The Reflexive \mathcal{H} - Strength on Some Graphs

Lusia Herni Sullystiawati ${ }^{1}$, Marsidi ${ }^{2, *}$, Eric Dwi Putra ${ }^{3}$, Ika Hesti Agustin ${ }^{4}$
1,2,3 Department of Mathematics Education, Universitas PGRI Argopuro Jember, Indonesia
${ }^{4}$ Department of Mathematics, University of Jember, Indonesia
${ }^{4}$ PUI-PT Combinatorics and Graph, CGANT-University of Jember, Indonesia

Email: marsidiarin@gmail.com

Abstract

Let G be a connected, simple, and undirected graph with a vertex set $V(G)$ and an edge set $E(G)$. The function f_{e} defines the irregular reflexive k-labeling $f_{e}: E(G) \rightarrow\left\{1,2,3, \ldots, k_{e}\right\}$ and f_{v} : $V(G) \rightarrow\left\{0,2,4, \ldots, 2 k_{v}\right\}$ such that $f(x)=f_{v}(x)$ if $x \in V(G)$ and $f(x y)=f_{e}(x y)$ if $x y \in E(G)$, where $k=\max \left\{k_{e}, 2 k_{v}\right\}$. The irregular reflexive k labeling is called an \mathcal{H} irregular reflexive k labeling of the graph G if every two different subgraphs \mathcal{H}^{\prime} and $\mathcal{H}^{\prime \prime}$ isomorphic to \mathcal{H}, it holds $w\left(\mathcal{H}^{\prime}\right) \neq w\left(\mathcal{H}^{\prime \prime}\right)$, where $w(\mathcal{H})=\sum_{x \in V(\mathcal{H})} f_{v}(x)+\sum_{x \in E(\mathcal{H})} f_{e}(x)$ for the subgraph $\mathcal{H} \subset G$. The minimum k for graph G, which has an \mathcal{H} irregular reflexive k-labeling, is called the reflexive \mathcal{H} strength of graph G and is denoted by $r \mathcal{H} s(G)$. In this paper, we determine the lower bound of the reflexive \mathcal{H}-strength of some subgraphs, $\mathcal{H} \simeq P_{3}$ on $r \mathcal{H} s\left(P_{n}\right)$, the subgraph $\mathcal{H} \simeq C_{3}$ on $r \mathcal{H} s\left(\left(W_{n}\right)\right.$ and $\left.\left(D F_{n}\right)\right)$, the subgraph $\mathcal{H} \simeq C_{4}$ on $r \mathcal{H} s\left(T l_{n}\right)$ and the subgraph $\mathcal{H} \simeq C_{6}$ on $r \mathcal{H} s\left(L_{n}\right)$.

Keywords: \mathcal{H} irregular reflexive k-labeling; reflexive \mathcal{H}-strength; path; wheel; double fan; triangular ladder; ladder graph

Copyright © 2024 by Authors, Published by CAUCHY Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0/

INTRODUCTION

A graph G is a finite non-empty set $V(G)$ whose members are called vertices and a finite set $E(G)$ whose members are unordered (not necessarily different) pairs of $V(G)$ members called edges [1]. For vertex u, v, sides $u v$, and a labeling vertex weight $f, w t(v)$ is defined as $w t(v)=f(v)+\sum_{w \in N(v)} f(v w)$, while side weights are denoted by $w t(u v)=f(u)+f(v)+f(u v)$. A labeling is considered vertex irregular if the weights of all vertices are different in pairs and edge irregular if the weights of the sides are different in pairs [2].

Labeling is one aspect of graph theory. Labeling a graph is a mapping that brings the elements in a graph as a domain to positive or non-negative integers as a codomain. Graph labeling consists of point labeling, a set of vertices as a domain; edge labeling, and total labeling, a set of vertices and edges as a domain [3]. However, types of graph labeling have developed, one of which is totally disordered labeling. Total irregular
labeling consists of total irregular labeling of edges and vertices [4]. Vertex irregular reflexive labeling and edge irregular reflexive labeling on a graph were recently introduced by Ryan et al. [5].

Vertex \mathcal{H}-irregularity strength and Edge \mathcal{H}-irregularity strength developed from irregular labeling. According to [6], Vertex \mathcal{H}-irregularity strength is an irregular labeling that labels vertex on a graph with positive integers sequentially and repeatedly so that each \mathcal{H} subgraph has a different weight. Furthermore, [7] explained the total $k \mathcal{H}$ -irregular labeling as an irregular labeling that labels the vertices and edges of a graph with positive integers sequentially and repeatedly so that each \mathcal{H} subgraph has a different weight. The weight of the subgraph \mathcal{H} is the result of the sum of the dot and edge labels in one subgraph \mathcal{H}, and the minimum k value so that graph G has a total labeling of $k \mathcal{H}$ irregulars called total \mathcal{H}-irregularity strength, which can be denoted as ths (G, H). The study of H-irregularity strength labeling has produced many findings from many researchers. It can be found in [4], [7], [8], [9], [10], [11].

For $\mathcal{H} \subseteq G$, the weight of \mathcal{H} is given by $w t(\mathcal{H})=\sum_{v \in V(\mathcal{H})} f(v)+\sum_{e \in E(\mathcal{H})} f(e)$. If there exists a partition of G such that every subgraph in the partition, \mathcal{H}_{i} is isomorphic, then the graph G admits an \mathcal{H}-covering. Note that each edge of $E(G)$ belongs to at least one of the subgraphs $\mathcal{H}_{i}, i=1,2, \ldots s$. The \mathcal{H} irregular total k-labeling (φ) in which the subgraph weights are pairwise distinct. For more on subgraph irregular total labelings [6], [8].

Martin Bača et al. have studied irregular k-labeling on some graphs [12]. If the weights are different for every two vertex u and $v, w t(u) \neq w t(v)$, the total k-labeling is called vertex irregular k-labeling. The total vertex irregularity value in graph G, $\operatorname{tvs}(G)$, is the smallest k value, so graph G has an irregular vertex k-labeling [13]. In 2017, Joseph Ryan et al. began labeling vertex as loops, known as irregular reflexive labeling, which combines the discussion of $s(G)$ and $t v s(G)$. This impacts the vertex label. First, because each loop adds 2 to the vertex degrees, the vertex labels are even positive numbers. Second, the vertex label 0 can represent a vertex with no loops [14]. In 2018, Dushyant Tanna et al. discuss irregular reflexive k-labeling of the vertex on a graph G. If, for every two vertices u and v, the weights are different, $w t(u) \neq w t(v)$, the total k-labeling is called vertex irregular reflexive k-labeling [15]. The vertex-reflexive disorder value in graph $G, \operatorname{rvs}(G)$, is the smallest k-value, so graph G has irregular vertex-reflexive labeling [16]. Irregularity and weights of edges, subgraphs, etc. vertices, are the same as for total irregular labeling. The smallest k for which a reflexive (vertex or edge) k-labeling exists is known as the irregular reflexive strength of the graph [13].

Furthermore, this paper develops a new concept of irregular reflexive k-labeling, namely the \mathcal{H} irregular reflexive k-labeling for $\mathcal{H} \subset G$. Mathematically, the irregular reflexive k-labeling is defined by the function $f_{e}: E(G) \rightarrow\left\{1,2, \ldots, k_{e}\right\}$ and $f_{v}: V(G) \rightarrow$ $\left\{0,2, \ldots, 2 k_{v}\right\}$ such that $f(x)=f_{v}(x)$ if $x \in V(G)$ and $f(x y)=f_{e}(x y)$ if $x y \in E(G)$, where $k=\max \left\{k_{e}, 2 k_{v}\right\}$ [13], [15]. The irregular reflexive k labeling is called an \mathcal{H} irregular reflexive k-labeling of the graph G if every two different subgraphs \mathcal{H}^{\prime} and $\mathcal{H}^{\prime \prime}$ isomorphic to \mathcal{H}, it holds $w\left(\mathcal{H}^{\prime}\right) \neq w\left(\mathcal{H}^{\prime \prime}\right)$, where $w(\mathcal{H})=\sum_{x \in V(\mathcal{H})} f_{v}(x)+$ $\sum_{x \in E(\mathcal{H})} f_{e}(x)$ for the subgraph $\mathcal{H} \subset G$ [9], [17]. The minimum k for graph G, which has an \mathcal{H} irregular reflexive k-labeling, is called the reflexive \mathcal{H}-strength of graph G and denoted by $r \mathcal{H} s(G)$.

In this paper, we initiate to study the lower bound of the reflexive \mathcal{H}-strength of graphs and the reflexive \mathcal{H}-strength of some graphs, namely path graph, wheel graph, double fan graph, triangular ladder graph, and ladder graph. We studied subgraph $\mathcal{H} \simeq$ P_{3} on determining $r \mathcal{H} s\left(P_{n}\right)$, the subgraph $\mathcal{H} \simeq C_{3}$ on determining $r \mathcal{H} s\left(\left(W_{n}\right)\right.$ and $\left.\left(D F_{n}\right)\right)$,
subgraph $\mathcal{H} \simeq C_{4}$ on determining $r \mathcal{H} s\left(T l_{n}\right)$, and the subgraph $\mathcal{H} \simeq C_{6}$ on determining $r \mathcal{H} s\left(L_{n}\right)$.

METHODS

Following is the method used to determine the distance reflexive strength of a graph:

1. Defines a graph as a research object.
2. Establish the graph's vertex and edge sets.
3. Identify a graph's lower bound of reflexive \mathcal{H}-strength with the following Lemma and Corollary [18].
Lemma: $r \mathcal{H} s(G) \geq\left\lceil\frac{q_{\mathcal{H}}+|\mathcal{H}|-1}{p_{\mathcal{H}}+q_{\mathcal{H}}}\right\rceil$
Corollary: $r \mathcal{H} s(G) \geq\left\lceil\frac{q_{\mathcal{H}}+|\mathcal{H}|-1}{p_{\mathcal{H}}+q_{\mathcal{H}}}\right\rceil+1$, if $q_{\mathcal{H}}+|\mathcal{H}|-1=t\left(p_{\mathcal{H}}+q_{\mathcal{H}}\right)$.
4. Create edge and vertex labels based on the \mathcal{H} irregular reflexive labeling specification.
5. Identify the upper bound of a graph's reflexive \mathcal{H}-strength using the function found at point 4.
6. The value of the reflexive \mathcal{H}-strength can be calculated from the graph if the graph's upper and lower bounds for its reflexive \mathcal{H}-strength are equal.
7. If the graph's higher bound for reflexive \mathcal{H}-strength and lower bound for reflexive \mathcal{H} strength are not equal, point 4 is repeated until the upper bound for reflexive \mathcal{H} strength and lower bound for reflexive \mathcal{H}-strength are equal.

RESULTS AND DISCUSSION

This study aims to determine the reflexive \mathcal{H}-strength of several graphs, including the path graph, wheel graph, double fan graph, triangular ladder graph, and ladder graph.

Theorem 1

Let $\mathcal{H} \simeq P_{3}$ be a subgraph of P_{n}, and for every natural number $n \geq 4$, then

$$
r \mathcal{H} s\left(P_{n}\right)=\left\{\begin{aligned}
\left\lceil\frac{n-1}{5}\right\rceil+1, & \text { if } n \equiv 6(\bmod 10) \\
\left\lceil\frac{n-1}{5}\right\rceil, & \text { if } \mathrm{n} \equiv 7,8,9(\bmod 10)
\end{aligned}\right.
$$

Proof. Let $P_{n}, n \geq 4$, be a path graph with the vertex set $V\left(P_{n}\right)=\left\{x_{i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(P_{n}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$, with subgraph $\mathcal{H} \simeq P_{3}$, such that $|\mathcal{H}|=n-$ $2, p_{\mathcal{H}}=3, q_{\mathcal{H}}=2$. Based on the lower bound Lemma, we obtain $r \mathcal{H} s\left(P_{n}\right) \geq\left\lceil\frac{q \mathcal{H}+|\mathcal{H}|-1}{p \mathcal{H}+q H}\right\rceil=$ $\left\lceil\frac{2+n-2-1}{5}\right\rceil=\left\lceil\frac{n-1}{5}\right\rceil$.
For $n \equiv 6(\bmod 10)$, there is an integer a such that $n=10 a+6$ such that $r \mathcal{H} s\left(P_{n}\right) \geq$ $\left\lceil\frac{n-1}{5}\right\rceil=\left\lceil\frac{10 a+6-1}{5}\right\rceil=\left\lceil\frac{10 a+5}{5}\right\rceil=2 a+1=t$. Suppose t is $r \mathcal{H} s\left(P_{n}\right)$, then t is the largest label in labeling irregular reflexive subgraphs of the graph P_{n}. Since t is an odd number, the largest weight in a subgraph \mathcal{H}_{l} is $w t\left(\mathcal{H}_{l}\right)=3(t-1)+2 t=5 t-3=5(2 a+1)-$ $3=10 a+2$. On the other hand, to obtain the minimum $r \mathcal{H} s$, the subgraph weights must form an arithmetic sequence with a difference 1, that is, $w t\left(\mathcal{H}_{i}\right)=q_{\mathcal{H}}+i-1: 1 \leq i \leq$ ($n-2$). Since the subgraph has the largest weight, $q_{\mathcal{H}}+n-2-1 \leq w t\left(\mathcal{H}_{l}\right)$, a
contradiction occurs with $q_{\mathcal{H}}+n-2-1=n-1=10 a+5 \leq 10 a+2$. Therefore, $t \neq$ $r \mathcal{H} s\left(P_{n}\right)$ is such that $r \mathcal{H} s\left(P_{n}\right)>\left\lceil\frac{n-1}{5}\right\rceil$. It gives $r \mathcal{H} s\left(P_{n}\right) \geq\left\lceil\frac{n-1}{5}\right\rceil+1$. Furthermore, determine the upper bound $r \mathcal{H} s\left(P_{n}\right)$, labeling vertices and edges on the graph P_{n} is constructed.
For $n \equiv 10(\bmod 20)$, labeling of vertices and edges in graph, P_{n} is constructed as follows.

$$
\begin{aligned}
& f_{v}\left(x_{i}\right)=\left\{\begin{aligned}
0, & \text { if } 1 \leq i \leq 5 \\
2, & \text { if } 6 \leq i \leq 12 \\
2\left\lceil\frac{i-12}{9}\right\rceil+2, & \text { if } i \in\{0,1,2,3,4,5,6,7,8\}, \mathrm{i}(\bmod 9) \text { for } i \geq 12
\end{aligned}\right. \\
& f_{e}\left(x_{i} x_{i+1}\right)=\left\{\begin{aligned}
1, & \text { if } i \in\{1,2,6,7\} \\
2, & \text { if } i \in\{3,4,5\} \\
2\left\lceil\frac{i-7}{9}\right\rceil, & \text { if } i \in\{0,4,5,8\}, i(\bmod 9) \text { for } i \geq 7 \\
2\left\lceil\frac{i-7}{9}\right\rceil+1, & \text { if } i \in\{1,2,3,6,7\}, i(\bmod 9) \text { for } i \geq 7
\end{aligned}\right.
\end{aligned}
$$

For n otherwise, labeling vertices and edges in graph P_{n} is constructed as follows.

$$
\begin{aligned}
& =\left\{\begin{aligned}
0, & \text { if } 1 \leq i \leq 5 \quad f_{v}\left(x_{i}\right) \\
4\left\lceil\frac{i-5}{20}\right]-2, & \text { if } i \in\{6,7,9,10,11,13,14\}, i(\bmod 20) \\
4\left\lceil\frac{i-5}{20}\right]-4, & \text { if } i \equiv 8(\bmod 20) \\
4\left\lceil\frac{i-5}{20}\right], & \text { if } i \in\{0,1,2,3,4,5,12,15,16,17,18,19\}, i(\bmod 20) \text { for } i \geq 5
\end{aligned}\right. \\
& f_{e}\left(x_{i} x_{i+1}\right)=\left\{\begin{aligned}
1, & \text { if } i \in\{1,2,5,6\} \\
2, & \text { if } i \in\{3,4,7,8\} \\
4\left[\frac{i-8}{20}\right]-1, & \text { if } i \in\{9,13,14,17,18\}, i(\bmod 20) \\
4\left[\frac{i-8}{20}\right]-3, & \text { if } i \equiv 10(\bmod 20) \\
4\left[\frac{i-5}{20}\right]-2, & \text { if } i \in\{11,12,15,16\}, i(\bmod 20) \\
4\left\lceil\frac{i-5}{20}\right], & \text { if } i \in\{0,19\}, i(\bmod 20) \text { for } i \geq 8 \\
4\left[\frac{i-5}{20}\right]+1, & \text { if } i \in\{1,2,5,6\}, i(\bmod 20) \text { for } i \geq 8 \\
4\left\lceil\frac{i-5}{20}\right]+2, & \text { if } i \in\{3,4,7,8\}, i(\bmod 20) \text { for } i \geq 8
\end{aligned}\right.
\end{aligned}
$$

Based on the vertex and edge labeling above, we obtained $r \mathcal{H} s\left(P_{n}\right) \leq\left\lceil\frac{n-1}{5}\right\rceil$ and $r \mathcal{H} s\left(P_{n}\right) \leq\left\lceil\frac{n-1}{5}\right\rceil+1$ for $n \equiv 6(\bmod 10)$. The set of subgraph weights on a graph P_{n} is $w t\left(\mathcal{H}_{i}\right)=1+i: 1 \leq i \leq n-2$. Since all subgraph weights P_{3} on the graph P_{n} are different, it is an irregular reflexive subgraph labeling. Since $r \mathcal{H} s\left(P_{n}\right) \geq$ $\left\lceil\frac{n-1}{5}\right\rceil, r \mathcal{H} s\left(P_{n}\right) \geq\left\lceil\frac{n-1}{5}\right\rceil+1$ for $n \equiv 6(\bmod 10)$ and $r \mathcal{H} s\left(P_{n}\right) \leq\left\lceil\frac{n-1}{5}\right\rceil, r \mathcal{H} s\left(P_{n}\right) \leq\left\lceil\frac{n-1}{5}\right\rceil+$ 1 for $n \equiv 6(\bmod 10), r \mathcal{H} s\left(P_{n}\right)=\left\lceil\frac{n-1}{5}\right\rceil$ and $r \mathcal{H} s\left(P_{n}\right)=\left\lceil\frac{n-1}{5}\right\rceil+1$ for $n \equiv 6(\bmod 10)$.

Figure 1 illustrates the \mathcal{H} irregular reflexive labeling on path graph P_{8} with subgraph $\mathcal{H} \simeq P_{3}$. The number of vertices and edges of P_{8} are 8 and 7, respectively. Since the number of subgraphs is 6 , based on Theorem 1 , the reflexive strength on P_{8} is 2 . The vertex set on this labeling is $V\left(P_{8}\right)=\{0,2\}$, and the edge set is $E\left(P_{8}\right)=\{1,2\}$. Therefore, the \mathcal{H} irregular reflexive labeling on path graph P_{8} satisfies Theorem 1.

Figure 1. The illustration of \mathcal{H} Irregular Reflexive Labeling on P_{8}

Theorem 2

Let $\mathcal{H} \simeq \mathrm{C}_{3}$ be a subgraph of W_{n}, and for every natural number $\mathrm{n} \geq 3$, then

$$
r \mathcal{H} s\left(W_{n}\right)=\left\{\begin{array}{cl}
\left\lceil\frac{n+1}{5}\right\rceil+1, & \text { if } n \in\{3,4\}, i(\bmod 10) \\
\left\lceil\frac{n+1}{5}\right\rceil, & \text { otherwise }
\end{array}\right.
$$

Proof. Let $W_{n}, n \geq 3$, be a wheel graph with the vertex set $V\left(W_{n}\right)=\left\{x_{i}, y_{i}, z: 1 \leq i \leq n\right\}$ and the edge set $E\left(W_{n}\right)=\left\{x_{i} z, y_{i} z: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n-1\right\}$, with subgraph $\mathcal{H} \simeq C_{3}$, such that $|\mathcal{H}|=n-1$. Since one of the vertex (z) in subgraph C_{3} is an element that always exists in all subgraphs and is labeled 0 such that it can be said, $p \mathcal{H}=2, q \mathcal{H}=3$, Based on the lower bound Lemma, we obtain $r \mathcal{H} s\left(W_{n}\right) \geq$ $\left\lceil\frac{q \mathcal{H}+|\mathcal{H}|-1}{p \mathcal{H}+q H}\right\rceil=\left\lceil\frac{3+n-1-1}{5}\right\rceil=\left\lceil\frac{n+1}{5}\right\rceil$.
For $n \equiv 4(\bmod 10)$, there is an integer a such that $n=10 a+4$ such that $r \mathcal{H} s\left(W_{n}\right) \geq$ $\left\lceil\frac{n+1}{5}\right\rceil=\left\lceil\frac{10 a+4+1}{5}\right\rceil=\left\lceil\frac{10 a+5}{5}\right\rceil=2 a+1=t$. Suppose t is $r \mathcal{H} s\left(W_{n}\right)$, then t is the largest label in labeling irregular reflexive subgraphs of the graph W_{n}. Since t is an odd number, the largest weight in a subgraph \mathcal{H}_{l} is $w t\left(\mathcal{H}_{l}\right)=2(t-1)+3 t=5 t-2=5(2 a+1)-$ $2=10 a+3$. On the other hand, to obtain the minimum $r \mathcal{H} s$, the subgraph weights must form an arithmetic sequence with a difference 1 , that is $w t\left(\mathcal{H}_{i}\right)=q_{\mathcal{H}}+i-1: 1 \leq i \leq$ ($n-1$). Since the subgraph has the largest weight $q_{\mathcal{H}}+n-1-1 \leq w t\left(\mathcal{H}_{l}\right)$, a contradiction occurs with $q_{\mathcal{H}}+n-1-1=n=10 a+5 \leq 10 a+3$. Therefore, $t \neq$ $r \mathcal{H} s\left(W_{n}\right)$ such that $r \mathcal{H} s\left(W_{n}\right)>\left\lceil\frac{n+1}{5}\right\rceil$. It gives $r \mathcal{H} s\left(W_{n}\right) \geq\left\lceil\frac{n+1}{5}\right\rceil+1$. For $n \equiv 3(\bmod 10)$, it is obtained $r \mathcal{H} s\left(W_{n}\right) \geq\left\lceil\frac{n+1}{5}\right\rceil+1$ for the same reason. Furthermore, determine the upper bound $r \mathcal{H} s\left(W_{n}\right)$, labeling vertices and edges on the graph W_{n} is constructed.
For $n \geq 3$, the labeling of vertices and edges in graph W_{n} is constructed as follows.

$$
\begin{aligned}
& f_{v}\left(x_{i}\right)=\left\{\begin{aligned}
0, & \text { if } 1 \leq i \leq 3 \\
2, & \text { if } 4 \leq i \leq 7 \\
2\left\lceil\frac{i-7}{5}\right\rceil+2, & \text { if } i \in\{0,1,2,3,4\}, i(\bmod 5) \text { for } i \geq 7 \\
0, & \text { if } 1 \leq i \leq 3
\end{aligned}\right. \\
& f_{v}\left(y_{i}\right)=\left\{\begin{aligned}
2, & \text { if } 4 \leq i \leq 7 \\
2\left\lceil\frac{i-7}{5}\right\rceil+2, & \text { if } i \in\{0,1,2,3,4\}, i(\bmod 5) \text { for } i \geq 7
\end{aligned}\right.
\end{aligned}
$$

$$
\left.\begin{array}{c}
f_{e}\left(x_{i} z\right)=\left\{\begin{aligned}
1, & \text { if } i \in\{1,2,4\} \\
2, & \text { if } i=3 \\
2\left\lceil\frac{i-4}{5}\right\rceil, & \text { if } i \equiv 0(\bmod 5) \text { for } i \geq 4 \\
2\left\lceil\frac{i-4}{5}\right\rceil+1, & \text { if } i \in\{1,2,3,4\}, i(\bmod 5) \text { for } i \geq 4 \\
1, & \text { if } i=1 \\
2, & \text { if } 2 \leq i \leq 5
\end{aligned}\right. \\
f_{e}\left(y_{i} z\right)=\left\{\begin{aligned}
2\left\lceil\frac{i-5}{5}\right\rceil+1, & \text { if } i \in\{1,3\}, i(\bmod 5) \text { for } i \geq 5 \\
2\left\lceil\frac{i-5}{5}\right\rceil+2, & \text { if } i \in\{0,2,4\}, i(\bmod 5) \text { for } i \geq 5 \\
1, & \text { if } i=1
\end{aligned}\right. \\
f_{e}\left(x_{i} x_{i+1}\right)=\left\{\begin{aligned}
2\left\lceil\frac{i-3}{5}\right\rceil, & \text { if } i \in\{2,3\} \\
2\left\lceil\frac{i-3}{5}\right\rceil+1, & \text { if } i \in\{1,2,3\}, i(\bmod 5) \text { for } i \geq 3 \\
1, & \text { if } i=1
\end{aligned}\right. \\
2, \\
\text { if } i \in\{2,3\}
\end{array}\right\} \begin{aligned}
2\left\lceil\frac{i-3}{5}\right\rceil, & \text { if } i \equiv 4(\bmod 5) \\
f_{e}\left(y_{i} y_{i+1}\right) & =\left\{\begin{aligned}
{\left[\frac{i-3}{5}\right\rceil+1, } & \text { if } i \in\{0,1,2,3\}, i(\bmod 5) \text { for } i \geq 3
\end{aligned}\right.
\end{aligned}
$$

Based on the vertex and edge labeling above, we obtained $r \mathcal{H} s\left(W_{n}\right) \leq\left\lceil\frac{n+1}{5}\right\rceil$ and $r \mathcal{H} s\left(W_{n}\right) \leq\left\lceil\frac{n+1}{5}\right\rceil+1$ for $n \equiv 3,4(\bmod 10)$. The set of subgraph weights on a graph W_{n} is $w t\left(\mathcal{H}_{i}\right)=2+i: 1 \leq i \leq n-1$. Since all subgraph weights C_{3} on the graph W_{n} are different, it is an irregular reflexive subgraph labeling. Since $r \mathcal{H} s\left(W_{n}\right) \geq$ $\left\lceil\frac{n+1}{5}\right\rceil, r \mathcal{H} s\left(W_{n}\right) \geq\left\lceil\frac{n+1}{5}\right\rceil+1$ for $n \equiv 3,4(\bmod 10), r \mathcal{H} s\left(W_{n}\right)=\left\lceil\frac{n+1}{5}\right\rceil$ and $r \mathcal{H} s\left(W_{n}\right)=$ $\left\lceil\frac{n+1}{5}\right\rceil+1$ for $n \equiv 3,4(\bmod 10)$.

Figure 2 illustrates the \mathcal{H} irregular reflexive labeling on path graph W_{16} with subgraph $\mathcal{H} \simeq C_{3}$. The number of vertices and edges of W_{16} are 17 and 16 , respectively. Since the number of subgraphs is 16 , based on Theorem 2, the reflexive strength on W_{16} is 4 . The vertex set on this labeling is $V\left(W_{16}\right)=\{0,2,4\}$, and the edge set is $E\left(W_{16}\right)=$ $\{1,2,3,4\}$. Therefore, the \mathcal{H} irregular reflexive labeling on wheel graph W_{16} satisfies Theorem 2.

Figure 2. The illustration of \mathcal{H} Irregular Reflexive Labeling on W_{16}

Theorem 3

Let $\mathcal{H} \simeq \mathrm{C}_{3}$ be a subgraph of DF_{n}, and for every natural number $\mathrm{n} \geq 3$, then

$$
r \mathcal{H} s\left(D F_{n}\right)=\left\{\begin{array}{cl}
\left\lceil\frac{2 n}{5}\right\rceil+1, & \text { if } n \equiv 7(\bmod 10) \\
\left\lceil\frac{2 n}{5}\right\rceil, & \text { otherwise }
\end{array}\right.
$$

Proof. Let $D F_{n}, n \geq 3$, be a double fan graph with the vertex set $V\left(D F_{n}\right)=\left\{a, b, x_{i}: 1 \leq\right.$ $i \leq n\}$ and the edge set $E\left(D F_{n}\right)=\left\{a x_{i}, b x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$, with subgraph $\mathcal{H} \simeq C_{3}$, such that $|\mathcal{H}|=2 n-2$. Since the vertex (a and b) in subgraph C_{3} is an element that always exists in all subgraphs and is labeled 0 such that it can be said, $p \mathcal{H}=2, q \mathcal{H}=3$, Based on the lower bound Lemma, we obtain $r \mathcal{H} s\left(W_{n}\right) \geq$ $\left\lceil\frac{q \mathcal{H}+|\mathcal{H}|-1}{p \mathcal{H}+q H}\right\rceil=\left\lceil\frac{3+2 n-2-1}{5}\right\rceil=\left\lceil\frac{2 n}{5}\right\rceil$.
For $n \equiv 7(\bmod 10)$, there is an integer a such that $n=10 a+7$ such that $r \mathcal{H} s\left(D F_{n}\right) \geq$ $\left\lceil\frac{2 n}{5}\right\rceil=\left\lceil\frac{2(10 a+7)}{5}\right\rceil=\left\lceil\frac{20 a+14}{5}\right\rceil=4 a+3=t$. Suppose t is $r \mathcal{H} s\left(D F_{n}\right)$, then t is the largest label in labeling irregular reflexive subgraphs of the graph $D F_{n}$. Since t is an odd number, the largest weight in a subgraph \mathcal{H}_{l} is $w t\left(\mathcal{H}_{l}\right)=2(t-1)+3 t=5 t-2=$ $5(2 a+1)-2=10 a+3$. Conversely, to obtain the minimum $r \mathcal{H} s$, the subgraph weights must form an arithmetic sequence with difference 1 , $w t\left(\mathcal{H}_{i}\right)=q_{\mathcal{H}}+i-1: 1 \leq$ $i \leq(2 n-2)$. Since the subgraph has the largest weight, $q_{\mathcal{H}}+2 n-2-1 \leq w t\left(\mathcal{H}_{l}\right)$, a contradiction occurs with $q_{\mathcal{H}}+2 n-2-1=2 n=20 a+14 \leq 10 a+3$. Therefore, $t \neq$ $r \mathcal{H} s\left(D F_{n}\right)$ such that $r \mathcal{H} s\left(D F_{n}\right)>\left\lceil\frac{2 n}{5}\right\rceil$. It gives $r \mathcal{H} s\left(D F_{n}\right) \geq\left\lceil\frac{2 n}{5}\right\rceil+1$. Furthermore, determine the upper bound $r \mathcal{H} s\left(D F_{n}\right)$, labeling vertices and edges on the graph $D F_{n}$ is constructed.
For $n \geq 3$, the labeling of vertices and edges in graph $D F_{n}$ is constructed as follows.

$$
\begin{gathered}
f_{v}(a)=0 \\
f_{v}\left(x_{i}\right)=\left\{\begin{aligned}
& 0, \text { if } 1 \leq i \leq 3 \\
& f_{2}(b)=0
\end{aligned}\right. \\
2\left\lceil\frac{i-3}{5}\right\rceil, \\
\text { if } i \in\{0,1,2,3,4\}, \text { i }(\bmod 5) \text { for } i \geq 3
\end{gathered}
$$

$$
\begin{gathered}
f_{e}\left(a x_{i}\right)=\left\{\begin{array}{cl}
4\left\lceil\frac{i}{10}\right\rceil-3, & \text { if } i \in\{1,2,4\}, i(\bmod 10) \\
4\left\lceil\frac{i}{10}\right\rceil-2, & \text { if } i \in\{3,5,6\}, i(\bmod 10) \\
4\left\lceil\frac{i}{10}\right\rceil-1, & \text { if } i \in\{0,8\}, i(\bmod 10) \\
4\left\lceil\frac{i}{10}\right\rceil, & \text { if } i \in\{7,9\}, i(\bmod 10) \\
1, & \text { if } i=1 \\
2, & \text { if } 2 \leq i \leq 5
\end{array}\right. \\
f_{e}\left(b x_{i}\right)=\left\{\begin{array}{cl}
2\left\lceil\frac{i-5}{5}\right\rceil+1, & \text { if } i \equiv 1(\bmod 5) \text { for } i \geq 5 \\
2\left\lceil\frac{i-5}{5}\right\rceil+2, & \text { if } i \in\{0,2,3,4\}, i(\bmod 5) \text { for } i \geq 5 \\
1, & \text { if } i=1 \\
2, & \text { if } 2 \leq i \leq 4
\end{array}\right. \\
f_{e}\left(x_{i} x_{i+1}\right)=\left\{\begin{aligned}
{\left[\frac{i-4}{5}\right\rceil+1, } & \text { if } i \in\{0,1\}, i(\bmod 5) \text { for } i \geq 4 \\
2\left\lceil\frac{i-4}{5}\right\rceil+2, & \text { if } i \in\{2,3,4\}, i(\bmod 5) \text { for } i \geq 4
\end{aligned}\right.
\end{gathered}
$$

Based on the vertex and edge labeling above, we obtained $r \mathcal{H} s\left(D F_{n}\right) \leq\left\lceil\frac{2 n}{5}\right\rceil$ and $r \mathcal{H} s\left(D F_{n}\right) \leq\left\lceil\frac{2 n}{5}\right\rceil+1$ for $n \equiv 7(\bmod 10)$. The set of subgraph weights on a graph $D F_{n}$ is $w t\left(\mathcal{H}_{i}\right)=2+i: 1 \leq i \leq 2 n$. Since all subgraph weights C_{3} on the graph $D F_{n}$ are different, it is an irregular reflexive subgraph labeling. Since $r \mathcal{H} s\left(D F_{n}\right) \geq$ $\left\lceil\frac{2 n}{5}\right\rceil, r \mathcal{H} s\left(D F_{n}\right) \geq\left\lceil\frac{2 n}{5}\right\rceil+1$ for $n \equiv 7(\bmod 10), r \mathcal{H} S\left(D F_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$ and $r \mathcal{H} s\left(D F_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil+$ 1 for $n \equiv 7(\bmod 10)$.

Figure 3 illustrates the \mathcal{H} irregular reflexive labeling on double fan graph $D F_{8}$ with sub-graph $\mathcal{H} \simeq C_{3}$. The number of vertices and edges of $D F_{8}$ are 10 and 23, respectively. Since the number of subgraphs is 16 , based on Theorem 3, the reflexive strength on $D F_{8}$ is 4 . The vertex set on this labeling is $V\left(D F_{8}\right)=\{0,2\}$, and the edge set is $E\left(D F_{8}\right)=\{1,2,3,4\}$. Therefore, the \mathcal{H} irregular reflexive labeling on double fan graph $D F_{8}$ satisfies Theorem 3.

Figure 3. The illustration of \mathcal{H} Irregular Reflexive Labeling on $D F_{8}$

Theorem 4

Let $\mathcal{H} \simeq C_{4}$ be a subgraph of TL_{n}, and for every natural number $\mathrm{n} \geq 4$, then

$$
r \mathcal{H} s\left(T L_{n}\right)=\left\{\begin{aligned}
\left\lceil\frac{n}{4}\right\rceil+1, & \text { if } n \in\{3,4\}, i(\bmod 8) \\
\left\lceil\frac{n}{4}\right\rceil, & \text { otherwise }
\end{aligned}\right.
$$

Proof. Let $T L_{n}, \quad n \geq 4$, be a triangular ladder graph with the vertex set $V\left(T L_{n}\right)=$ $\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(T L_{n}\right)=\left\{x_{i} y_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i+1}\right.$: $1 \leq i \leq n-1\}$, with subgraph $\mathcal{H} \simeq C_{4}$, such that $|\mathcal{H}|=2 n-3, p \mathcal{H}=4, q \mathcal{H}=4$. Based on the lower bound Lemma, we obtain $r \mathcal{H} s\left(T L_{n}\right) \geq\left\lceil\frac{q \mathcal{H}+|\mathcal{H}|-1}{p \mathcal{H}+q H}\right\rceil=\left\lceil\frac{4+2 n-3-1}{8}\right\rceil=\left\lceil\frac{n}{4}\right\rceil$.
For $n \equiv 4(\bmod 8)$, there is an integer that $n=8 a+4$ such that $r \mathcal{H} s\left(T L_{n}\right) \geq\left\lceil\frac{n}{4}\right\rceil=$ $\left\lceil\frac{8 a+4}{4}\right\rceil=2 a+1=t$. Suppose t is $r \mathcal{H} s\left(T L_{n}\right)$, then t is the largest label in labeling irregular reflexive sub-graphs of the graph $T L_{n}$. Since t is an odd number, the largest weight in a subgraph \mathcal{H}_{l} is $w t\left(\mathcal{H}_{l}\right)=4(t-1)+4 t=8 t-4=8(2 a+1)-4=16 a+$ 4. Conversely, to obtain the minimum $r \mathcal{H} s$, the subgraph weights must form an arithmetic sequence with difference 1 , $w t\left(\mathcal{H}_{i}\right)=q_{\mathcal{H}}+i-1: 1 \leq i \leq(2 n-3)$. Since the sub-graph has the largest weight, $q_{\mathcal{H}}+2 n-3-1 \leq w t\left(\mathcal{H}_{l}\right)$, a contradiction occurs with $q_{\mathcal{H}}+2 n-3-1=2 n=16 a+8 \leq 16 a+4$. Therefore, $t \neq r \mathcal{H} s\left(T L_{n}\right)$ such that $r \mathcal{H} S\left(T L_{n}\right)>\left[\frac{n}{4}\right]$. It gives $r \mathcal{H} S\left(T L_{n}\right) \geq\left\lceil\frac{n}{4}\right\rceil+1$. For $n \equiv 3(\bmod 8)$, it is obtained $r \mathcal{H} s\left(T L_{n}\right) \geq\left\lceil\frac{n}{4}\right\rceil+1$ for the same reason. Furthermore, determine the upper bound $r \mathcal{H} s\left(T L_{n}\right)$, labeling vertices and edges on the graph $T L_{n}$ is constructed.
For $n \geq 4$, the labeling of vertices and edges in graph $T L_{n}$ is constructed as follows.

$$
\begin{aligned}
& f_{v}\left(x_{i}\right)=\left\{\begin{aligned}
0, & \text { if } 1 \leq i \leq 6 \\
2, & \text { if } 7 \leq i \leq 13 \\
{\left[\left\lceil\frac{i-13}{8}\right\rceil+2,\right.} & \text { if } i \in\{0,1,2,3,4,5,6,7\}, i(\bmod 8) \text { for } i \geq 13
\end{aligned}\right. \\
& f_{v}\left(y_{i}\right)=\left\{\begin{aligned}
0, & \text { if } 1 \leq i \leq 4 \\
2, & \text { if } 5 \leq i \leq 11 \\
2\left\lceil\frac{i-11}{8}\right\rceil+2, & \text { if } i \in\{0,1,2,3,4,5,6,7\}, i(\bmod 8) \text { for } i \geq 11
\end{aligned}\right. \\
& f_{e}\left(x_{i} y_{i}\right)=\left\{\begin{aligned}
1, & \text { if } i=1,2,7 \\
2, & \text { if } i=3,4,5,6 \\
3, & \text { if } i=8 \\
2\left\lceil\frac{i-8}{8}\right\rceil+1, & \text { if } i \in\{1,2,4\}, i(\bmod 8) \text { for } i \geq 8 \\
2\left\lceil\frac{i-8}{8}\right\rceil+2, & \text { if } i \in\{0,3,5,7\}, i(\bmod 8) \text { for } i \geq 8
\end{aligned}\right. \\
& 2\left\lceil\frac{i-8}{8}\right\rceil, \quad \text { if } i \equiv 6(\bmod 8) \text { for } i \geq 8 \\
& f_{e}\left(x_{i} x_{i+1}\right)=\left\{\begin{aligned}
2\left\lceil\frac{i}{8}\right\rceil-1, & \text { if } i \equiv 1(\bmod 8) \\
2\left\lceil\frac{i}{8}\right\rceil, & \text { if } i \in\{0,2,3,4,5,6,7\}, i(\bmod 8)
\end{aligned}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f_{e}\left(y_{i} y_{i+1}\right)=\left\{\begin{aligned}
1, & \text { if } i=1,2 \\
2, & \text { if } i=3,4,5,7,8 \\
3, & \text { if } i=6
\end{aligned} \begin{array}{rl}
\left\lceil\frac{i-8}{8}\right\rceil+1, & \text { if } i \in\{1,2,3,4\}, i(\bmod 8) \text { for } i \geq 8 \\
2\left\lceil\frac{i-8}{8}\right\rceil+2, & \text { if } i \in\{5,6,7\}, i(\bmod 8) \text { for } i \geq 8 \\
2\left\lceil\frac{i-8}{8}\right\rceil+3, & \text { if } i \equiv 0(\bmod 8) \text { for } i \geq 8
\end{array}\right. \\
& f_{e}\left(x_{i} y_{i+1}\right)=\left\{\begin{aligned}
1, & \text { if } i=1,3,5 \\
2, & \text { if } i=2,4,7 \\
3, & \text { if } i=6
\end{aligned} \quad \begin{array}{rl}
\left\lceil\frac{i-7}{8}\right\rceil+1, & \text { if } i \in\{0,1,5,7\}, i(\bmod 8) \text { for } i \geq 7 \\
2\left\lceil\frac{i-7}{8}\right\rceil+2, & \text { if } i \in\{2,4,6\}, i(\bmod 8) \text { for } i \geq 7
\end{array}\right. \\
& 2\left\lceil\frac{i-7}{8}\right\rceil, \quad \text { if } i \equiv 3(\bmod 8) \text { for } i \geq 7
\end{aligned}
$$

Based on the vertex and edge labeling above, we obtained $r \mathcal{H} s\left(T L_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil$ and $r \mathcal{H} s\left(T L_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil+1$ for $n \equiv 3,4(\bmod 8)$. The set of sub-graph weights on a graph $T L_{n}$ is $\omega t\left(\mathcal{H}_{i}\right)=3+i: 1 \leq i \leq 2 n-3$. Since all sub-graph weights C_{4} on the graph $T L_{n}$ are different, it is an irregular reflexive sub-graph labeling. Since $r \mathcal{H} s\left(T L_{n}\right) \geq$ $\left\lceil\frac{n}{4}\right\rceil, r \mathcal{H} s\left(T L_{n}\right) \geq\left\lceil\frac{n}{4}\right\rceil+1$ for $n \equiv 3,4(\bmod 8)$, then $r \mathcal{H} s\left(T L_{n}\right)=\left\lceil\frac{n}{4}\right\rceil$ and $r \mathcal{H} s\left(T L_{n}\right)=$ $\left[\frac{n}{4}\right]+1$ for $n \equiv 3,4(\bmod 8)$.

Figure 4 illustrates the \mathcal{H} irregular reflexive labeling on triangular ladder graph $T L_{8}$ with sub-graph $\mathcal{H} \simeq C_{4}$. The number of vertices and edges of $T L_{8}$ are 16 and 29 , respectively. Since the number of subgraphs is 13 , based on Theorem 4, the reflexive strength on $T L_{8}$ is 3 . The vertex set on this labeling is $V\left(T L_{8}\right)=\{0,2\}$ and the edge set is $E\left(T L_{8}\right)=\{1,2,3\}$. Therefore, the \mathcal{H} irregular reflexive labeling on triangular ladder graph $T L_{8}$ satisfies Theorem 4.

Figure 4. The illustration of \mathcal{H} Irregular Reflexive Labeling on $T L_{8}$

Theorem 5

Let $\mathcal{H} \simeq \mathrm{C}_{6}$ be a subgraph of L_{n}, and for every natural number $\mathrm{n} \geq 4$, then

$$
r \mathcal{H} s\left(L_{n}\right)=\left\{\begin{aligned}
\left\lceil\frac{n+3}{12}\right\rceil+1, & \text { if } n \in\{1,3,4,5,6,7,8,9\}, i(\bmod 24) \\
\left\lceil\frac{n+3}{12}\right\rceil, & \text { otherwise }
\end{aligned}\right.
$$

Proof. Let $L_{n}, n \geq 4$, be a ladder graph with the vertex set $V\left(L_{n}\right)=\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(L_{n}\right)=\left\{x_{i} y_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n-1\right\}$, with subgraph $\mathcal{H} \simeq C_{6}$, such that $|\mathcal{H}|=n-2, p \mathcal{H}=6, q \mathcal{H}=6$. Based on the lower bound Lemma, we obtain $r \mathcal{H} s\left(L_{n}\right) \geq\left\lceil\frac{q \mathcal{H}+|\mathcal{H}|-1}{p \mathcal{H}+q H}\right\rceil=\left\lceil\frac{6+n-2-1}{12}\right\rceil=\left\lceil\frac{n+3}{12}\right\rceil$.
For $n \equiv 9(\bmod 24)$, there is an integer a such that $n=24 a+9$ such that $r \mathcal{H} s\left(L_{n}\right) \geq$ $\left\lceil\frac{n+3}{12}\right\rceil=\left\lceil\frac{24 a+9+3}{12}\right\rceil=\left\lceil\frac{24 a+12}{12}\right\rceil=2 a+1=t$. Suppose t is $r \mathcal{H} s\left(L_{n}\right)$, then t is the largest label in labeling irregular reflexive subgraphs of the graph L_{n}. Since t is an odd number, the largest weight in a subgraph \mathcal{H}_{l} is $w t\left(\mathcal{H}_{l}\right)=6(t-1)+6 t=12 t-6=12(2 a+$ 1) $-6=24 a+6$. On the other hand, to obtain the minimum $r \mathcal{H} s$, the subgraph weights must form an arithmetic sequence with a difference 1 , that is, $w t\left(\mathcal{H}_{i}\right)=q_{\mathcal{H}}+i-1$: $1 \leq i \leq(n-2)$. Since the subgraph has the largest weight, $q_{\mathcal{H}}+n-2-1 \leq w t\left(\mathcal{H}_{l}\right)$, a contradiction occurs with $q_{\mathcal{H}}+n-2-1=n+3=24 a+12 \leq 24 a+6$. Therefore, $t \neq r \mathcal{H} s\left(L_{n}\right)$ such that $r \mathcal{H} s\left(L_{n}\right)>\left\lceil\frac{n+3}{12}\right\rceil$. It gives $r \mathcal{H} s\left(L_{n}\right) \geq\left\lceil\frac{n+3}{12}\right\rceil+1$. For $n \equiv$ $1,3,4,5,6,7,8(\bmod 24)$, it is obtained $r \mathcal{H} s\left(L_{n}\right) \geq\left\lceil\frac{n+3}{12}\right\rceil+1$ for the same reason.
Furthermore, determine the upper bound $r \mathcal{H} s\left(L_{n}\right)$, labeling vertices and edges on the graph L_{n} is constructed.
For $n \geq 4$, the labeling of vertices and edges in graph L_{n} is constructed as follows.

$$
\begin{aligned}
& f_{v}\left(x_{i}\right)=\left\{\begin{array}{rc}
0, & \text { if } 1 \leq i \leq 9 \\
2\left\lceil\frac{i-9}{24}\right\rceil, & \text { if } i \in\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 \\
& \begin{array}{rc}
0, & \text { if } 1 \leq i \leq 18,19,20,21,22,23\}, i(\bmod 24) \text { for } i \geq 9
\end{array} \\
f_{v}\left(y_{i}\right)=\left\{\begin{array}{rc}
2\left\lceil\frac{i-10}{24}\right\rceil, & \text { if } i \in\{0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17 \\
18,19,20,21,22,23\}, i(\bmod 24) \text { for } i \geq 10
\end{array}\right. \\
2\left\lceil\frac{i-10}{24}\right\rceil-2, & \text { if } i \equiv 12(\bmod 24)
\end{array}\right.
\end{aligned}
$$

$$
f_{e}\left(x_{i} y_{i}\right)
$$

$$
(\quad 1, \quad \text { if } i \in\{1,3,4,11,12,13,15,16\}
$$

$$
\begin{cases}1, & \text { if } l \in\{1,3,4,11,12,13,15,16\} \\ 2, & \text { if } i \in\{2,5,6,7,8,9,10,14,17,18,19,20,21,22\}\end{cases}
$$

$$
= \begin{cases}2\left\lceil\frac{i-22}{24}\right\rceil+1, & \text { if } i \in\{0,1,3,4,11,12,13,15,16,23\}, i(\bmod 24) \text { for } i \geq 22 \\ 2\left\lceil\frac{i-22}{24}\right\rceil+2, & \text { if } i \in\{2,5,6,7,8,9,10,14,17,18\end{cases}
$$

$$
2\left\lceil\frac{i-22}{24}\right\rceil+2, \quad \text { if } i \in\{2,5,6,7,8,9,10,14,17,18,
$$

$$
19,20,21,22\}, i(\bmod 24) \text { for } i \geq 22
$$

$$
f_{e}\left(x_{i} x_{i+1}\right)=\left\{\begin{aligned}
1, & \text { if } 1 \leq i \leq 3 \\
2, & \text { if } 4 \leq i \leq 9 \\
2\left\lceil\frac{i-9}{24}\right\rceil-1, & \text { if } i \in\{10,11,12,13,14,15\}, i(\bmod 24) \\
2\left\lceil\frac{i-9}{24}\right\rceil, & \text { if } i \in\{0,16,17,18,19,20,22\}, i(\bmod 24) \text { for } i \geq 9 \\
2\left\lceil\frac{i-9}{24}\right\rceil+1, & \text { if } i \in\{1,2,3,21,23\}, i(\bmod 24) \text { for } i \geq 9 \\
2\left\lceil\frac{i-9}{24}\right\rceil+2, & \text { if } i \in\{4,5,6,7,8,9\}, i(\bmod 24) \text { for } i \geq 9
\end{aligned}\right.
$$

$$
f_{e}\left(y_{i} y_{i+1}\right)=\left\{\begin{aligned}
1, & \text { if } 1 \leq i \leq 6 \\
2\left\lceil\frac{i-6}{24}\right], & \text { if } i \in\{0,7,8,19,20,21,22\}, i(\bmod 24) \text { for } i \geq 6 \\
2\left\lceil\frac{i-6}{24}\right\rceil-1, & \text { if } i \in\{9,10,11,12,13,14,15,16,17,18\}, i(\bmod 24) \\
2\left\lceil\frac{i-3}{5}\right\rceil+1, & \text { if } i \in\{1,2,3,4,5,6,23\}, i(\bmod 24) \text { for } i \geq 6
\end{aligned}\right.
$$

Based on the vertex and edge labeling above, we obtained $r \mathcal{H} s\left(L_{n}\right) \leq\left\lceil\frac{n+3}{12}\right\rceil$ and $r \mathcal{H} s\left(L_{n}\right) \leq\left\lceil\frac{n+3}{12}\right\rceil+1$ for $n \in\{1,3,4,5,6,7,8,9\}, n(\bmod 24)$. The set of subgraph weights on a graph L_{n} is $\omega t\left(\mathcal{H}_{i}\right)=5+i: 1 \leq i \leq n-2$. Since all subgraph weights C_{6} on graph L_{n} are different, it is an irregular reflexive subgraph labeling. Since $r \mathcal{H} s\left(L_{n}\right) \geq$ $\left\lceil\frac{n+3}{12}\right\rceil, r \mathcal{H} s\left(L_{n}\right) \geq\left\lceil\frac{n+3}{12}\right\rceil+1$ for $n \in\{1,3,4,5,6,7,8,9\}, n(\bmod 24), r \mathcal{H} s\left(L_{n}\right)=\left\lceil\frac{n+3}{12}\right\rceil$ and $r \mathcal{H} s\left(L_{n}\right)=\left\lceil\frac{n+3}{12}\right\rceil+1$ for $n \in\{1,3,4,5,6,7,8,9\}, n(\bmod 24)$.

Figure 5 illustrates the \mathcal{H} irregular reflexive labeling on ladder graph L_{8} with sub-graph $\mathcal{H} \simeq C_{6}$. The number of vertices and edges of L_{8} are 16 and 22, respectively. Since the number of subgraphs is 6, based on Theorem 5, the reflexive strength on L_{8} is 2. The vertex set on this labeling is $V\left(L_{8}\right)=\{0\}$, and the edge set is $E\left(L_{8}\right)=\{1,2\}$. Therefore, the \mathcal{H} irregular reflexive labeling on ladder graph L_{8} satisfies Theorem 5 .

Figure 5. The illustration of \mathcal{H} Irregular Reflexive Labeling on L_{8}

CONCLUSIONS

We have obtained the lower bound of the reflexive \mathcal{H}-strength of graphs and the reflexive \mathcal{H}-strength of some graphs, namely the path graph, wheel graph, double fan graph, triangular ladder graph, and ladder graph. We studied subgraph $\mathcal{H} \simeq P_{3}$ on determining $r \mathcal{H} s\left(P_{n}\right)$, the subgraph $\mathcal{H} \simeq C_{3}$ on determining $r \mathcal{H} s\left(\left(W_{n}\right)\right.$ and $\left.\left(D F_{n}\right)\right)$, subgraph $\mathcal{H} \simeq C_{4}$ on determining $r \mathcal{H} s\left(T l_{n}\right)$, and the subgraph $\mathcal{H} \simeq C_{6}$ on determining $r \mathcal{H} s\left(L_{n}\right)$. We believe our article has contributed to the field of irregular reflexive graph research in a novel way. However, the exact value of $r \mathcal{H} s(G)$ for any graph G is still open for research because determining a graph's reflexive \mathcal{H}-strength is considered an NPcomplete problem. As a result, we propose the following open problems.

1. Find the $r \mathcal{H} s\left(P_{n}\right)$ with subgraph $\mathcal{H} \simeq P_{3}$, where $n \equiv 0,1,2,3,4,5(\bmod 10)$.
2. With any subgraph, find the sharper upper bound of every graph's reflexive \mathcal{H} strength.
3. Consider any graph with a given $r \mathcal{H} s(G)$ and determine the precise value of its reflexive \mathcal{H}-strength.

ACKNOWLEDGMENTS

We are greatly grateful for the extraordinary support and guidance provided by Universitas PGRI Argopuro Jember, PUI-PT Combinatorics, and Graph University of Jember in 2024, as well as all parties who supported the completion of this article.

REFERENCES

[1] W. I. Saputri, D. Indiarti, P. S. Matematika, dan S. Maret, "Kekuatan sisi refleksif pada graf rantai segitiga (," hal. 1-8, 2022.
[2] J. A. Gallian, "A dynamic survey of graph labeling," Electron. J. Comb., vol. 1, no. DynamicSurveys, 2020.
[3] S. Zaman, J. Alam, dan A. Jabeen, "Super Face Magic Labeling of Subdivided Prism Graph," Jordan J. Math. Stat., vol. 14, no. 4, hal. 777-785, 2021, doi: 10.47013/14.4.11.
[4] M. Bača, N. Hinding, A. Javed, dan A. Semaničová-Feňovčíková, "Entire Hirregularity strength of plane graphs," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10765 LNCS, no. January, hal. 3-12, 2018, doi: 10.1007/978-3-319-78825-8_1.
[5] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, dan D. Tanna, "Note on edge irregular reflexive labelings of graphs," AKCE Int. J. Graphs Comb., vol. 16, no. 2, hal. 145-157, 2019, doi: 10.1016/j.akcej.2018.01.013.
[6] F. Ashraf, M. Baca, M. Lascsakova, dan A. Semanicova-Fenovcikova, "On Hirregularity strength of graphs," Discuss. Math. - Graph Theory, vol. 37, no. 4, hal. 1067-1078, 2017, doi: $10.7151 /$ dmgt. 1980.
[7] F. Ashraf, S. C. López, F. A. Muntaner-Batle, A. Oshima, M. Bača, dan A. SemaničováFeňovčíková, "On total h-irregularity strength of the disjoint union of graphs," Discuss. Math. - Graph Theory, vol. 40, no. 1, hal. 181-194, 2020, doi: 10.7151/dmgt. 2118.
[8] I. H. Agustin, Dafik, Marsidi, dan E. R. Albirri, "On the total H-irregularity strength of graphs: A new notion," J. Phys. Conf. Ser., vol. 855, no. 1, 2017, doi: 10.1088/1742-6596/855/1/012004.
[9] M. Naeem, M. K. Siddiqui, M. Bača, A. Semaničová-Feňovčíková, dan F. Ashraf, "On Edge H-Irregularity Strengths of Some Graphs," Discuss. Math. - Graph Theory, vol. 41, no. 4, hal. 949-961, 2021, doi: 10.7151/dmgt.2228.
[10] R. Nisviasari, Dafik, dan I. H. Agustin, "The total H-irregularity strength of triangular ladder and grid graphs," J. Phys. Conf. Ser., vol. 1211, no. 1, 2019, doi: 10.1088/1742-6596/1211/1/012005.
[11] R. Nisviasari, Dafik, dan I. H. Agustin, "The total H-irregularity strength of triangular ladder graphs," J. Phys. Conf. Ser., vol. 1465, no. 1, 2020, doi: 10.1088/1742-6596/1465/1/012026.
[12] M. Bača, S. Jendrol', M. Miller, dan J. Ryan, "On irregular total labellings," Discrete Math., vol. 307, no. 11-12, hal. 1378-1388, 2007, doi: 10.1016/j.disc.2005.11.075.
[13] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, dan D. Tanna, "On edge irregular reflexive labellings for the generalized friendship graphs," Mathematics, vol. 5, no. 4, hal. 1-11, 2017, doi: 10.3390/math5040067.
[14] D. Tanna, J. Ryan, dan A. Semaničová-Feňovčíková, "Edge irregular reflexive labeling of prisms and wheels," Australas. J. Comb., vol. 69, no. 3, hal. 394-401, 2017.
[15] D. Tanna, J. Ryan, A. Semaničová-Feňovčíková, dan M. Bača, "Vertex irregular
reflexive labeling of prisms and wheels," AKCE Int. J. Graphs Comb., vol. 17, no. 1, hal. 51-59, 2018, doi: 10.1016/j.akcej.2018.08.004.
[16] I. H. Agustin, M. I. Utoyo, Dafik, M. Venkatachalam, dan Surahmat, "On the Construction of the Reflexive Vertex k -Labeling of Any Graph with Pendant Vertex," Int. J. Math. Math. Sci., vol. 2020, 2020, doi: 10.1155/2020/7812812.
[17] F. Ashraf, M. Bača, A. Semaničová-Feňovčíková, dan M. K. Siddiqui, "On Hirregularity strength of ladders and fan graphs," AKCE Int. J. Graphs Comb., vol. 17, no. 1, hal. 213-219, 2019, doi: 10.1016/j.akcej.2019.04.002.
[18] Marsidi, I. H. Agustin, S. Rahman, dan L. Herni, "On Irregular Reflexive k - labeling of Graphs," vol. 8, no. 2, hal. 175-185, 2023.

