘+1), 

where √𝑑 = √𝑑1 + √𝑑2 + ⋯ + √𝑑𝑘, 𝒪𝐿1
 is the ring for integers of the quadratic 

subfield 𝐿1 = ℚ(√𝑑), and 𝒪𝐿2
 is the ring of integers for the quadratic subfield 

𝐿2 = ℚ(√𝑑𝑘+1). We will prove that primes 𝑝 and 𝑞 are split in quadratic 

subfield 𝐿1 and 𝐿2. 
 
First case for 𝒪𝐿1

: 

We know that the quadratic subfield of 𝐿1 is 

𝐿1 = ℚ(√𝑑) 

𝐿1 = ℚ(√𝑑1 + √𝑑2 + ⋯ + √𝑑𝑘) 

Based on Definition 13, we know that the quadratic subfield is 

𝐿1 = ℚ(√𝑑1, √𝑑2, … , √𝑑𝑘) 

Mathematical induction assumes that it is true that primes 𝑝 and 𝑞 are split in 

ℚ(√𝑑1, √𝑑2, … , √𝑑𝑘) so it is proved that primes 𝑝 and 𝑞 are split in the 

quadratic subfield 𝐿1. 
 
Second case for 𝒪𝐿2

: 

We know that the quadratic subfield of 𝐿2 is 

𝐿2 = ℚ(√𝑑𝑘+1) 

Where 𝑘 ∈ ℤ. Then 𝑘 + 1 is also an integer (𝑘 + 1) ∈ ℤ. 
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Since 𝑘 + 1 is an integer and ℚ(√𝑑𝑘+1) is a quadratic subfield, applying 

Theorem 26, we find that primes 𝑝 and 𝑞 are split in 𝒪𝐿2=ℚ(√𝑑𝑘+1)(𝑝, 𝑞). 

 
Since it is proven that primes 𝑝 and 𝑞 are split in 𝐿1 and 𝐿2, Theorem 23 implies 

that primes 𝑝 and 𝑞 are also split in 𝐿, where 𝐿 = ℚ(√𝑑, √𝑑𝑘+1) =

ℚ(√𝑑1, √𝑑2, … , √𝑑𝑘 , √𝑑𝑘+1). 

So, the theorem proves true for 𝑛 = 𝑘 + 1. 
 
So, mathematical induction proves that the split property theorem holds for 
composite of 𝑛 quadratic fields. 
 

b. The proof is the same as that of part (a). It is only necessary to substitute 𝑝 = 2 and 
apply Theorems 26 and 27 of part (b) to answer the proof of Theorem 28. 

 
So, the theorem proves that quaternion algebra over composite of 𝑛 quadratic field 

is split to be true under these conditions. 
 

Theorems 26, 27, and 28 have differences in the fields, namely the quadratic field 
in Theorem 26, the biquadratic field in Theorem 27, and the composite of 𝑛 quadratic 
fields in Theorem 28. It can be seen that the wider field considered in these theorems to 
be split, the more additional conditions are required. Theorem 26 applies according to the 
conditions mentioned in the theorem. Theorem 27 adds additional conditions from 

theorem 26, namely 𝑑3 =
𝑙𝑐𝑚(𝑑1,𝑑2)

𝑔𝑐𝑑(𝑑1,𝑑2)
 and a quadratic subfield. Theorem 28 adds an 

additional condition from Theorem 26 and 27, namely, that primes 𝑝 and 𝑞 do not divide 
the square-free integer 𝑑𝑖. Thus, the split property will apply more easily to quadratic 
fields than to biquadratic fields and composite of 𝑛 quadratic fields. 

CONCLUSIONS 

The conclusion of this research is that the split property of quaternion algebra will apply 
more easily to smaller fields. The larger the field under review, the more condition will be 
needed so that the quaternion algebra over the field is split. The Legendre symbol of the 
field determinant of prime numbers generally must not equal one in order for a 
quaternion algebra to be split. 
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