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ABSTRACT 

The spread of HIV/AIDS remains a significant public health concern worldwide, necessitating 
effective strategies for disease management and prevention. Mathematical modeling offers a 
powerful tool for understanding disease transmission dynamics and assessing interventions' 
impact. This study develops a mathematical model for the spread of HIV/AIDS by the population, 
which is divided into seven sub-populations, namely the susceptible unaware HIV 
subpopulation, the susceptible aware HIV sub-population, the infected sub-population, the pre-
AIDS sub-population, the ARV treatment sub-population, the AIDS sub-population, and the 
unlikely to be infected with HIV/AIDS sub-population. Further, the formed model is analyzed for 
its dynamic properties. In this mathematical model, two equilibrium points are obtained, namely 
the disease-free equilibrium point and the disease-endemic equilibrium point. Additionally, the 
model calculates the basic reproduction number (𝑅0). The stability analysis shows that the 
disease-free equilibrium point is locally asymptotically stable if 𝑅0 < 1 and the disease-endemic 
equilibrium point is locally asymptotically stable if 𝑅0 > 1. Numerical simulations of the 
equilibrium points are carried out to provide an overview of the analyzed results, with 
parameter values from several sources. Based on the sensitivity analysis, the parameters that 
significantly affect the spread of HIV/AIDS are the contact rate of HIV-unaware individuals with 
infected individuals and the transmission rate of HIV infection. 
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INTRODUCTION 

Human Immunodeficiency Virus (HIV) is a virus that infects white blood cells, 
leading to the weakening of the human immune system. Untreated HIV infection can 
progress to a more severe stage and result in Acquired Immunodeficiency Syndrome 
(AIDS)[1]. According to WHO (2019), transmission of HIV/AIDS can occur through the 
exchange of bodily fluids from an infected person, such as blood, breast milk, semen, and 
vaginal fluids. It can also be transmitted from a mother to her child during pregnancy 
and childbirth. One cannot get infected through everyday contact like kissing, hugging, 
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shaking hands, or sharing personal items. HIV/AIDS can affect anyone, with key 
populations including the Lesbian, Gay, Bisexual, and Transgender (LGBT) community, 
sex workers, people who share needles, and prison inmates being the most at risk for 
transmission [2]. 

The spread of HIV/AIDS in Indonesia was first identified in the province of Bali in 
1987. By the year 2021, HIV/AIDS had spread to 498 out of 514 districts/cities across all 
provinces in Indonesia. Out of this total, only 474 districts/cities reported cases of 
HIV/AIDS [3]. Over the past eleven years, the number of HIV cases in Indonesia reached 
its peak in 2019, with a total of 50.282 cases. As for the highest number of AIDS cases in 
the past eleven years, it was recorded in 2013, with a total of 12.214 cases [4]. 
Adolescents are the most vulnerable age group to HIV/AIDS infection. The lack of public 
awareness about the disease also exacerbates the risk of HIV/AIDS transmission. 
According to WHO data, only 34% of adolescents can accurately demonstrate knowledge 
about HIV/AIDS, and only 26% of the female adolescent population and 33% of the male 
adolescent population are aware of how HIV/AIDS is transmitted. The low public 
awareness of HIV/AIDS contributes to the continued high population of individuals with 
HIV/AIDS and limited access to Antiretroviral (ARV) treatment [5]. 

It is well recognized that mathematical modeling is a crucial approach for 
understanding any epidemic's dynamics and further developing various control and 
prevention policies. Numerous studies have delved into and discussed the mathematical 
modeling of HIV/AIDS. In one such study [6], modeling the dynamics of HIV/AIDS 
infection using the Atangana-Baleanu derivative with the Susceptible, Infected, Cronis, 
and AIDS (SICA) model, which comprises the susceptible population, divided into 
Susceptible Unaware (𝑆𝑢) and Susceptible Aware (𝑆𝑎), the infected population 
(Infected), the HIV-Infected population under treatment (Cronis), and the AIDS 
population (AIDS). Subsequently, the study [7] discusses the transmission of HIV/AIDS 
from Mother to Child using the Susceptible, Infected, Pre-AIDS, Treatment and AIDS 
(SIPTA) model, which includes the susceptible population (Susceptible), the population 
of individuals infected with HIV (Infected), the population of individuals infected with 
HIV but not yet with AIDS (Pre-AIDS), the population of individuals receiving treatment 
(Treatment), and the population of individuals with AIDS (AIDS). Further in the study 
[8], a development is presented in the treatment model of HIV/AIDS with distinct stages 
of HIV infection, employing the Susceptible, HIV, Pre-AIDS, AIDS, Treatment and Remove 
(SHPATR) model. This model encompasses the susceptible population (Susceptible), the 
population of individuals infected with HIV (HIV), the population of individuals infected 
with HIV but not yet with AIDS and not yet under treatment (Pre-AIDS), the population 
of individuals with AIDS (AIDS), the population of individuals under treatment 
(Treatment), and the population of individuals who alter and maintain sexual behaviors 
(Removed). 

Based on the description above, there hasn't been any discussion regarding 
mathematical models of HIV/AIDS involving public awareness. Therefore, in this study, 
we developed the SIPTA model by dividing the susceptible compartment into 
Susceptible Unaware of HIV (𝑆1)and Susceptible Aware of HIV (𝑆2). Furthermore, we 
introduced an additional compartment for individuals who are unlikely to be infected 
with HIV/AIDS. Subsequently, the obtained model's dynamic properties were analyzed, 
and numerical simulations were conducted. 
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METHODS 

The steps in this research are as follows, starting with a literature review. This is 
followed by determining assumptions, variables, and parameters to construct a 
compartment diagram. After that, create the model equations. Subsequently, seek the 
equilibrium point of disease-free, the basic reproduction number, and the equilibrium 
point of endemic disease. Then, analyze the stability of the disease-free and endemic 
equilibrium points. To perform numerical simulations, parameter values obtained from 
various reference sources are needed, and there are several parameter values assumed 
by the researcher. Then, these parameter values are inputted to observe the stability 
curve of equilibrium points. Next, conduct model simulations and sensitivity analysis 
using the Maple 2021 application to identify parameter values significantly influencing 
the basic reproduction number. Finally, draw conclusions based on the obtained 
analysis results. 

RESULTS AND DISCUSSION  

This section will discuss the formulation of mathematical models of HIV/AIDS 
disease spread and analysis of its dynamic systems. The analysis begins with 
determining the equilibrium points of disease-free and endemic equilibrium points, the 
basic reproduction number, numerical simulations, and sensitivity analysis of the basic 
reproduction number.  

Mathematical Model 

The assumptions for constructing a mathematical model of HIV/AIDS spread with 

public awareness can be outlined as follows. (1)The model employed is the 𝑆₁𝑆₂𝐼𝑃𝑇𝐴𝑅 

model, where Susceptible Unaware (𝑆₁) represents individuals who are susceptible and 

unaware of HIV, Susceptible Aware (𝑆₂) represents susceptible individuals who are 

aware of HIV, Infected (𝐼) denotes individuals infected with HIV, Pre-AIDS (𝑃) 

represents individuals who are infected with HIV but have not progressed to AIDS, 

Treatment (𝑇) includes individuals undergoing ARV treatment, AIDS (𝐴) represents 

individuals infected with AIDS, and Removed (𝑅) encompasses individuals who are 

unlikely to be infected with HIV/AIDS. (2) The population is assumed to be closed, 

meaning there is no movement of people out of or into the population (no migration). 

(3) The population is assumed to be homogeneous, meaning that each individual has an 

equal probability of making contact with others. (4) Recruitment rates occur in each 

subpopulation and enter the unaware HIV subpopulation (𝑆₁), while natural deaths 

occur in every compartment. (5) There are deaths due to AIDS. (6) Susceptible unaware 

of HIV individuals can transition into susceptible aware of HIV individuals after 

receiving information about HIV, and vice versa. (7) There are three possibilities after an 

individual is infected with HIV: they can undergo treatment, enter the pre-AIDS stage, or 

progress directly to AIDS infection. (8) After the pre-AIDS period concludes, individuals 

in this subpopulation will enter the treatment subpopulation (ARV treatment). If the 

immune system remains strong, patients will stay in the treatment subpopulation (ARV 

treatment). However, if the immune system is weakened, they will transition into the 

AIDS subpopulation. (9) Individuals undergoing treatment can still be infected with 

AIDS due to opportunistic infections. Individuals infected with AIDS can seek treatment 
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to prolong their lives. (10) Individuals infected with HIV and AIDS can undergo ARV 

treatment. (11) For susceptible, aware HIV individuals, there is a possibility of not 

getting infected with HIV/AIDS because they are knowledgeable about HIV/AIDS 

prevention and adopt a healthy lifestyle. Next, the parameters forming the model are 

defined in the following Table 1. 

Table 1. List of Parameters for the HIV/AIDS Disease Spread Model with Public Awareness 
No. Parameter Description Condition Unit 
1. 𝜋 Recruitment rate.  𝜋 > 0 1

𝑦𝑒𝑎𝑟
 

2. 𝜃 Rate of transition from susceptible unaware of HIV 
individuals to susceptible aware of HIV individuals. 

0 ≤ 𝜃 ≤ 1 1

𝑦𝑒𝑎𝑟
 

3. 𝜂 Rate of transition from susceptible aware of HIV individuals 
to susceptible unaware of HIV individuals. 

0 ≤ 𝜂 ≤ 1 1

𝑦𝑒𝑎𝑟
 

4. 𝛽 Contact rate between susceptible unaware of HIV individuals 
and infected individuals. 

0 < 𝛽 ≤ 1 1

𝑦𝑒𝑎𝑟
 

5. 𝛿 Rate of transmission from the infected class. 0 ≤ 𝛿 ≤ 1 1

𝑦𝑒𝑎𝑟
 

6. 𝛼1 Proportion of 𝛿 transitioning to the treatment class. 0 ≤ 𝛼1 ≤ 1  
7. 𝛼2 Proportion of 𝛿 transtitioning to the pre-AIDS class. 0 ≤ 𝛼2 ≤ 1  
8. 𝛾 Rate of transition from the pre-AIDS class. 0 ≤ 𝛾 ≤ 1 1

𝑦𝑒𝑎𝑟
 

9. 𝑚 Proportion of 𝛾 undergoing treatment. 0 ≤ 𝑚 ≤ 1  
10. 𝜎 Rate of transition from individuals undergoing treatment to 

individuals infected with AIDS. 
0 ≤ 𝜎 ≤ 1 1

𝑦𝑒𝑎𝑟
 

11. 𝜌 Rate of AIDS individuals undergoing treatment. 0 ≤ 𝜌 ≤ 1 1

𝑦𝑒𝑎𝑟
 

12. 𝜇 Rate of natural death. 0 ≤ 𝜇 ≤ 1 1

𝑦𝑒𝑎𝑟
 

13. 𝜏 Rate of death due to AIDS. 0 ≤ 𝜏 ≤ 1 1

𝑦𝑒𝑎𝑟
 

14. 𝜔 Rate of individuals who are are unlikely to be infected with 
HIV/AIDS infection due to adopting a healthy lifestyle. 

0 ≤ 𝜔 ≤ 1 1

𝑦𝑒𝑎𝑟
 

 Schematically, the process of HIV/AIDS spreading with public awareness within 
a population can be illustrated in a transfer diagram, as shown in Figure 1. Based on the 
transfer diagram model in Figure 1, the mathematical equations for the spread of 
HIV/AIDS with public awareness are obtained as follows: 
𝑑𝑆1

𝑑𝑡
= 𝜋 + 𝜂𝑆2 − (𝜇 + 𝜃 +

𝛽𝐼

𝑁
) 𝑆1,  

𝑑𝑆2

𝑑𝑡
= 𝜃𝑆1 − (𝜇 + 𝜂 + 𝜔)𝑆2,  

𝑑𝐼

𝑑𝑡
=

𝛽𝑆1𝐼

𝑁
− (𝜇 + 𝛿)𝐼,  

𝑑𝑃

𝑑𝑡
= 𝛼2𝛿𝐼 − (𝜇 + 𝛾)𝑃,                                 (1) 

𝑑𝑇

𝑑𝑡
= 𝛼1𝛿𝐼 + 𝑚𝛾𝑃 + 𝜌𝐴 − (𝜇 + 𝜎)𝑇,  

𝑑𝐴

𝑑𝑡
= (1 − 𝑚)𝛾𝑃 + (1 − 𝛼1 − 𝛼2)𝛿𝐼 + 𝜎𝑇 − (𝜇 + 𝜏 + 𝜌)𝐴,  

𝑑𝑅

𝑑𝑡
= 𝜔𝑆2 − 𝜇𝑅,  

with 𝑁 =  𝑆1 + 𝑆2 + 𝐼 + 𝑃 + 𝑇 + 𝐴 + 𝑅. Furthermore, in the system of equations (1), the 
variable 𝑅 does not affect the other equations, so the equation for 𝑅 can temporarily be 
disregarded. Thus, system (1) can be written as follows: 
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𝑑𝑆1

𝑑𝑡
= 𝜋 + 𝜂𝑆2 − (𝜇 + 𝜃 +

𝛽𝐼

𝑁
) 𝑆1,  

𝑑𝑆2

𝑑𝑡
= 𝜃𝑆1 − (𝜇 + 𝜂 + 𝜔)𝑆2,  

𝑑𝐼

𝑑𝑡
=

𝛽𝑆1𝐼

𝑁
− (𝜇 + 𝛿)𝐼,  

𝑑𝑃

𝑑𝑡
= 𝛼2𝛿𝐼 − (𝜇 + 𝛾)𝑃,                    (2) 

𝑑𝑇

𝑑𝑡
= 𝛼1𝛿𝐼 + 𝑚𝛾𝑃 + 𝜌𝐴 − (𝜇 + 𝜎)𝑇,  

𝑑𝐴

𝑑𝑡
= (1 − 𝑚)𝛾𝑃 + (1 − 𝛼1 − 𝛼2)𝛿𝐼 + 𝜎𝑇 − (𝜇 + 𝜏 + 𝜌)𝐴.  

Figure 3. Transfer Diagram of HIV/AIDS Disease Spread Model with Public Awareness 
 

Theorem 1. All solutions of the HIV/AIDS model with public awareness (1) that 
depend on non-negative initial values are non-negative and bounded. 

Proof. First, we will prove that the solutions of system (1) are non-negative 𝑆1(𝑡) ≥
0, 𝑆2(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 𝑃(𝑡) ≥ 0, 𝑇(𝑡) ≥ 0, 𝐴(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0. 
The first and second equations of system (1) are 

𝑑𝑆1(𝑡)

𝑑𝑡
= 𝜋 + 𝜂𝑆2(𝑡) − (𝜇 + 𝜃 +

𝛽𝐼(𝑡)

𝑁
) 𝑆1(𝑡), 

𝑑𝑆2(𝑡)

𝑑𝑡
= 𝜃𝑆1(𝑡) − (𝜇 + 𝜂 + 𝜔)𝑆2(𝑡). 

By assuming its contradiction, 𝑆1(𝑡) < 0, 𝑆2(𝑡) < 0, 𝐼(𝑡) < 0, 𝑃(𝑡) < 0, 𝑇(𝑡) < 0, 𝐴(𝑡) <
0, 𝑅(𝑡) < 0. Let's assume that 𝑆1(𝑡1) = 0 and 𝑆2(𝑡2) = 0. 
We obtain 

𝑑𝑆1(𝑡)

𝑑𝑡
|
𝑡 = 𝑡1

= 𝜋 + 𝜂𝑆2(𝑡1),                             

(3) 
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𝑑𝑆2(𝑡)

𝑑𝑡
|
𝑡 = 𝑡2

= 𝜃𝑆1(𝑡2).                 (4) 

Since the right-hand sides of equations (3) and (4) depend on 𝑡1 and 𝑡2, the proof is 
divided into two cases: 
1. If 𝑡1 ≤ 𝑡2, then 𝑆2(𝑡1) ≥ 0. 

We have 
𝑑𝑆1(𝑡)

𝑑𝑡
|
𝑡 = 𝑡1

= 𝜋 + 𝜂𝑆2(𝑡1) > 0. 

This means that 𝑆1(𝑡) > 0 in the interval (𝑡1, 𝑡1 + ε1) for any small positive constant 
휀1. This leads to a contradiction. 

As a result, 𝑆1(𝑡) ≥ 0, ∀ 𝑡 ≥ 0, which implies 
𝑑𝑆2(𝑡)

𝑑𝑡
|
𝑡 = 𝑡2

= 𝜃𝑆1(𝑡2) ≥ 0. 

Consequently, 𝑆2(𝑡) ≥ 0 in the interval (𝑡2, 𝑡2 + ε2) for any small positive constant 휀2. 
This also leads to a contradiction. 
Therefore, 𝑆2(𝑡) ≥ 0, ∀ 𝑡 ≥ 0.             

2. If 𝑡1 > 𝑡2, then 𝑆1(𝑡2) > 0. 
We have 

𝑑𝑆2(𝑡)

𝑑𝑡
|
𝑡 = 𝑡2

= 𝜃𝑆1(𝑡2) > 0. 

This means that 𝑆2(𝑡) > 0 in the interval (𝑡2, 𝑡2 + ε2) for any small positive constant 
휀2. This leads to a contradiction 

As a result, 𝑆2(𝑡) ≥ 0, ∀ 𝑡 ≥ 0, which implies 
𝑑𝑆1(𝑡)

𝑑𝑡
|
𝑡 = 𝑡1

= 𝜋 + 𝜂𝑆2(𝑡1) > 0. 

Consequently, 𝑆1(𝑡) > 0 in the interval (𝑡1, 𝑡1 + ε1) for any small positive constant 휀1. 
This also leads to a contradiction. 
Therefore, 𝑆1(𝑡) ≥ 0, ∀ 𝑡 ≥ 0.           (5) 

Thus, it has been proven that 𝑆₁(𝑡) > 0 and 𝑆₂(𝑡) > 0 for all 𝑡 ≥  0. Other equations can 
be proven similarly for non-negative solutions. 
Next, we will prove that the solutions of system (1) are bounded. By summing all the 
equations in system (1), we obtain: 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝜋 − 𝜇𝑁(𝑡) − 𝜏𝐴 ≤ 𝜋 − 𝜇𝑁(𝑡).          (6) 

From equation (6), we have 𝑁(𝑡) ≤
𝜋

𝜇
. 

Thus, the domain of the system (1) is Ω = {(𝑆1, 𝑆2, 𝐼, 𝑃, 𝑇, 𝐴, 𝑅) ∈ ℝ+
7 ∶ 0 < 𝑁 ≤

𝜋

𝜇
}. 

Hence, Theorem 1 has been proven to be true. ∎ 

Equilibrium Points 

Equilibrium points for the HIV/AIDS disease spread model with public awareness 
in system (2) are obtained when: 

𝜋 + 𝜂𝑆2 − (𝜇 + 𝜃 +
𝛽𝐼

𝑁
) 𝑆1 = 0,          (7) 

𝜃𝑆1 − (𝜇 + 𝜂 + 𝜔)𝑆2 = 0,           (8) 
𝛽𝑆1𝐼

𝑁
− (𝜇 + 𝛿)𝐼 = 0,           (9) 

𝛼2𝛿𝐼 − (𝜇 + 𝛾)𝑃 = 0,                     
(10) 
𝛼1𝛿𝐼 + 𝑚𝛾𝑃 + 𝜌𝐴 − (𝜇 + 𝜎)𝑇 = 0,                   (11) 
(1 − 𝑚)𝛾𝑃 + (1 − 𝛼1 − 𝛼2)𝛿𝐼 + 𝜎𝑇 − (𝜇 + 𝜏 + 𝜌)𝐴 = 0.                (12) 

From the above model, two equilibrium points are obtained, namely: 
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a. The disease-free equilibrium point is obtained when there is no disease in the 
population, resulting in 𝐼 = 0. The disease-free equilibrium point is given by: 

𝐸1(𝑆1, 𝑆2, 𝐼, 𝑃, 𝑇, 𝐴) = (
𝜋(𝜇 + 𝜂 + 𝜔)

(𝜇 + 𝜃)(𝜇 + 𝜂 + 𝜔) − 𝜃𝜂
,

𝜋𝜃

(𝜇 + 𝜃)(𝜇 + 𝜂 + 𝜔) − 𝜃𝜂
, 0,0,0,0) 

b. The endemic equilibrium point occurs when the infected class is non-zero, signifying 
the presence of disease within the population. An endemic equilibrium point implies 
that there are always individuals affected by the disease in the population, resulting 
in I at the endemic equilibrium point being 𝐼∗ > 0. The endemic equilibrium point is 
given by: 

𝐸2(𝑆1, 𝑆2, 𝐼, 𝑃, 𝑇, 𝐴) = (𝑆1
∗, 𝑆2

∗, 𝐼∗, 𝑃∗, 𝑇∗, 𝐴∗) 
where  

𝑆1
∗ =

𝜋(𝜇+𝜂+𝜔)𝑁

𝜇𝑁(𝜇+𝜂+𝜔)+𝜃𝑁(𝜇+𝜔)+𝛽𝐼∗(𝜇+𝜂+𝜔)
  

𝑆2
∗ =

𝜋𝜃𝑁

𝜇𝑁(𝜇+𝜂+𝜔)+𝜃𝑁(𝜇+𝜔)+𝛽𝐼∗(𝜇+𝜂+𝜔)
  

𝐼∗ =
𝛽𝜋(𝜇+𝜂+𝜔)−𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)−𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)

𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)
   

𝑃∗ =
𝛼2𝛿𝐼∗ 

(𝜇+𝛾)
  

𝑇∗ = (
1

(𝜇+𝜎)(𝜇+𝛾)((𝜇+𝜏+𝜌)(𝜇+𝜎)−𝜎𝜌)
) (𝜇 + 𝛾)((𝜇 + 𝜏 + 𝜌)(𝜇 + 𝜎) − 𝜎𝜌)𝛼1𝛿𝐼∗ +

((𝜇 + 𝜏 + 𝜌)(𝜇 + 𝜎) − 𝜎𝜌)𝑚𝛾𝛼2𝛿𝐼∗ + 𝜌((𝜇 + 𝜎)(1 − 𝑚)𝛾𝛼2𝛿𝐼∗ + (𝜇 + 𝜎)(𝜇 +

𝛾)(1 − 𝛼1 − 𝛼2)𝛿𝐼∗ + 𝜎(𝛼1𝛿𝐼∗(𝜇 + 𝛾) + 𝑚𝛾𝛼2𝛿𝐼∗))  

𝐴∗ =
(𝜇+𝜎)(1−𝑚)𝛾𝛼2𝛿𝐼∗+(𝜇+𝜎)(𝜇+𝛾)(1−𝛼1−𝛼2)𝛿𝐼∗+𝜎(𝛼1𝛿𝐼∗(𝜇+𝛾)+𝑚𝛾𝛼2𝛿𝐼∗)

(𝜇+𝛾)((𝜇+𝜏+𝜌)(𝜇+𝜎)−𝜎𝜌)
  

Basic Reproduction Number 

Next, determining the basic reproduction number (𝑅₀) of system (2) involves 
finding the maximum eigenvalue obtained from the Next Generation Matrix. Next, to 
abbreviate the writing, let's assume  𝐵 = (𝜇 + 𝛾), 𝐶 = (𝜇 + 𝜎),  𝐷 = (𝜇 + 𝜏 + 𝜌) 𝑊 =
(𝜇 + 𝛿), 𝑋 = (𝜇 + 𝜂 + 𝜔), 𝑌 = (𝜇 + 𝜃), and 𝑍 = 𝜃𝜂. The steps for determining the basic 
reproduction number are as follows: 
1.  Taking the equations that describe the new infection cases and changes in the 

infection compartments from system (2), namely 𝐼, 𝑃, 𝑇, and 𝐴. 
2.  Linearizing the subsystem related to infections at the disease-free equilibrium point. 

This linear system is represented by the Jacobian Matrix (𝐽) as follows: 

𝐽(𝐼,𝑃,𝑇,𝐴) =

[
 
 
 
 

𝛽𝑆1

𝑁
− 𝑊 0 0                     0

𝛼2𝛿 −𝐵 0                     0
𝛼1𝛿

(1 − 𝛼1 − 𝛼2)𝛿

𝑚𝛾
(1 − 𝑚)𝛾

−𝐶
𝜎

                𝜌
            −𝐷]

 
 
 
 

. 

3.  Decomposing the Jacobian Matrix (𝐽) into 𝐽 =  𝐹 −  𝑉, where 𝐹 is the Transmission 
matrix and 𝑉 is the Transition matrix. 

𝐹 =

[
 
 
 
 

𝛽𝜋𝑋

𝑁(𝑌𝑋 − 𝑍)
0 0 0

0 0 0 0
0
0

0
0

0
0

0
0]
 
 
 
 

, 
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𝑉 = [

𝑊 0 0                   0
−𝛼2𝛿 𝐵 0                   0
−𝛼1𝛿

−(1 − 𝛼1 − 𝛼2)𝛿

−𝑚𝛾

−(1 − 𝑚)𝛾
𝐶

−𝜎
 
            − 𝜌
              𝐷

]. 

4.  Calculate 𝑅0 using the formula 𝑅0 = 𝜌(𝐹𝑉−1). 

By solving the equation det(𝜆𝐼 − 𝐹𝑉−1) = 0 or (𝜆 −
𝛽𝜋𝑋

𝑁(𝑌𝑋−𝑍)𝐴
)𝜆3 = 0, we get 𝜆1,2,3 =

0 and 𝜆4 =
𝛽𝜋𝑋

𝑁(𝑌𝑋−𝑍)𝑊
. Since the basic reproduction number is obtained from the 

spectral radius or the largest eigenvalue, we obtain: 

𝑅0 =
𝛽𝜋(𝜇 + 𝜂 + 𝜔)

𝑁((𝜇 + 𝜃)(𝜇 + 𝜂 + 𝜔) − 𝜃𝜂)(𝜇 + 𝛿)
. 

Theorem 2. If 𝑅0 > 1 then there exists an endemic equilibrium point 𝐸2 =
(𝑆1

∗, 𝑆2
∗, 𝐼∗, 𝑃∗, 𝑇∗, 𝐴∗). 

Proof. To prove that every element in E₂ exists, it will be shown that 𝐼∗ > 0 if and 
only if 𝑅₀ > 1. 
Given that 

𝑅0 =
𝛽𝜋(𝜇+𝜂+𝜔)

𝑁((𝜇+𝜃)(𝜇+𝜂+𝜔)−𝜃𝜂)(𝜇+𝛿)
  

=
𝛽𝜋(𝜇+𝜂+𝜔)

𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)+𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)
.  

Thus, we obtain 

𝐼∗ =
𝛽𝜋(𝜇+𝜔)−𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)−𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)

𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)
  

       =
𝑅0

(
𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)

𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)+𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)
)
− (

𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)+𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)

𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)
)  

    = 𝑅0 (
𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)+𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)

𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)
) − (

𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)+𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)

𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)
)  

    = (
𝜇𝑁(𝜇+𝜂+𝜔)(𝜇+𝛿)+𝜃𝑁(𝜇+𝜔)(𝜇+𝛿)

𝛽(𝜇+𝜂+𝜔)(𝜇+𝛿)
) (𝑅0 − 1).     

Hence, it follows that 𝐼∗ > 0 if and only if 𝑅0 > 1. Therefore, Theorem 2 has been 
proven to be correct. ∎ 

Analysis of the Stability of the Disease-Free Equilibrium Point 

The stability of the disease-free equilibrium point will be analyzed using eigenvalue 
analysis of the Jacobian matrix. 

Theorem 3. If 𝑅₀ < 1, then the disease-free equilibrium point is locally 
asymptotically stable. 

Proof. The stability of the disease-free equilibrium point of system (2) will be 
investigated. The Jacobian Matrix of system (2), obtained through the linearization of the 
mathematical model of HIV/AIDS disease spread, is as follows: 

𝐽(𝐸1) =

[
 
 
 
 
 
 
 −𝑌 𝜂 −

𝛽𝑆1

𝑁
0 0 0

𝜃 −𝑋 0 0 0 0

0 0
𝛽𝑆1

𝑁
− 𝑊 0 0 0

0 0 𝛼2𝛿 −𝐵 0 0
0 0 𝛼1𝛿 𝑚𝛾 −𝐶 𝜌

0 0 (1 − 𝛼1 − 𝛼2)𝛿 𝐻 𝜎 −𝐷]
 
 
 
 
 
 
 

. 

det(𝜆𝐼 − 𝐽(𝐸1)) = 0 
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⟺

|

|

|
𝜆 + 𝑌 −𝜂

𝛽𝑆1

𝑁
0 0 0

−𝜃 𝜆 + 𝑋 0 0 0 0

0 0 𝜆 − (
𝛽𝑆1

𝑁
− 𝐴) 0 0 0

0 0 −𝛼2𝛿 𝜆 + 𝐵 0 0
0 0 −𝛼1𝛿 −𝑚𝛾 𝜆 + 𝐶 −𝜌

0 0 −(1 − 𝛼1 − 𝛼2)𝛿 −𝐻 −𝜎 𝜆 + 𝐷

|

|

|

= 0. 

So, we get the characteristic equation of 𝐽(𝐸1) as 

(𝜆 − (
𝛽𝜋(𝜇+𝜂+𝜔)

𝑁((𝜇+𝜃)(𝜇+𝜂+𝜔)−𝜃𝜂)
− (𝜇 + 𝛿))) (𝜆 + 𝜇 + 𝛾)𝑃𝑄 = 0  

with 
𝑃 = [𝜆2 + (𝐶 + 𝐷)𝜆 + 𝐶𝐷 − 𝜌𝜎]  
𝑄 = [𝜆2 + (𝑋 + 𝑌)𝜆 + 𝑋𝑌 − 𝜃𝜂]  

We obtain 𝜆1 =
𝛽𝜋(𝜇+𝜂+𝜔)

𝑁((𝜇+𝜃)(𝜇+𝜂+𝜔)−𝜃𝜂)
− (𝜇 + 𝛿) = (𝜇 + 𝛿)(𝑅0 − 1) and 𝜆2 = −(𝜇 + 𝛾). 

Since 𝜇 and 𝛾 are positive, the real part of 𝜆2 is negative. Given 𝑅0 < 1, we have 𝜆1 < 0. 
The characteristic equations for the other four eigenvalues are as follows: 
𝑃 = [𝜆2 + (𝐶 + 𝐷)𝜆 + 𝐶𝐷 − 𝜌𝜎] = 0,                    (13) 
we have 𝑎𝑃0 = 1, 𝑎𝑃1 = 𝐶 + 𝐷, 𝑎𝑃2 = 𝐶𝐷 − 𝜌𝜎. 
According to the Routh-Hurwitz criterion  [9], all eigenvalues will be negative if 𝑎𝑃1 > 0 
and 𝑎𝑃2 > 0 for a second-degree polynomial. 
𝑎𝑃1 = 𝐶 + 𝐷 = 2𝜇 + 𝜎 + 𝜏 + 𝜌 > 0,  
𝑎𝑃2 = 𝐶𝐷 − 𝜌𝜎 = (𝜇 + 𝜏 + 𝜌)𝜇 + (𝜇 + 𝜏)𝜎 > 0.  
Thus, the Routh-Hurwitz criterion is satisfied with 𝑎𝑃1 > 0 and 𝑎𝑃2 > 0. 
𝑄 = [𝜆2 + (𝑋 + 𝑌)𝜆 + 𝑋𝑌 − 𝜃𝜂] = 0,                    (14) 
we have 𝑎𝑄0 = 1, 𝑎𝑄1 = 𝑋 + 𝑌, 𝑎𝑄2 = 𝑋𝑌 − 𝜃𝜂. 

According to the Routh-Hurwitz criterion [9], all eigenvalues will be negative if 𝑎𝑄1 > 0 

and 𝑎𝑄2 > 0 for a second-degree polynomial. 

𝑎𝑄1 = 𝑋 + 𝑌 = 2𝜇 + 𝜂 + 𝜔 + 𝜃 > 0  

𝑎𝑄2 = 𝑋𝑌 − 𝜃𝜂 = (𝜇 + 𝜂 + 𝜔)𝜇 + (𝜇 + 𝜔)𝜃 > 0  

Hence, the Routh-Hurwitz criterion is satisfied with 𝑎𝑄1 > 0 and 𝑎𝑄2 > 0. 

Thus, it has been proven that the disease-free equilibrium point 𝐸1 is locally 
asymptotically stable. ∎ 

Analysis of the Stability of the Endemic Equilibrium Point 

The stability of the endemic equilibrium point will be analyzed using eigenvalue analysis 
of the Jacobian matrix. 

Theorem 4. If 𝑅0 > 1, then the endemic equilibrium point of the disease is locally 
asymptotically stable. 

Proof. The stability of the endemic equilibrium point of the disease in system (2) will 
be investigated. The Jacobian Matrix of system (2), obtained through the linearization of 
the mathematical model of HIV/AIDS disease spread, is as follows: 
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𝐽(𝐸2) =

[
 
 
 
 
 
 
 − (𝑌 +

𝛽𝐼∗

𝑁
) 𝜂 −

𝛽𝑆1
∗

𝑁
0 0 0

𝜃 −𝑋 0 0 0 0
𝛽𝐼∗

𝑁
0

𝛽𝑆1
∗

𝑁
− 𝐴 0 0 0

0 0 𝛼2𝛿 −𝐵 0 0
0 0 𝛼1𝛿 𝑚𝛾 −𝐶 𝜌
0 0 𝐺 𝐻 𝜎 −𝐷]

 
 
 
 
 
 
 

. 

det(𝜆𝐼 − 𝐽(𝐸2)) = 0, 

⟺

|

|

|
𝜆 + 𝑌 +

𝛽𝐼∗

𝑁
−𝜂

𝛽𝑆1
∗

𝑁
0 0 0

−𝜃 𝜆 + 𝑋 0 0 0 0

−
𝛽𝐼∗

𝑁
0 𝜆 − (

𝛽𝑆1
∗

𝑁
− 𝐴) 0 0 0

0 0 −𝛼2𝛿 𝜆 + 𝐵 0 0
0 0 −𝛼1𝛿 −𝑚𝛾 𝜆 + 𝐶 −𝜌
0 0 −𝐺 −𝐻 −𝜎 𝜆 + 𝐷

|

|

|

= 0. 

So, we get the characteristic equation of 𝐽(𝐸2) as (𝜆 + 𝜇 + 𝛾)𝑃𝑄 = 0, with 

𝑃 = [𝜆3 + (𝐴 + 𝑋 + 𝑌 + (
𝛽𝐼∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
)) 𝜆2 + (𝐴𝑋 + 𝑋𝑌 + 𝐴𝑌 + (

𝛽𝐼∗

𝑁
)𝐴 + (

𝛽𝐼∗

𝑁
)𝑋 −

(
𝛽𝑆1

∗

𝑁
)𝑋 − (

𝛽𝑆1
∗

𝑁
) 𝑌 − 𝜃𝜂) 𝜆 + (𝐴𝑋𝑌 + (

𝛽𝐼∗

𝑁
) 𝐴𝑋 + 𝜃𝜂 (

𝛽𝑆1
∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
)𝑋𝑌 − 𝜃𝜂𝐴)]  

𝑄 = [𝜆2 + (𝐶 + 𝐷)𝜆 + 𝐶𝐷 − 𝜌𝜎].  
We obtain 𝜆1 = −(𝜇 + 𝛾), since 𝜇 and 𝛾 are positive, the real part of this eigenvalue is 
negative. The characteristic equations for the other five eigenvalues are as follows: 

𝑃 = [𝜆3 + (𝐴 + 𝑋 + 𝑌 + (
𝛽𝐼∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
)) 𝜆2 + (𝐴𝑋 + 𝑋𝑌 + 𝐴𝑌 + (

𝛽𝐼∗

𝑁
)𝐴 + (

𝛽𝐼∗

𝑁
)𝑋 −

(
𝛽𝑆1

∗

𝑁
)𝑋 − (

𝛽𝑆1
∗

𝑁
) 𝑌 − 𝜃𝜂) 𝜆 + (𝐴𝑋𝑌 + (

𝛽𝐼∗

𝑁
) 𝐴𝑋 + 𝜃𝜂 (

𝛽𝑆1
∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
)𝑋𝑌 − 𝜃𝜂𝐴)] = 0.  

                        (15) 
We have 
𝑎𝑃0 = 1,  

𝑎𝑃1 = 𝐴 + 𝑋 + 𝑌 + (
𝛽𝐼∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
),  

𝑎𝑃2 = 𝐴𝑋 + 𝑋𝑌 + 𝐴𝑌 + (
𝛽𝐼∗

𝑁
)𝐴 + (

𝛽𝐼∗

𝑁
)𝑋 − (

𝛽𝑆1
∗

𝑁
)𝑋 − (

𝛽𝑆1
∗

𝑁
)𝑌 − 𝜃𝜂,  

𝑎𝑃3 = 𝐴𝑋𝑌 + (
𝛽𝐼∗

𝑁
)𝐴𝑋 + 𝜃𝜂 (

𝛽𝑆1
∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
)𝑋𝑌 − 𝜃𝜂𝐴,  

According to the Lienard-Chipart criterio [10], all eigenvalues will be negative if and 
only if 𝑎𝑃1, 𝑎𝑃3, and Δ2 are positive for a third-degree polynomial. 

𝑎𝑃1 = 𝐴 + 𝑋 + 𝑌 + (
𝛽𝐼∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
) = 2𝜇 + 𝜂 + 𝜔 + 𝜃 + (

𝛽𝐼∗

𝑁
) > 0,  

𝑎𝑃3 = 𝐴𝑋𝑌 + (
𝛽𝐼∗

𝑁
)𝐴𝑋 + 𝜃𝜂 (

𝛽𝑆1
∗

𝑁
) − (

𝛽𝑆1
∗

𝑁
)𝑋𝑌 − 𝜃𝜂𝐴 = (

𝛽𝐼∗

𝑁
) (𝜇 + 𝛿)(𝜇 + 𝜂 + 𝜔) > 0,   

Δ2 = |
𝑎𝑃1 1
𝑎𝑃3 𝑎𝑃2

| = 𝑎𝑃1𝑎𝑃2 − 𝑎𝑃3,  

Δ2 = (𝜇 + 𝜂 + 𝜔)(𝜇 + 𝜂 + 𝜔)𝜇 + (𝜇 + 𝜂 + 𝜔)(𝜇 + 𝜔)𝜃 + (
𝛽𝐼∗

𝑁
) (𝜇 + 𝜂 + 𝜔)2 +

(𝜇 + 𝜃)(𝜇 + 𝜂 + 𝜔)𝜇 + (𝜇 + 𝜃)(𝜇 + 𝜔)𝜃 + (
𝛽𝐼∗

𝑁
) (𝜇 + 𝜃)(𝜇 + 𝛿) + (

𝛽𝐼∗

𝑁
) (𝜇 + 𝜃)(𝜇 + 𝜂 +

𝜔) + (
𝛽𝐼∗

𝑁
) (𝜇 + 𝜂 + 𝜔)𝜇 + (

𝛽𝐼∗

𝑁
) (𝜇 + 𝜔)𝜃 + (

𝛽𝐼∗

𝑁
)
2
(𝜇 + 𝛿) + (

𝛽𝐼∗

𝑁
)
2
(𝜇 + 𝜂 + 𝜔) > 0.  
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According to Theorem 2, 𝐼∗ > 0 if and only if 𝑅0 > 1. Thus, the Lienard-Chipart criterion 
is satisfied with 𝑎𝑃1 > 0, 𝑎𝑃3 > 0, and Δ2 > 0. 
𝑄 = [𝜆2 + (𝐶 + 𝐷)𝜆 + 𝐶𝐷 − 𝜌𝜎] = 0.                    (16) 
We have 𝑎𝑄0 = 1, 𝑎𝑄1 = 𝐶 + 𝐷, 𝑎𝑄2 = 𝐶𝐷 − 𝜌𝜎. 

According to the Routh-Hurwitz criterion [9], all eigenvalues will be negative if 𝑎𝑄1 > 0 

and 𝑎𝑄2 > 0 for a second-degree polynomial. 

𝑎𝑄1 = 𝐶 + 𝐷 = 2𝜇 + 𝜎 + 𝜏 + 𝜌 > 0,  

𝑎𝑄2 = 𝐶𝐷 − 𝜌𝜎 = (𝜇 + 𝜏 + 𝜌)𝜇 + (𝜇 + 𝜏)𝜎 > 0.  

Hence, the Routh-Hurwitz criterion is satisfied 𝑎𝑄1 > 0 and 𝑎𝑄2 > 0. 

The endemic equilibrium point 𝐸2 is locally asymptotically stable when the Routh-
Hurwitz criteria are met: 𝑎𝑃1, 𝑎𝑃3, 𝑎𝑄1, 𝑎𝑄2 are positive, and the determinant of the 

Routh-Hurwitz matrix Δ2 is positive when 𝑅0 > 1. 
Thus, it has been proven that the endemic equilibrium point 𝐸2 is locally asymptotically 
stable. ∎ 

Model Simulation 

The simulation of the mathematical model of HIV/AIDS disease spread with 
public awareness is performed to observe the stability of the disease-free equilibrium 
point and the endemic equilibrium point using Maple 2021 software, with parameters 
taken from previous research related to the mathematical model of HIV/AIDS disease. 

Table 2. The values of the parameters for the disease-free  
equilibrium point in system (2) 

Parameter Value Unit Reference 

𝑵 272.682.500 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 [11] 

𝝅 3,71 × 106 1

𝑦𝑒𝑎𝑟
 

[11] 

𝝁 0,014 1

𝑦𝑒𝑎𝑟
 

[11] 

𝜽 0,2351 1

𝑦𝑒𝑎𝑟
 

[6] 

𝜼 0,015 1

𝑦𝑒𝑎𝑟
 

[12] 

𝜷 0,3465 1

𝑦𝑒𝑎𝑟
 

[6] 

𝜹 0,5 1

𝑦𝑒𝑎𝑟
 

[13] 

𝜶𝟏 0,34  [3] 

𝜶𝟐 0,35  [3] 

𝜸 0,067 1

𝑦𝑒𝑎𝑟
 

[4] 

𝒎 0,4  [8] 

𝝈 0,01 1

𝑦𝑒𝑎𝑟
 

[14] 

𝝆 0,4 1

𝑦𝑒𝑎𝑟
 

[15] 

𝝉 0,27 1

𝑦𝑒𝑎𝑟
 

[16] 

𝝎 0,03 1

𝑦𝑒𝑎𝑟
 

[8] 

Based on the parameter values in Table 2, the basic reproduction number is 
obtained 𝑅0 = 0,048444005. The disease-free equilibrium point is 𝐸1(𝑆1, 𝑆2, 𝐼, 𝑃, 𝑇, 𝐴) =
(19.595.538,21; 78.083.237,84; 0; 0; 0; 0). With initial values 𝑆1(0) = 93.697.530, 
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𝑆2(0) = 97.132.470, 𝐼(0) = 427.201, 𝑃(0) = 350.000, 𝑇(0) = 144.632, 𝐴(0) = 131.147, 
and 𝑅(0) = 80.799.520. The simulation graph is obtained as follows: 

  
Figure 4. Numerical Simulation Toward the Disease-Free Equilibrium Point 

Figure 2 shows that in the 600th year, the population in each sub-population stabilizes 
towards its disease-free equilibrium point. This is in line with Theorem 3, which states 
that the disease-free equilibrium point is asymptotically stable if 𝑅0 < 1. 

Next, a numerical simulation will be conducted for 𝑅0 > 1. Based on Table 2, if 
the parameter value 𝛽 is increased to 0.95, the parameter value 𝜃 is decreased to 0.03, 
the parameter value 𝜂 is increased to 0.08, and the parameter value 𝜔 is decreased to 
0.005 then the basic reproduction number is obtained as 𝑅0 = 1,272751076. Then the 
value of the endemic equilibrium point of the disease is obtained as: 
𝐸2(𝑆1

∗, 𝑆2
∗, 𝐼∗, 𝑃∗, 𝑇∗, 𝐴∗) =

(
147.535.584,2 ; 44.707.752,79; 1.546.798,674; 3.341.848,988; 31.472.318,10;

1.007.045,768
). With 

any initial values 𝑆1(0) = 93.697.530, 𝑆2(0) = 97.132.470, 𝐼(0) = 427.201, 𝑃(0) =
350.000, 𝑇(0) = 144.632, 𝐴(0) = 131.147, and 𝑅(0) = 80.799.520. The simulation 
graph is obtained as follows: 

  
Figure 5. Numerical Simulation Toward the Endemic Equilibrium Point of the Disease 
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Figure 3 shows that in the 800th year, the population in each sub-population stabilizes 
towards its endemic equilibrium point. This is in line with Theorem 4, which states that 
the endemic equilibrium point is asymptotically stable if 𝑅0 > 1. 

Next, sensitivity analysis is conducted to identify parameters that have the most 
significant impact on the value of 𝑅0. The parameter that has the greatest influence on 
𝑅0 indicates that it has a dominant effect on the spread of HIV/AIDS. 

Table 3. Parameter Sensitivity Index 
Parameter Sensitivity Index 

𝜷 +1,000000000 

𝝅 +0,9999999996 

𝜹 −0,9727626462 

𝜽 −0,9260545726 

𝜼 +0,2354376032 

𝝁 −0,1760947457 

𝝎 −0,1605256383 

In Table 3, the sensitivity indices are arranged based on the extent of each 
parameter's influence on the value of 𝑅0. Positive sensitivity index values indicate that if 
the parameter is increased while keeping other parameters constant, the value of 𝑅0 will 
increase. Conversely, if the parameter is decreased while keeping other parameters 
constant, the value of 𝑅0 will decrease. Negative sensitivity index values indicate that if 
the parameter is increased while keeping other parameters constant, the value of 𝑅0 will 
decrease, and if the parameter is decreased while keeping other parameters constant, 
the value of 𝑅0 will increase. 

The sensitivity index for parameter 𝛽 (the contact rate of susceptible unaware 
HIV individuals with infected individuals) is the most significant (positive) parameter 
affecting HIV/AIDS with a sensitivity index value of +1.000000000. This means that if 
the parameter 𝛽 is increased (or decreased) by 10%, the value of 𝑅0 will increase (or 
decrease) by 10.00000000%. 

The sensitivity index for parameter 𝛿 (the rate of transmission from the infected 
class) is the most significant (negative) parameter affecting HIV/AIDS with a sensitivity 
index value of −0.9727626462. This means that if the parameter 𝛿 is increased (or 
decreased) by 10%, the value of 𝑅0 will decrease (or increase) by 9.727626462%.  
Next, a numerical simulation will be conducted to observe the influence of several 
parameters that characterize the HIV/AIDS spread model using different values. 
1. Influence of HIV-Aware Population 

To determine the extent of the influence of the HIV-aware population by changing 
the parameter value 𝜃 (the rate of transition from susceptible unaware HIV individuals 
to susceptible aware HIV individuals), the results are displayed in the following table: 

Table 4. Influence of HIV-Aware Population 
𝜽 𝑹𝟎 Infected Condition 
𝟎 0,6551318698 The disease disappears in the 47th year 

𝟎, 𝟒 0,02936822558 The disease disappears in the 40th year 
𝟎, 𝟔 0,01987581446 The disease disappears in the 30th year 

1 0,01207198779 The disease disappears in the 23th year 
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Below is the simulation graph from Table 4: 

 
Figure 6. Simulation of point 𝐼 when 𝜃 = 0; 𝜃 = 0,4; 𝜃 = 0,6; and 𝜃 = 1 

Based on Table 4 and Figure 4, the influence of individual awareness parameter on 
HIV/AIDS disease is apparent; the greater the individual awareness, the faster HIV/AIDS 
disappears from the population. 
2. Influence of Unaware HIV Population 

To determine the extent of the influence of the unaware HIV population by changing 
the parameter value 𝜂 (the rate of transition from susceptible aware HIV individuals to 
susceptible unaware HIV individuals), the results are displayed in the following table: 
 

Table 5. Influence of Unaware HIV Population 
𝜼 𝑹𝟎 Infected Condition 
𝟎 0,03681993650 The disease disappears in the 31st year 

𝟎, 𝟒 0,2459058780 The disease disappears in the 37th year 
𝟎, 𝟔 0,3050902327 The disease disappears in the 42nd year 

1 0,3836239568 The disease disappears in the 47th year 

Below is the simulation graph from Table 5: 

 
Figure 7. Simulation of point 𝐼 when 𝜂 = 0; 𝜂 = 0,4; 𝜂 = 0,6; and 𝜂 = 1 
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Based on Table 5 and Figure 5, the influence of individual unawareness parameter on 
HIV/AIDS disease is apparent; the greater the individual unawareness, the slower 
HIV/AIDS disappears from the population. 
 

CONCLUSIONS 

Based on the constructed transfer diagram in this study, the 𝑆1𝑆2𝐼𝑃𝑇𝐴𝑅 model is 
obtained, consisting of Susceptible Unaware (𝑆1), Susceptible Aware (𝑆2), Infected with 
HIV (𝐼), Pre-AIDS (𝑃), ARV Treatment (𝑇), AIDS (𝐴), and unlikely to be infected with 
HIV/AIDS (𝑅). The formed model has two equilibrium points: the disease-free 

equilibrium point 𝐸1 = (
𝜋(𝜇+𝜂+𝜔)

(𝜇+𝜃)(𝜇+𝜂+𝜔)−𝜃𝜂
,

𝜋𝜃

(𝜇+𝜃)(𝜇+𝜂+𝜔)−𝜃𝜂
, 0,0,0,0) and the endemic 

equilibrium point of the disease 𝐸2 = (𝑆1
∗, 𝑆2

∗, 𝐼∗, 𝑃∗, 𝑇∗, 𝐴∗) that exists when 𝑅0 > 1. 
The basic reproduction number 𝑅0 of the model is 

𝑅0 =
𝛽𝜋(𝜇+𝜂+𝜔)

𝑁((𝜇+𝜃)(𝜇+𝜂+𝜔)−𝜃𝜂)(𝜇+𝛿)
. The disease-free equilibrium point is locally 

asymptotically stable if 𝑅0 < 1, meaning the disease will disappear from the population. 
On the other hand, the endemic equilibrium point is locally asymptotically stable if 𝑅0 >
1, indicating that the disease will persist in the population. From the numerical 
simulation results and sensitivity analysis, it is found that some significant parameters 
are the contact rate between susceptible individuals and infected individuals (𝛽) and 
the rate of transmission from the infected class (𝛿). To control and ultimately eliminate 
HIV/AIDS from the population, several measures can be taken. These include reducing 
contact with infected individuals (𝛽), lowering the rate of transmission from the 
infected class (𝛿), increasing the rate of transition from unaware susceptible to aware 
susceptible (𝜃), and decreasing the rate of transition from aware susceptible to 
unaware susceptible (𝜂). 
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