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ABSTRACT 

Cervical cancer is one of the most common diseases suffered by women around the world. One 
of the causes of cervical cancer is the Human Papillomavirus virus (HPV). This virus attacks the 
sexual organs of men and women. This study was conducted to analyze the dynamic of HPV 
transmission system when a vaccination treatment is applied. The constructed model that 
analyzed in this study was an extended SIR model. A group of women S is divided in two 
compartment; S1 ( denotes a group of 0 -10 years of age) and S2  (denotes the group of above 10 
years). The group S2 represents the vulnerable age group to the HPV.  Apart from compartments  
S1S2IR we also included the compartment C (cancer development) which resulted in the model 
became S1S2IRC. The analysis to the disease-free equilibrium point shows that it will be 
asymptotically stable for the reproduction number  R0 < 1 whereas for the endemic equilibrium 
point was achieved when R0 > 1. We also conducted the sensitivity analysis to investigate which 
parameters influenced R0  significantly. The results indicated that parameters population 
growth β and proportions of unvaccinated population 𝑥 are related positively to R0 while 
parameters natural birth μ inluenced negatively.  
  
Keywords: dynamical analysis; equilibrium points, sensitivity analysis, human papillomavirus; 
cervical cancer 
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INTRODUCTION 

Cervical cancer is one of the most frequent diseases suffered by women 
worldwide. Marth et al. [1] showed that more than 265 thousand women died of cervical 
cancer in 527 thousand cases annually in both developed and developing countries. 
Cervical cancer generally affects women between the ages of 15 and 25. However, 50% 
of sexually active women are more at risk of developing cervical cancer [2]. According to 
Made Boer [3], in 2006 there were 2686 cases of cervical cancer in Indonesia, which 
were divided into 880 cases in Jakarta, 919 cases in Tasikmalaya, and 887 cases in 
Bali.From 2015 to 2019, the number of women screened for cervical cancer was not 
constant, whereas in 2017, the cases increased rapidly with a total of 1,114,173 and 
decreased again in 2018 with a total of 611,645 cases. Then, in 2019, the number of 
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cases increased again, with a total of 1,170,353[4]. In 2020, there were 36,633 cases 
with the number of deaths from cervical cancer as high as 21,003[5]. Cervical cancer can 
be caused by many viruses. One of the deadly viruses is HPV. This virus contains a group 
of more than 150 interconnected types. More than 40 virus types of HPV are known to 
infect the sexual organs of both males and females.  

There were  reports made  that in order to reduce the number of people being 
exposed to HPV infections people can take some precautions such as  getting HPV 
vaccine, only having one sex partner and avoiding having sex with people who have  had 
many sex partners.  Atkinson et al. [6] stated that  in 2006 The Food and Drug 
Administration (FDA) in the US approved a vaccine that can prevent not only the 2 types 
of HPV (HPV 16 and 18) that cause 70% of the cervical cancers, but also the 2 types of 
HPV (HPV 11 and 16) that cause 90% of all genital warts or condylomata. This was a 
enourmous break through. There were also known about 40 types of HPV that can 
potentially cause diseases [7] but the above 4 types of HPV are the most common causes 
of cervical cancers and genital diseases in general  

It is widely known that mathematical models and dynamical analysis have 
become essential tools in the study of diseases transmission. The study can lead to more 
effective strategies in order to reduce the spread of the contagious diseases such as HPV 
infections [8]. Research on HPV transmission and cervical cancers were mostly 
statistical to find what factors caused the infectious disease and how to intervene that. 
Without understanding the dynamic of the transmission system and how it happens in a 
particular period of time, such research will probably be of  limited use [9]. This is 
worsened by the condition where data collection about genital diseases or genital warts 
such HPV are not always easy to obtain due to the consideration of being ashamed to be 
exposed about such a private life [2] 

Research on mathematical modeling in HPV infections that lead to cervical 
cancers has been carried out by several authors. To name a few Lee and Tameru[2], 
Gamet et al.[10], and Sroczinsky et al. [11] applied the SI model to describe the 
transmission of HPV in cervical cancer. However, in this research, only a mathematical 
model was developed without conducting stability analysis which is an important part of 
the work. Another researcher was Asih et al [12], who discussed CUSP bifurcation in 
cervical cancer mathematical models that discuss how to find bifurcation phenomena 
with some parameters. Without discussing the treatment carried out to prevent cervical 
cancer, they did not move further in analysing the treatment for the disease to prevent 
the transmission of human papillomavirus.  

Therefore, this current study is dedicated to analyze the dinamic of HPV 
transmission where vaccination is incorporated as one of the parameters in the system 
model.  By doing so, we expect to understand how the transmission system works and 
we can also generate some numerical simulations to understand better all the dynamic 
subpopulations incorporated in the system as well as all the parameters  we assummed 
to be involved.   It is hoped that this will at least help the policy makers to intervene or 
overcome the emerging infectious diseases such as HPV infections. 

 

METHODS 

The dynamical analysis equipped with sensitivity analysis will help us understand the 
behaviour of the HPV transmission system in the long run as well as the understand of 
the paramaters that significantly influence the reproduction number R0.   This research 
was conducted using literature studies related to dynamic analysis, HPV  transmission to 



Dynamical Analysis of Model Human Papillomavirus Transmission with Vaccination 
 

Maria Lobo 174 

cervical cancer and vaccination.  The study was carried out by first making assumptions 
related to  the dynamic of HPV transmission with vaccination, followed by  establishing a 
model of HPV transmission with vaccination, conducting dynamical analysis of the 
model including  the determination and the stability analysis of the equilibrium points, 
then generating numerical  simulation using Mathlab software and finally interpretating 
the  results of the analysis.  

RESULTS AND DISCUSSION 

Assumptions 

The constructed model used in this study is an extended of the model proposed 
by Kermack and MCKendrick [13] with women population S divided into two 
subpopulations; S1 (population age 0–10 years who are not vulnerable to virus 
transmission) and S2 (population age more 10 years who are vulnerable to virus 
transmission). Newborns are in group S1, the birth rate is equal to the death rate which 
implies a  constant population, there is no incubation period in HPV transmission, the 
recovered population is not susceptible, and the untreated population will move to 
group C (cancer) whereas the treated population is in the R (recovered) subpopulation. 
The vaccination program is applied in the model S1S2IRC. The vaccine is only applied to 
the susceptible population. The parameters employed in this research are: 

 
𝑺𝟏 : Subpopulation age 0-10 years 
𝑺𝟐 : Subpopulation age greater than 10 years 
𝑰 : HPV-infected subpopulation 
𝑪 : Cancer subpopulation 
𝑹 : Recovered subpopulation 
𝑨 : The number of natural births 
𝜹 : Population growth 
𝜷 : HPV-infected population growth 
𝒏 : Recovered population growth from a treatment 

𝟏 − 𝒏 : Cancer-infected population from the infected group because of no treatment 
𝒎 : The proportion of the susceptible population that is vaccinated 

𝟏 − 𝒎 : The proportion of the susceptible population that is unvaccinated 
𝝁 : The natural death rate 

 
Model Construction 
From the above assumptions we then constructed the HPV transmission model as 
follows: 

 
Figure 1.  Transmission Diagram 
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which can be represented in the following system of differential equations: 
𝑑𝑆1

𝑑𝑡
= 𝐴 − 𝛿𝑆1 − 𝜇𝑆1 

(1) 

𝑑𝑆2

𝑑𝑡
= 𝛿𝑆1 − 𝑚𝑆2 − (1 − 𝑚)𝛽𝑆2𝐼 − 𝜇𝑆2 

𝑑𝐼

𝑑𝑡
= (1 − 𝑚) 𝛽𝑆2𝐼 − (𝜇 − 𝑛)𝐼 − (1 − 𝑛)𝐼 

𝑑𝑅

𝑑𝑡
= 𝑚𝑆2 + 𝑛𝐼 − 𝜇𝑅 

𝑑𝐶

𝑑𝑡
= (1 − 𝑛)𝐼 − 𝜇𝐶 

 
The diagram in Figure 1 and the system of  differential equations in equation 1 show 
that there are five (5) compartments in the model. They are 𝑆1 (population of 0-10 
years), 𝑆2 (population over 10 years vulnerable to HPV), 𝐼 (HPV infected  before  
developed to cervical  cancer  population), 𝐶 (cervical cancer population), 𝑅 (recovered 
population).  The population of 𝑆1  grows due to the  natural birth 𝐴 but loose with death 
rate (𝜇) and move to 𝑆2 with the rate of (𝛿).  𝑆2 as a susceptible population can be 
treated with vaccination m so that they will not be exposed to HPV and move to group 𝑅 
(recovered). The population in 𝑆2 who are not vaccinated is prone to be infected so that 
they will move to compartment 𝐼 (HPV infected) with the number of (1 − 𝑚). Those who 
are in the 𝐼 (infected) compartment and recovered beacuse of the vaccination will move 
to compartment 𝑅 with the rate of 𝑛, wehereas 1 − 𝑛 population (who are untreated) 
will develop cervical cancer. 
 
 
Equilibrium Points 
 
The  crucial aspect in dynamical analysis is to determine equilibrium points of a system 
where we are able to know the behaviour of the system in the long time period. From 
the system of equations (1), the equilibrium points are obtained by letting the right hand 
side of the equations equal zero i.e: 

𝑑𝑆1

𝑑𝑡
=

𝑑𝑆1

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
= 0 

 
For the dynamical analysis of the diseases transmission such as HPV transmission above 
we know there are 2 types of equilibriums points; Disease free equilibrium point (𝐸0)  
where  𝐼 = 𝐶 = 0 and Endemic equilibrium point (𝐸1)  where 𝐼 = 𝐶 ≠ 0. 

a. For the Disease-free equilibrium point (𝐸0), with 𝐼 = 𝐶 = 0, then we 
obtain 𝐸0(𝑆1

∗, 𝑆2
∗, 𝐼∗, 𝐶∗, 𝑅∗) where  

𝑑𝑆1
∗

𝑑𝑡
= 𝐴 − 𝛿𝑆1

∗ − 𝜇𝑆1
∗ = 𝐴 − (𝛿 + 𝜇)𝑆1

∗ = 0 

𝑆1
∗ =

𝐴

𝛿 + 𝜇
 

In the similar manner, we obtain 

𝑆2
∗ =

𝛿𝐴

𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚
 

𝐼∗ = 0 
𝐶∗ = 0 
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𝑅∗ =
𝑚𝛿𝐴

𝜇(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚)
 

Thus the disease-free equilibrium point is as follows 

𝐸0 = (
𝐴

(𝛿 + 𝜇)
,

𝛿𝐴

𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚
, 0,

𝑚𝛿𝐴

𝜇(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚)
, 0)

 

(2) 

b. 

For Endemic  equilibrium point (E1) which means the disease exists in the 

population with 

 

             𝐼 = 𝐶 ≠ 0, then we obtain 𝐸1(𝑆1
∗∗, 𝑆2

∗∗, 𝐼∗∗, 𝐶∗∗, 𝑅∗∗) where 

 For  
𝑑𝑆1

∗

𝑑𝑡
= 0 

𝐴 − 𝛿𝑆1
∗∗ − 𝜇𝑆1

∗∗ = 0 

𝑆1
∗∗ =

𝐴

(𝛿 + 𝜇)
 

𝑑𝑆2
∗

𝑑𝑡
= 0 

𝛿𝑆1
∗ − 𝑚𝑆2

∗ − (1 − 𝑚)𝛽𝑆2
∗𝐼 − 𝜇𝑆2

∗ = 0 e.g 𝑥 = (1 − 𝑚) 
We obtained  

𝑆2
∗ =

𝛿𝐴

𝐼(𝜇𝑥𝛽 + 𝛿𝑥𝛽) + 𝑚(𝜇 + 𝛿) + 𝜇(𝑚 + 𝛿)
 

 
       In the similar manner, we obtain 

𝑆2
∗∗ =

𝛿𝐴(𝜇 + 𝑛 + 𝜌)

𝑥𝛽𝛿𝐴
 

𝐼∗∗ =
𝑥𝛽𝛿𝐴 − (𝜇 + 𝑛 + 𝜌)((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))

(𝜇 + 𝑛 + 𝜌)(𝜇𝑥𝛽 + 𝛿𝑥𝛽)
 

𝑅∗∗ =
𝑚(𝜇 + 𝑛 + 𝜌)2(𝜇𝑥𝛽 + 𝛿𝑥𝛽) + 𝑛𝑥𝛽(𝑥𝛽𝛿𝐴 − (𝜇 + 𝑛 + 𝜌)(𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))

(𝜇𝑥𝛽 + 𝛿𝑥𝛽)(𝜇 + 𝑛 + 𝜌)(𝜇𝑥𝛽)
 

𝐶∗∗ =
𝜌𝑥𝛽𝛿𝐴 − 𝑦(𝜇 + 𝑛 + 𝜌)((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))

(𝜇2𝑥𝛽 + 𝜇𝛿𝑥𝛽)(𝜇 + 𝑛 + 𝜌)
 

thus obtained

 

 
𝐸1

=

[
 
 
 
 
 
 
 𝐴

(𝛿 + 𝑚)
,
𝛿𝐴(𝜇 + 𝑛 + 𝑦)

(𝑥𝛽𝛿𝐴)
,
𝑥𝛽𝛿𝐴 − (𝜇 + 𝑛 + 𝑦) ((𝑚𝜇 + 𝑚𝛿 + (𝜇2 + 𝜇𝛿)))

(𝜇 + 𝑛 + 𝑦)(𝜇𝑥𝛽 + 𝛿𝑥𝛽)
,

𝑚(𝜇 + 𝑛 + 𝑦)2(𝜇𝑥𝛽 + 𝛿𝑥𝛽) + 𝑥𝛽𝛿 (𝑥𝛽𝛿𝐴 − (𝜇 + 𝑛 + 𝑦)((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿)))

(𝜇𝑥𝛽 + 𝛿𝑥𝛽)(𝜇 + 𝑛 + 𝑦)(𝜇𝑥𝛽)
,

𝑦𝑥𝛽𝛿𝐴 − 𝑦(𝜇 + 𝑛 + 𝑦)((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))

(𝜇2𝑥𝛽 + 𝜇𝛿𝑥𝛽)(𝜇 + 𝑛 + 𝑦) ]
 
 
 
 
 
 
 

(3)

 

 
Basic Reproduction Number 𝑹𝟎 

Now, we turn into calculating the basic reproduction number 𝑅0. 𝑅0 is an 
important parameter in  the dynamical analysis of the infectious diseases as it denotes 
the number of secondary  infections in susceptible subpopulation from a single original 
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infection. Employing the Next Generation Matrix Method [14], a basic reproduction 
number (𝑅0) can be calculated, and this yields  

𝑅0 =
𝑥𝛽𝛿𝐴

(𝜇 + 𝑛 + 𝑦)(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚)
 

 

(∗) 

 The term  
𝑥𝛽𝛿𝐴

𝜇2+𝛿𝑚+𝛿𝜇+𝜇𝑚
 represents the average number of populations that are newly infected 

whereas 
1

(𝜇+𝑛+𝑦)
 represents the average number of infected populations that have 

passed through the infection period and moved into the cancer (𝐶) population. 

Therefore, the term 
𝑥𝛽𝛿𝐴

(𝜇+𝑛+𝑦)(𝜇2+𝛿𝑚+𝛿𝜇+𝑚)
 indicates the average newly infected number of 

the population when the infected subpopulation is now in the cancer group. 
 
 

Stability Analysis at the Equilibrium Point 
  To analyze the stability of the equilibrium points, first we need to linearize equation 
(1). The Linearization of equation (1), we obtain 
𝜕𝑓1
𝜕𝑆1

= −𝛿,
𝜕𝑓1
𝜕𝑆2

= −𝜇,
𝜕𝑓1
𝜕𝐼

= 0,
𝜕𝑓1
𝜕𝑅

= 0,
𝜕𝑓1
𝜕𝐶

= 0 

𝜕𝑓2
𝜕𝑆1

= 𝛿,
𝜕𝑓2
𝜕𝑆2

= (−𝑚) − (1 − 𝑚)𝛽𝐼 − 𝜇,
𝜕𝑓2
𝜕𝐼

= (1 − 𝑚)𝛽𝑆2,
𝜕𝑓2
𝜕𝑅

= 0,
𝜕𝑓2
𝜕𝐶

= 0 

𝜕𝑓3
𝜕𝑆1

= 0,
𝜕𝑓3
𝜕𝑆2

= (1 − 𝑚)𝛽𝐼,
𝜕𝑓3
𝜕𝐼

= (1 − 𝑚)𝛽𝑆2 − (𝜇 + 𝑛 + 𝑦),
𝜕𝑓3
𝜕𝑅

= 0,
𝜕𝑓3
𝜕𝐶

= 0 

𝜕𝑓4
𝜕𝑆1

= 0,
𝜕𝑓4
𝜕𝑆2

= 𝑚,
𝜕𝑓4
𝜕𝐼

= 𝑛,
𝜕𝑓4
𝜕𝑅

= −𝜇,
𝜕𝑓4
𝜕𝐶

= 0 

𝜕𝑓5
𝜕𝑆1

= 0,
𝜕𝑓5
𝜕𝑆2

= 0,
𝜕𝑓5
𝜕𝐼

=    𝑦,
𝜕𝑓5
𝜕𝑅

= 0,
𝜕𝑓5
𝜕𝐶

= −𝜇 

In the Jacobian matrix 

𝐽 =

[
 
 
 
 
−𝛿 −𝜇 0 0 0
𝛿 −𝑚 − 𝑥𝛽𝐼 − 𝜇 −𝑥𝛽𝑆2 0 0

0 𝑥𝛽𝐼 𝑥𝛽𝑆2 − (𝜇 + 𝑛 + 𝑦) 0 0
0 𝑚 𝑛 −𝜇 0
0 0 𝑦 0 −𝜇]

 
 
 
 

 

Stability Analysis at Disease-Free Equilibrium Point 

 Applying all the values  in equation (2), the Jacobian matrix on the disease-free 
equilibrium point is as follows: 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
−𝛿 −𝜇 0 0 0

𝛿 −𝑚 − 𝜇
−𝑥𝛽𝛿𝐴

((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))
0 0

0 0
𝑥𝛽𝛿𝐴

((𝑚𝜇 + 𝑚𝛿) + (μ2 + μδ))
− (μ + n + y) 0 0

0 𝑚 n −μ 0
0 0 y 0 −μ]

 
 
 
 
 
 
 

 

Hasnawati [7] stated that if the diagonal of a matrix  [−𝐴] > 0 and [−𝐴] > 0 then the 
eigenvalue of the matrixis negative. If the eigenvalue of the matrix 𝐴 is negative then 
the Jacobian matrix is asymptotically stable[15]. 
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Theorem 1:  
𝑅0 < 1 if and only if the disease-free equilibrium point is asymptotically stable. 

Proof : 
a. Proof to the right (⇒) 

 Consider 𝑅0 < 1and the main diagonal of matrix (−𝐽𝐸0) > 0 then the disease-
free equilibrium point is asymptotically stable locally. 

  

𝐷𝑖𝑎𝑔(−𝐽𝐸0) =

[
 
 
 
 
 

𝛿
𝑚 + 𝜇

𝑥𝛽𝛿𝐴

((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))
+ (𝜇 + 𝑛 + 𝑦)

𝜇
𝜇 ]

 
 
 
 
 

> 0 

 Where 𝐷𝑖𝑎𝑔(−𝐽𝐸0) represents the diagonal of the matrix 
And since 𝑅0 < 1then|−𝐽𝐸0| > 0is  

|−𝐽𝐸0| = 𝛿𝑚𝜇2(𝜇 + 𝑛 + 𝑦) [
𝑥𝛽𝛿𝐴

((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))(𝜇 + 𝑛 + 𝑦)
+ 1] > 0 

 Therefore 

  𝛿𝜇2𝑚(𝜇 + 𝑛 + 𝑦)[−𝑅0] > 0 

  (1 − 𝑅0) > 0 

  ∴ 𝑅0 < 1 

As𝑅0 < 1 and(−𝐽𝐸0 > 0)then𝐽𝐸0has a negative eigenvalue with its negative real 
part. As a consequence,𝐸0 is locally asymptotically stable.  

b. Proof to the right (⟹) 
𝐸0is locally asymptotically stable. We need to show that 𝑅0 < 1. Since 𝐸0is 
asymptotically stable locally then 𝐽𝐸0has a negative eigenvalue or negative real 
part.  𝐽𝐸0 has negative real eigenvalue if the diagonal of (−𝐽𝐸0) > 0 and |−𝐽𝐸0| >
0; 

𝐷𝑖𝑎𝑔(−𝐽𝐸0) =

[
 
 
 
 
 

𝛿
𝑚 + 𝜇

𝑥𝛽𝛿𝐴

((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))
+ (𝜇 + 𝑛 + 𝑦)

𝜇
𝜇 ]

 
 
 
 
 

> 0 

Where 𝐷𝑖𝑎𝑔(−𝐽𝐸0) represents the diagonal of the matrix. 
|−𝐽𝐸0| > 0, means that   
𝛿𝜇2𝑚(𝜇 + 𝑛 + 𝑦) > 0 if 𝑅0 < 1. Therefore 𝑅0 > 0  if and only if𝐸0is locally 
asymptotically stable. Therefore 𝐸0is locally asymptotically stable[16][17]. This 
shows a strong relation between the disease-free equilibrium point and the 
value of  𝑅0. 
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Stability Analysis at The Endemic Equilibrium Point 
The Jacobian matrix on the endemic equilibrium Point is  
𝐽(𝐸1)

=

[
 
 
 
 
 
 
 
−𝛿 −𝜇 0 0 0

𝛿 −𝑚 − 𝑥𝛽
((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))

(𝜇𝑥𝛽 + 𝛿𝑥𝛽)
[𝑅0 − 1] − 𝜇

−𝑥𝛽𝛿𝐴(𝜇 + 𝑛 + 𝑦)

𝑥𝛽𝛿𝐴
0 0

0 𝑥𝛽
((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))

(𝜇𝑥𝛽 + 𝛿𝑥𝛽)
[𝑅0 − 1]

𝑥𝛽𝛿𝐴(𝜇 + 𝑛 + 𝑦)

𝑥𝛽𝛿𝐴
0 0

0 𝑚 𝑛 −𝜇 0
0 0 𝑦 0 −𝜇]

 
 
 
 
 
 
 

 

Theorem 2  

0 1R  if and only if the disease endemic equilibrium point exists and is locally 

asymptotically stable. 
Proof:  

a. Proof to the left(⇐) 

 Consider An endemic equilibrium pointthat exists and is locally asymptotically 
stable. We will show that 𝑅0 > 1 

𝐷𝑖𝑎𝑔(−𝐽𝐸0) =

[
 
 
 
 
 
 
 

𝛿

𝑚 + 𝑥𝛽
((𝑚𝜇 + 𝑚𝛿) + (   𝜇 2 + 𝜇𝛿))

(𝜇𝑥𝛽 + 𝛿𝑥𝛽)
[𝑅0 − 1]

−
𝑥𝛽𝛿𝐴(𝜇 + 𝑛 + 𝑦)

𝑥𝛽𝛿𝐴
+ (𝜇 + 𝑛 + 𝑦)

𝜇
𝜇 ]

 
 
 
 
 
 
 

> 0 (4) 

Where 𝐷𝑖𝑎𝑔(−𝐽𝐸0) represents the diagonal of the matrix. 

The determinant of matrix (4) is  

|𝐽𝐸1| = 𝑥𝛽𝛿𝜇2(𝜇 + 𝑛 + 𝑦)
((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝛿))

𝜇𝑥𝛽 + 𝛿𝑥𝛽
[𝑅0 − 1] > 0 

 Then 
[𝑅0 − 1] > 0 
∴ 𝑅0 > 1 

Since 𝑅0 > 1 then the endemic disease equilibrium point exists and is locally 
asymptotically stable. 
b. Proof to the right (⇒) 

Consider 
𝑅0 then the endemic equilibrium point exists and is asymptotically stable. We 
need to calculate the eigenvalue of the matrix 𝐽(𝐸1) 

|𝐽(𝐸1) − 𝜆𝐼| = 0 
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|

|

[
 
 
 
 
 
 
 
−𝛿 𝜇 0 0 0

𝛿 −𝑚 −
𝐶

𝐷
− 𝜇 −

𝑥𝛽𝛿𝐴𝑧

𝑥𝛽𝛿𝐴𝑧
0 0

0
𝐶

𝐷

𝑥𝛽𝛿𝐴𝑧

𝑥𝛽𝛿𝐴
0 0

0 𝑚 𝑛 −𝜇 0
0 0 𝑦 0 −𝜇]

 
 
 
 
 
 
 

−

[
 
 
 
 
𝜆 0 0 0 0
0 𝜆 0 0 0
0 0 𝜆 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

|

|

= 0 

Where 𝐶 = (𝑥𝛽((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))[𝑅0 − 1]), 𝐷 = (𝜇𝑥𝛽 + 𝛿𝑥𝛽), and 𝑧 =
(𝜇 + 𝑛 + 𝑦) 

 

Then 𝑑𝑒𝑡(𝐽𝐸1 − 𝜆𝐼) = 0 
Define 

𝐶 = (𝑥𝛽((𝑚𝜇 + 𝑚𝛿) + (𝜇2 + 𝜇𝛿))[𝑅0 − 1]) 

𝐷 = (𝜇𝑥𝛽 + 𝛿𝑥𝛽) 

𝑧 = (𝜇 + 𝑛 + 𝑦) 
Then the characteristic polynomial is  

     

   

     

2

5 4 3

2 2 2 3

2

2 2 2 3 2

2 4 2 33

2 2 2 5

2 2
0

z C m m DC m D

D D

z z C m m D

D

z z C m D z C

D D

      
  

        


         


              
    

        
 
 
 

        
     
   
   

 

𝜆5 + 𝑎1𝜆
4 + 𝑎2𝜆

3 + 𝑎3𝜆
2 + 𝑎2𝜆 + 𝑎5 = 0 (5) 

 

with: 0 1a   

 
1

3C m D
a

D

    
  
 

 

   2

2

2 4 2 3z C m m D
a

D

            
 
 
 

 

   2 2 2 3

3

2 2 2 5z z C m m D
a

D

                
 
 
   
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   2 2 2 3

4

2 2z z C m D
a

D

            
 
 
   

 2

5

z C
a

D

  
 
 
 

 

To identify the negative real part of the eigenvalue  in equation (5), Routh-Hurwitz 
criteria are applied 

 
1

1
1 1 2 3 3 2 1

3 2
5 4 3

1 0
1

, ,

a
a

H a H H a a a
a a

a a a

 
   

     
    

 

with : 

1
1

1 1 2 3 3 2 1
3 2

5 4 3

1 0
1

0,  0,  0

a
a

H a H H a a a
a a

a a a

     
 

since 0 2( )( )

x A
R

n y m m



    


      

we will verify that 1 1 0H a   

 
1

3C m D
H

D

   
  

Since , , , , 0C m D   then it has been clear that 1 0a   

We will show that
1

2
3 2

1
0

a
H

a a
 

 

 

1

1 2 3

3 2

1 2 3

2 2 2

2 2 2 2 2 2 2 2

3 2 2

2

1

2 ( 4 2 3 2 3 3 6

2 2 2 ) ( 7 8 2 10 3

5 4

a
a a a

a a

a a a

C z CD m m mz m m z

z z z D m m m m

m

D

          

             

  

   

  

            

            

  


 

Since 

 2 2 0C z     
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2 2

2 2

( 4 2 3 2 3 3 6

2 2 2 ) 0

CD m m mz m m z

z z z

        

      

        

       
 

2 2 2 2 2 2 3 2 2( 7 8 2 10 3 5 4 0D m m m m m                   
 

Then 
1 2 3 0a a a    

Show that 

1

3 3 2 1

5 4 3

1 0

0

a

H a a a

a a a

   

   

1

2 1 3 1

3 2 1 1

4 3 5 3

5 4 3

1 2 3 1 4 3 3 1 5

1 0

1 0

. . 1 . . 0

a
a a a a

a a a a
a a a a

a a a

a a a a a a a a a

   
      

   

    

   

⇔
𝐼𝐶3 + 𝐽𝐶𝐷2 + 𝐾𝐶2𝐷 + 𝐿𝐷3

𝐷3
 

 
(6) 

 

with: 

 2 2 2 2 3 2 22 2 4 2 5 4I z z z z z                 

2 2 3 2 2 2 3 4 2 3 4 3 5 2 2

2 2 2 2 3 2 2 3 3 2 2 3

3 2 2 5 3

(12 48 36 50 66 6 17 3 18 6

      4 4 6 7 3 2 11 12 6 4

     12 3 2 + 2 )

J m m m m m m m zm

m zm zm mz zm zm z z z m

z z

             

             

     

         

         

  
2 2 2 2 3 4 3 2 2 3 2

2 2 2 3 2 2 2 2 4 3 3 3

3

(12 6 18 19 13 6 6 9 33 +4 3

      4 2 4 2 12 2 4      

      2 7 )

K m m m z m z m z z z

z mz z m zm zm z z z z z

z

            

           

  

         

          

 

3 2 2 3 4 2 2 2 3 2 3 3 4 2 2 3 5

5 4 2 3 5 4 6 2 3 3 3

(4 24 14 4 50 2 5 5 7

      42 42 33 4 9 8 12 18 )

L m m m m m m m m

m m m m

           

            

        

       
 

since : 
3 0IC  , 2 0JCD  , 2 0KC D  , 3 0LD   

then it is obvious that    1 2 3 1 4 3 3 1 5. . 1 . . 0a a a a a a a a a     

The determinant of the Routh-Hurwitz matrix𝐻1, 𝐻2 and 𝐻3 is obtained with a 
positive value. It can be concluded that all polynomial (𝑃(𝜆)) roots have negative real 

parts which means that all eigenvalues are negative. Therefore the endemic equilibrium 
point is asymptotically stable.  
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Numerical Simulation 
The numerical simulation is conducted to assess which parameters affect HPV 

transmission. The parameter values are taken from sources as displayed in Table 1. 
Table 1. Parameter Values for Numerical Simulation 

NO Parameter Description Values 
Source 

1 
 
2 
3 
4 
5 
6 
 
7 

(1 − 𝑚) 
 

𝛽 
𝜇 
𝛿 
𝑛 

(1 − 𝑛) 
 

𝑚 

The proportion of the susceptible population that is 
unvaccinated 
HPV-infected population growth 
The natural death rate 
Population growth 
Recovered population growth from a treatment 
Cancer-infected population from the infected group because 
of no treatment 
The proportion of the susceptible population that is 
vaccinated 

0.05 
 

0.65 
0.014 
0.1 

0.001 
0.00035 

 
0.95 

 [18] 
 

[19] 
[20] 
[18] 
[18] 
[2] 

   [18] 

 
Numerical Simulation Results on Disease-free Equilibrium Point for 𝑹𝟎 < 1 

With values of parameters (1 − 𝑚) = 0.02, 𝑚 = 0.98, 𝛽 = 0.52, 𝑛 = 0.003 and 
initial values 𝑆1(0) = 50,  𝑆2(0) = 50, 𝐼 = 50, 𝐶 = 50, 𝑅 = 50 we obtain the value of 
𝑅0 = 0.5411015443. The diagram of the point is displayed in Figure 2. 

 
Figure 2. Diagram for R0<1 

 

From  the diagram in Figure 2  it can be clearly seen that  with the initial values 
considered,  all subpopulations  experienced a decrease trend in the long run. For both 
infected HPV (𝐼) and Cancer (𝐶) subpopulations, the trends go to zero after a slight 
increase from 50 million 70 million people in the first few years for  infected group. 
Similar trend also experienced by the recovered subpopulation where it rises from 50 
million to about 85 million people in the first few years before it declined to reach about 
50 million after 125 years. For the susceptible population aged 1-10 years (𝑆1) of 50 
million people experienced a decline to 10 million people after 25 years and remains 
stable onwards. The susceptible population aged 10 years and over (𝑆2) also decreased 
from 50 million people to about 5 million  after 3 to 4 years, and then reach zero after 5 
years onwards. This is due to the successful use of vaccine treatment as well as the 
number of individuals recovering naturally. If the susceptible subpopulation is infected 
by the virus they will move to the infected population.  
 

Sensitivity Analysis 
The analysis was undertaken to examine which parameters affected the value of 

𝑅0 significantly. Table 1 shows the sensitivity index expressions and their values.  
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Table 2. Sensitivity Index Expressions 
 𝑹𝟎 = 𝟏, 𝟖𝟖𝟔𝟏𝟏𝟒𝟎𝟕𝟐 

PARAMETER SENSITIVITY INDEX Initial 
Values 

Result 𝑷
+ 𝟏𝟎% 

𝑷
− 𝟏𝟎% 

𝛽 
 

1 
0,65 1,000 

2,0747 
 

1,6975 
 

𝛿 (𝜇2 + 𝛿𝑚)

(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚)
 0,1 0,121 1,9074 1,8607 

𝑥 1 
0,05 1,000 

2,0747 
 

1,8607 

𝑦 −
𝑦

𝜇 + 𝑛 + 𝑦
 0,00035 −0,023 1,8818 1,8904 

𝑚 
−

𝑚(𝛿 + 𝜇)

(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚)
 0,95 0,987 1,7169 2,0923 

𝑛 −𝑛

𝜇 + 𝑛 + 𝑦
 0,001 −0,065 1,8739 1,8985 

𝜇 

−

𝜇 [
(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚) + (𝜇 + 𝑛 + 𝑦)

(2𝜇 + 𝛿 + 𝑚)
]

(𝜇 + 𝑛 + 𝑦)(𝜇2 + 𝛿𝑚 + 𝛿𝜇 + 𝜇𝑚)
 

0,014 −0,376 1,7050 2,1043 

 
Based on Table 2, the parameters that influence the basic reproduction number 

𝑅0 are the natural death rate 𝜇, the HPV-infected population growth rate 𝛽, and the 
proportion unvaccinated susceptible population 𝑥. Parameters 𝛽 and 𝑥 are positively 
related to 𝑅0. This implies that if the values of 𝑥 and 𝛽 are added, the value of 𝑅0 
increases. Conversely, if 𝑥 and 𝛽 are reduced the value of 𝑅0 decreases. Meanwhile, the 
parameter 𝜇 has a negative relationship with 𝑅0, which means that if the 𝜇 value 
increases, the 𝑅0 value decreases. Apart from that, when increasing or decreasing the 
values of the parameters 𝛽 and 𝑥 by 10%, the value of 𝑅0 will increase by 10%. In 
addition, if the 10% increase in the parameter 𝜇 then the value of 𝑅0 reduces by 10%, 
and vice versa 10% reduction to the 𝜇 parameter can increase the 𝑅0 value by 10%. 
 
Numerical simulation on the  endemic equilibrium point 𝑹𝟎 > 1 

With the choices of  parameter values in Table 1 and initial values 𝑆1(0) =
50,  𝑆2(0) = 50, 𝐼 = 50, 𝐶 = 50, 𝑅 = 50 the value of 𝑅0 = 1.886114072. The diagram is 
displayed in Figure 3.  

 
Figure 3. Diagram for R0>1 

From Figure 3, we can also see similar trend  with Figure 2  but with different  margin of 
changes.  For the group 𝐼, the number of people roses to 50 million people to 95 million 
after about 10 years and then decreases continuously to reach  about 40 million people 
in after 200 years.  For the cancer group (𝐶), in experience 10 million people after 150 
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years onwards. This is because people who are infected by HPV not automatically 
develop cancer [2]. However, the number of people who suffer of cancer will always 
exist if there is no vaccine treatment. For the Susceptible population aged 1-10 years 
(𝑆1)  of 50 million people experienced a decline of down to 10 million people after 25 
years onwards. The susceptible population aged 10 years and over (𝑆2) also decreased 
from 50 million people to 0 after 1 to 2 years and remains stable. The recovered 
population (𝑅) follows similar pattern (with Figure 2) where it rises from 50 million 
people to 65 million in about 10 years and then decreases to reach 30 million people 
after about 110 years and remains stable onwards. 

CONCLUSIONS 
Based on the results obtained, it can be concluded that by applying the Routh-Hurwitz 
criteria to the model formed, it is found that for  R0 < 1, the disease-free equilibrium 
point will be locally asymptotically stable, while the disease-endemic equilibrium point 
will be locally asymptotically stable if R0 > 1. Numerical simulation using Mathlab 
shows that in both conditions where R0 < 1 or R0 > 1 vaccine treatment affects HPV 
transmission. This can be seen from the decrease in population in both conditions, 
although the decrease in R0 > 1  is not as large as in R0 <1. Vaccine treatment have an 
effect that can reduce the number of infected populations by up to 90%. 
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