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ABSTRACT 

This paper analyzes a discrete logistic system with additive Allee effect and feedback control. The 
main objective is to examine how the additive Allee effect and feedback control influence the 
dynamic behavior of the model. The analysis reveals show that the model has a trivial fixed point 
𝐸0 and two interior fixed point 𝐸1 and 𝐸2. The results of our stability analysis show that there are 
topological differences that depend on the step size. Bifurcation analysis is conducted using center 
manifold theory and the bifurcation theorem. By making step size as a bifurcation parameter, we 
demonstrate that the model undergoes period-doubling and Neimark-Sacker bifurcations. Some 
numerical simulations are performed to confirm the result of the analysis. 
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INTRODUCTION 

Population dynamics is one of the interesting topic in mathematics becaue it has a 
direct impact on various aspects of life. Many mathematical models have been studied by 
researchers, one of which focuses on population growth. Examples of simple population 
growth models are exponential and logistic growth models. Thomas Robert Malthus 
introduced the exponential growth model in 1798 by assuming that resources and 
environmental capacity are unlimited. Then, Pierre Verhulst modified the exponential in 
1830 becomes a logistic growth model, by taking the carrying capacity and intrinsic 
growth rate into account [1]. 

In the real world, ecosystems can be disturbed by unexpected things and it can 
cause changes in other components of the ecosystem. This process is named feedback 
control [2]. This control enables the ecosystem to achieve and sustain the stable condition. 
Gopalsamy [3] propose a feedback control variable into the logistic models as follows. 

𝑑𝑥

𝑑𝑡
= 𝑥 [𝑟 (1 −

𝑥

𝐾
) − 𝑏𝑢] , 

𝑑𝑢

𝑑𝑡
= −𝛼𝑢 + 𝑐𝑥, 
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where 𝑥 is the size of a population, 𝑟 is the intrinsic growth rate, 𝐾 is the carrying 
capacity, and 𝑢 is a feedback control variable; 𝑟, 𝐾, 𝑏, 𝛼, and 𝑐 are positive constants. Liao 
[4], Hoang [5], and [6-8] also studied on models with feedback control. 

On the other hand, the relationship between species in this vast world are complex 
and diverse. In 1931, Allee pointed out that if the population is too small, it becomes more 
difficult for species to find mates or food. This situation can lead to reduced natality rates 
and increased mortality rates, a phenomenon known as the Allee effect [9, 10]. The Allee 
effect is caused by various biological factors, such as reduced defense capabilities against 
predators, intraspesific competition, difficulty in finding mates, genetic distortion, 
decreased foraging efficiency and social dysfunction, which lead the population density 
low [11, 12]. Denis [13] introduced the following additive Allee effect in the logistic model 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 [(1 −

𝑥

𝐾
) −

𝑚

𝑥 + 𝑎
], 

 

where 
𝑚

𝑥+𝑎
 represents the condition for the Allee effect, 𝑚 and 𝑎 are positive 

variables that indicate the strength of the Allee effect. 
It is known that the logistic model using feedback control always has a unique 

positive equilibrium that is globally attractive [14, 15]. Besides that, the Allee effect is one 
of the most frequently observed phenomena, particularly as an increasing number of 
species are going extinct. Lv et al. [16] show that additive Allee effects and feedback 
control significantly affect species permanence, extinction, and stability.  

Many researchers have focused on discrete models because it more suitable than 
the continuous models if the population size is rarely small or the population has no 
overlapping generations. Furthermore, it is easier to obtain numerical solutions for 
discrete models, and many researchers have shown that discrete models yield more 
wealthy analyses than continuous-time models. 
The outline of this paper is as follows: In the second section, we present several steps to 
solve the system. In the third section, we examine the existence of fixed points, investigate 
the stability of fixed point and investigate that the system has the period-2 and Neimark-
Sacker bifurcations. In the fourth section, we perform numerical simulations to confirm 
the results of our theoretical analysis. At the end, a succinct conclusion is provided in 
Section 5. 

METHODS  

In this study, we allow the logistic model with additive Allee effect and feedback 
control 

 
𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥 −

𝑚

𝑥 + 𝑎
) − 𝑏𝑥𝑢, 

𝑑𝑢

𝑑𝑡
= −𝛼𝑢 + 𝑐𝑥, 

 
where 𝛼, 𝑎, 𝑏, 𝑐, and 𝑚 are all positive constants. 

In order to analyze the discrete model of continuous system (1), we perform the 
following steps. 

1) Discretization of the system (1) by implementing forward Euler’s scheme. 
2) Determination of the fixed points and its existence. 
3) Analysis the stability of fixed points. 

(1) 
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4) Investigation the existence of period-2 and Neimark-Sacker bifurcation in the 
model. 

5) Conduct numerical simulations to confirm the analytical result. 

RESULTS AND DISCUSSION 

Implementation of the forward Euler’s scheme to system (1), yields below 
 

𝑥(𝑛 + 1) = 𝑥(𝑛) + 𝛿 (𝑥(𝑛) [1 − 𝑥(𝑛) −
𝑚

𝑥(𝑛) + 𝑎
] − 𝑏𝑥(𝑛)𝑢(𝑛)) , 

𝑢(𝑛 + 1) = 𝑢(𝑛) + 𝛿[−𝛼𝑢(𝑛) + 𝑐𝑥(𝑛)], 
where 𝛿 is the integration step size. 

The Existence of the Fixed Points 

System (2) has three fixed points, namely one trivial fixed points 𝐸0(0,0) and two  

interior fixed points 𝐸𝑖(𝑥𝑖, 𝑢𝑖), 𝑖 = 1,2, where 𝑥𝑖 =
𝛼𝑢𝑖

𝑐
 and 𝑢𝑖  is the solutions of the 

quadratic equation 
�̂�𝑢2 + �̂�𝑢 + �̂� = 0, 

where 
�̂� = 𝛼2 + 𝑏𝑐𝛼; �̂� = 𝑎𝑏𝑐2 − 𝛼𝑐 + 𝛼𝑎𝑐; �̂� = 𝑐2(𝑚 − 𝑎).  

Consider the discrimination of equation (3), namely Δ(𝑚) = (𝑎𝑏𝑐 + 𝑎𝛼 + 𝛼)2 −
4𝛼𝑚(𝑏𝑐 + 𝛼). Let 𝑚∗ be the unique root of Δ(𝑚) = 0, namely 

𝑚∗ =
(𝑎𝑏𝑐 + 𝑎𝛼 + 𝛼)2

4𝛼(𝑏𝑐 + 𝛼)
. 

The conditions for the existence of the positive fixed points of system (2) are summarized 
in proposition 1. 
Proposition 1.  

1) If 𝑚 < 𝑚∗ and �̂� < 0, then the system (2) has fixed point 𝐸0(0,0) and 
a) 𝐸1(𝑥1, 𝑢1) if 𝑚 < 𝑎; 
b) 𝐸1,2(𝑥1,2, 𝑢1,2) if 𝑚 > 𝑎; 

c) 𝐸3(𝑥3, 𝑢3) if 𝑚 = 𝑎, where 

𝑥3 =
𝛼𝑢3

𝑐
, 𝑢3 = 𝑐

−𝑎𝑏𝑐2 + 𝛼𝑐 − 𝛼𝑎𝑐

𝛼2 + 𝑏𝑐𝛼
 

2) If 𝑚 = 𝑚∗, then the system (2) has fixed point 𝐸0(0,0) and 𝐸4(𝑥4, 𝑢4), where 

𝑥4 =
𝛼𝑢4

𝑐
, 𝑢4 = 𝑐

(𝛼 − 𝑎𝑏𝑐 − 𝛼𝑎𝑐)

𝛼2 + 𝑏𝑐𝛼
 

Proof: 
Based on solution of equation (3), 𝑢 ∈ ℝ, if Δ(𝑚) ≥ 0, which is if and only if 𝑚 ≤ 𝑚∗. 

1. If 𝑚 < 𝑎, then �̂� < 0. So, (2) only has fixed point 𝐸1(𝑥1, 𝑢1). 
2. If 𝑚 > 𝑎 and �̂� < 0, then (2) has two fixed point, i.e., 𝐸1(𝑥1, 𝑢1), 𝐸2(𝑥2, 𝑢2). 
3. If 𝑚 = 𝑎 and �̂� < 0, then �̂� = 0 and 𝑢1 = 𝑢0. So (2) has a unique fixed point 

𝐸3(𝑥3, 𝑢3). 
If 𝑚 = 𝑚∗, then Δ(𝑚) = 0. So (2) has a unique fixed point 𝐸4(𝑥4, 𝑢4). 

Stability Analysis 

Next we will find out the stability of the system (2) at each fixed point. The Jacobian 
matrix of (2) at (𝑥∗, 𝑢∗) as follows: 

(4) 

(2) 

(3) 
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𝐽(𝑥∗, 𝑢∗) = (1 + 𝛿 − 2𝑥∗𝛿 −
𝑚𝑎𝛿

(𝑥∗ + 𝑎)2
− 𝑏𝑢∗𝛿 −𝑏𝑥∗𝛿

𝑐𝛿 1 − 𝛼𝛿

). 

The local stability of any point is ensured by the following theorems. 
 
Theorem 1. The fixed point 𝐸0(0,0) 

1) sink if 𝑚 > 𝑎 and 𝛿 < 2 min {
𝑎

𝑚−𝑎
,

1

𝛼
} , 

2) saddle if 0 < 𝑚 < 𝑎 and 0 < 𝛿 <
2

𝛼
 or if 𝑚 > 𝑎 and 

2

𝛼
< 𝛿 <

2𝑎

𝑚−𝑎
, 

3) source if 0 < 𝑚 < 𝑎 and 𝛿 >
2

𝛼
 or if 𝑚 > 𝑎 and 𝛿 > 2 max {

𝑎

𝑚−𝑎
,

1

𝛼
}, 

4) non-hyperbolic if 𝑚 = 𝑎 and 𝛿 =
2

𝛼
 or if 𝑚 > 𝑎, 𝛿 =

2𝑎

𝑚−𝑎
 and 𝛿 =

2

𝛼
. 

For the analysis of the fixed point 𝐸0, substitute fixed point 𝐸0 at (4) and we get 
Proof:  

𝐽(0,0) = (
1 + 𝛿 −

𝑚

𝑎
𝛿 0

𝑐𝛿 1 − 𝛼𝛿
) = (

1 + 𝛿 (1 −
𝑚

𝑎
) 0

𝑐𝛿 1 − 𝛼𝛿
). 

So, the eigen values of matrix are 𝜆1 = 1 + 𝛿 (1 −
𝑚

𝑎
) and 𝜆2 = 1 − 𝛼𝛿. The analysis is 

divided into 3 conditions, i.e., 0 < 𝑚 < 𝑎, 𝑚 = 𝑎, and 𝑚 > 𝑎.  
For 𝜆1, 

1) if 0 < 𝑚 < 𝑎, then |𝜆1| > 1, 
2) if 𝑚 = 𝑎, then |𝜆1| = 1, 

3) if 𝑚 > 𝑎, then |𝜆1| < 1 if and only if 0 < 𝛿 <
2𝑎

𝑚−𝑎
. 

For 𝜆2, 

1) |𝜆2| < 1 if and only if 0 < 𝛿 <
2

𝛼
. 

2) |𝜆2| = 1 if and only if 𝛿 =
2

𝛼
. 

3) |𝜆2| > 1 if and only if  𝛿 >
2

𝛼
. 

To determine the stability using eigen analysis method, see Definition and Lemmas in 
[17,18]. Now, we discuss the stability of fixed point 𝐸1 and 𝐸2. Let the characteristic 
equation of Jacobian matrix (4) at the interior fixed point (𝑥𝑖, 𝑢𝑖), 𝑖 = 1,2 can be written 
as 

𝜆2 − 𝑇𝑟(𝐽(𝐸𝑖))𝜆 + 𝐷𝑒𝑡(𝐽(𝐸𝑖)) = 0, 
where  

𝑇𝑟(𝐽) = 2 + 𝛿 (
𝑚

𝑥𝑖  + 𝑎
−

𝑚𝑎

(𝑥𝑖 + 𝑎)2
− 𝑥𝑖 − 𝛼) = 2 + 𝐺𝛿 

and 

𝐷𝑒𝑡(𝐽) = 1 + 𝛿 (
𝑚

𝑥𝑖 + 𝑎
−

𝑚𝑎

(𝑥𝑖 + 𝑎)2
− 𝑥𝑖 − 𝛼) + 𝛿2 (

𝑚𝑎𝛼

(𝑥𝑖 + 𝑎)2
−

𝑚𝛼

𝑥𝑖 + 𝑎
+ 𝑥𝑖𝛼 + 𝑏𝑐𝑥𝑖) 

= 1 + 𝐺𝛿 + 𝐻𝛿2, 
where 

𝐺 =
𝑚

𝑥𝑖 + 𝑎
−

𝑚𝑎

(𝑥𝑖 + 𝑎)2
− 𝑥𝑖 − 𝛼; 𝐻 =

𝑚𝑎𝛼

(𝑥𝑖 + 𝑎)2
−

𝑚𝛼

𝑥𝑖 + 𝑎
+ 𝑥𝑖𝛼 + 𝑏𝑐𝑥𝑖. 

Now let 

𝐹(𝜆) = 𝜆2 − 𝑇𝑟(𝐽(𝐸𝑖))𝜆 + 𝐷𝑒𝑡(𝐽(𝐸𝑖)) = 0 

⇔ 𝜆2 − (2 + 𝐺𝛿)𝜆 + (1 + 𝐺𝛿 + 𝐻𝛿2). 
Therefore 𝐹(1) = 𝐻𝛿2, 𝐹(0) = 1 + 𝐺𝛿 + 𝐻𝛿2, 𝐹(−1) = 4 + 2𝐺𝛿 + 𝐻𝛿2. If 𝐺2 − 4𝐻 ≥ 0, 

then 𝛿1 =
−𝐺−√𝐺2−4𝐻

𝐻
 and 𝛿2 =

−𝐺+√𝐺2−4𝐻

𝐻
 lead to 𝐹(−1) = 0. Clearly, 𝐻, 𝐺 are functions of 
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fixed point and 𝐻(𝑥1) > 0, 𝐻(𝑥2) < 0. 

The local stability analysis of trivial fixed points 𝐸1 and 𝐸2 can be seen at Theorem 2 and 
Theorem 3. 

Theorem 2. If the fixed point 𝐸1(𝑥1, 𝑢1) exists, then 𝐸1(𝑥1, 𝑢1) is 
1) sink, if one of the following forms satisfy 

a) 𝐺2 − 4𝐻 > 0 and 0 < 𝛿 <
−𝐺−√𝐺2−4𝐻

𝐻
. 

b) 𝐺2 − 4𝐻 ≤ 0 and 0 < 𝛿 < −
𝐺

𝐻
. 

2) source, if one of the following forms satisfy 

a) 𝐺2 − 4𝐻 > 0 and 𝛿 >
−𝐺+√𝐺2−4𝐻

𝐻
. 

b) 𝐺2 − 4𝐻 ≤ 0 and 𝛿 > −
𝐺

𝐻
. 

3) saddle if following forms 𝐺2 − 4𝐻 > 0 and 
−𝐺−√𝐺2−4𝐻

𝐻
< 𝛿 <

−𝐺+√𝐺2−4𝐻

𝐻
. 

4) non-hyperbolic if one of the following forms satisfy 

a) 𝐺2 − 4𝐻 > 0 and 𝛿 =
−𝐺±√𝐺2−4𝐻

𝐻
 

b) 𝐺2 − 4𝐻 ≤ 0 and 𝛿 = −
𝐺

𝐻
 

Proof: 

1. If 𝐺2 − 4𝐻 > 0, 𝜆1 and 𝜆2 are unequal roots of 𝐹(𝜆) = 0 and 

a. If 0 < 𝛿 < 𝛿1, then 𝐹(−1) > 0 and 𝐹(0) < 1.  So, we have |𝜆1| < 1 and |𝜆2| < 1. 
Therefore, 𝐸1 is a sink. 

b. If 𝛿 > 𝛿2, then 𝐹(−1) > 0 and 𝐹(0) > 1. So, we have |𝜆1| > 1 and |𝜆2| > 1. 
Therefore, 𝐸1 is a source. 

c. If 𝛿 = 𝛿1 or 𝛿2, then 𝐹(−1) = 0 and 𝐹(0) ≠ 1. So, we have 𝜆1 = −1 and |𝜆2| ≠
1. Therefore, 𝐸1 is non-hyperbolic. 

d. If 𝛿1 < 𝛿 < 𝛿2, then 𝐹(−1) < 0. So, we have |𝜆1| < 1 and |𝜆2| > 1 (or |𝜆1| > 1 
and |𝜆2| < 1). Therefore, 𝐸1 is a saddle. 

2. If 𝐺2 − 4𝐻 = 0, 𝜆1 and 𝜆2 are equal roots of 𝐹(𝜆) = 0 and 

a. If 0 < 𝛿 < −
𝐺

𝐻
, then |𝜆1| < 1 and |𝜆2| < 1.. Therefore, 𝐸1 is a sink. 

b. If 𝛿 > −
𝐺

𝐻
, then |𝜆1| > 1 and |𝜆2| > 1. Therefore, 𝐸1 is a source. 

c. If 𝛿 = −
𝐺

𝐻
 , then 𝜆1 = 𝜆2 = −1. Therefore, 𝐸1 is non-hyperbolic. 

3. If 𝐺2 − 4𝐻 < 0, 𝜆1 and 𝜆2 are conjugate complex roots of 𝐹(𝜆) = 0 and 

a. If 0 < 𝛿 < −
𝐺

𝐻
, then |𝜆1| < 1 and |𝜆2| < 1.. Therefore, 𝐸1 is a sink. 

b. If 𝛿 > −
𝐺

𝐻
, then |𝜆1| > 1 and |𝜆2| > 1. Therefore, 𝐸1 is a source. 

c. If 𝛿 = −
𝐺

𝐻
 , then 𝜆1 = 𝜆2 = −1. Therefore, 𝐸1 is non-hyperbolic. 

Theorem 3. If the fixed point 𝐸2(𝑥2, 𝑢2) exists, then 𝐸2(𝑥2, 𝑢2) is 

1) source if 𝛿 >
−𝐺+√𝐺2−4𝐻

𝐻
. 

2) saddle if 𝛿 <
−𝐺+√𝐺2−4𝐻

𝐻
. 

3) non-hyperbolic if 𝛿 =
−𝐺+√𝐺2−4𝐻

𝐻
. 
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Proof: 
1. If 𝛿 > 𝛿2, then 𝐹(−1) < 0. So, we have |𝜆1| > 1 and |𝜆2| > 1. Therefore, 𝐸2 is a 

source. 
2. If 𝛿 < 𝛿2, then 𝐹(−1) > 0. So, we have |𝜆1| < 1 and |𝜆2| > 1 (or |𝜆1| > 1 and |𝜆2| <

1). Therefore, 𝐸2 is a saddle. 
3. If 𝛿 = 𝛿2, then 𝐹(−1) = 0. So, we have 𝜆1 = −1 and |𝜆2| ≠ 1. Therefore, 𝐸2 is non-

hyperbolic. 
 

From the analysis, we can acquire that for the positive fixed point 𝐸1(𝑥1, 𝑢1), if 
(𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿) ∈  𝑀1, where 

𝑀1 = {(𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿): 𝐺2 − 4𝐻 > 0, 𝛿 = 𝛿1 =
−𝐺 − √𝐺2 − 4𝐻

𝐻
  , 𝑚, 𝑏, 𝑐, 𝑎, 𝛼 > 0}, 

then among the eigen values of the 𝐸1(𝑥1, 𝑢1) is −1 and other is neither 1 nor −1. 
Therefore, (2) goes through period-2 bifurcation of 𝐸1(𝑥1, 𝑢1). Furthermore, if 
(𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿) ∈  𝑁, where 

𝑁 = {(𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿): 𝐺2 − 4𝐻 < 0, 𝛿∗ = −
𝐺

𝐻
, 𝑚, 𝑏, 𝑐, 𝑎, 𝛼 > 0}, 

then among of the eigen values of 𝐸1(𝑥1, 𝑢1) are a pair of complex conjugate with modulus 
one. Therefore, the model (2) goes through Neimark-Sacker bifurcation. 

Period-doubling Bifurcation 

Based on the analysis in the previous analyses, now we’ll discuss the period-2 
bifurcation of  𝐸1(𝑥1, 𝑢1). We choose 𝛿 as a bifurcation parameter to investigate the 
period-doubling bifurcation and we using the bifurcation theory [19, 20]. Taking 
parameters (𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿) arbitrarily from 𝑀1, we consider (2) at 𝐸1(𝑥1, 𝑢1). From 
(𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿) ∈  𝑀1, we have 𝛿 = 𝛿1. System (2) turns into 

{
𝑥 → 𝑥 + 𝛿1 (𝑥 [1 − 𝑥 −

𝑚

𝑥 + 𝑎
] − 𝑏𝑥𝑢) ,

𝑢 → 𝑢 + 𝛿1[−𝛼𝑢 + 𝑐𝑥].
 

Then the map (2) has a unique positive fixed point 𝐸1(𝑥1, 𝑢1) with eigen values 𝜆1 = −1 

and 𝜆2 = 3 + 𝐺𝛿1 with |𝜆2| ≠  1. Choosing a perturbation 𝛿 to the parameter 𝛿 , system 
(5) changes to 

{
𝑥 → 𝑥 + (𝛿1 + 𝛿) (𝑥 [1 − 𝑥 −

𝑚

𝑥 + 𝑎
] − 𝑏𝑥𝑢)

𝑢 → 𝑢 + (𝛿1 + 𝛿)[−𝛼𝑢 + 𝑐𝑥]
 

where |𝛿| ≪  1 is a small perturbation parameter. 

Suppose that 𝑋 = 𝑥 − 𝑥1 and 𝑈 = 𝑢 − 𝑢1. Then we modify 𝐸1(𝑥1, 𝑢1) of (6) into the 
origin a follows 

(
𝑋
𝑈

) → (
𝑎11𝑋 + 𝑎12𝑈 + 𝑎13𝑋2 + 𝑎14𝑋𝑈 + 𝑎16𝑋3 + 𝑏1𝑋𝛿 + 𝑏2𝑈𝛿 + 𝑏3𝑋2𝛿 + 𝑏4𝑋𝑈𝛿 + 𝑂((|𝑋| + |𝑈| + |𝛿|)

4
)

𝑎21𝑋 + 𝑎22𝑈 + +𝑐1𝑋𝛿 + 𝑐2𝑈𝛿 + 𝑂((|𝑋| + |𝑈| + |𝛿|)
4

)
) 

or 

(
𝑋
𝑈

) → (
𝑎11 𝑎12

𝑎21 𝑎22
) (

𝑋
𝑈

) + (
𝑓(𝑋, 𝑈, 𝛿)

𝑔(𝑋, 𝑈, 𝛿)
), 

where 
 

𝑎11 =  1 − 𝛿1𝑥1 −
𝑚𝑥1𝛿1

(𝑥1 + 𝑎)2
, 𝑎12 =  −𝑏𝑥1𝛿1 , 𝑎13 =  −𝛿1 +

𝑚𝛿1

(𝑥1 + 𝑎)2
−

𝑚𝑥1𝛿1

(𝑥1 + 𝑎)3
, 

(5) 

(6) 

(7) 
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  𝑎14 =  −𝑏𝛿1, 𝑎16 =  −
𝑚𝛿1

(𝑥1 + 𝑎)3
,   𝑏1 =  −

𝑚𝑥1

(𝑥1 + 𝑎)2
− 𝑥1, 𝑏2 = −𝑏𝑥1, 

  𝑏3 = −1 +  
𝑚

(𝑥1 + 𝑎)2
−

𝑚𝑥1

(𝑥1 + 𝑎)3
, 𝑏4 = −𝑏, 𝑎21 = 𝑐𝛿1, 𝑎22  =  1 − 𝛼 𝛿1, 𝑐1 = 𝑐, 𝑐2 = −𝛼 

𝑓(𝑋, 𝑈, 𝛿) = 𝑎13𝑋2 + 𝑎14𝑋𝑈 + 𝑎16𝑋3 + 𝑏1𝑋�̃� + 𝑏2𝑈�̃� + 𝑏3𝑋2�̃� + 𝑏4𝑋𝑈�̃�

+ 𝑂((|𝑋| + |𝑈| + |�̃�|)4) 

𝑔(𝑋, 𝑈, 𝛿) = 𝑐1𝑋�̃� + 𝑐2𝑈�̃� + 𝑂((|𝑋| + |𝑈| + |�̃�|)4) 

Next, we defining an invertible matrix 𝑇1 = (
𝑎12 𝑎12

−1 − 𝑎11 𝜆2 − 𝑎11
) and using translation 

(
𝑋
𝑈

) = 𝑇1 (
�̃�
�̃�

), then the map (6) becomes 

(
�̃�
�̃�

) → (
−1 0
0 𝜆2

) (
�̃�
�̃�

) + (
𝑓(�̃�, �̃�, 𝛿)

𝑔 (�̃�, �̃�, 𝛿)
), 

where 

𝑓(�̃�, �̃�, 𝛿) =
1

𝑎12(𝜆2 + 1)
{[(𝜆2 − 𝑎11)𝑎13 − 𝑎12𝑎23]𝑋2 + [(𝜆2 − 𝑎11)𝑎14 − 𝑎12𝑎24]𝑋𝑈

+ [(𝜆2 − 𝑎11)𝑎16]𝑋3 + [(𝜆2 − 𝑎11)𝑏1 − 𝑎12𝑐1]𝑋𝛿

+ [(𝜆2 − 𝑎11)𝑏2 − 𝑎12𝑐2]𝑈𝛿 + [(𝜆2 − 𝑎11)𝑏3]𝑋2𝛿 + [(𝜆2 − 𝑎11)𝑏4]𝑋𝑈𝛿

+ 𝑂 ((|𝑋| + |𝑈| + |𝛿|)
4

)}, 

𝑔(�̃�, �̃�, 𝛿) =
1

𝑎12(𝜆2 + 1)
{[(𝑎11 + 1)𝑎13]𝑋2 + [(𝑎11 + 1)𝑎14]𝑋𝑈 + [(𝑎11 + 1)𝑎16]𝑋3

+ [(𝑎11 + 1)𝑏1 + 𝑎12𝑐1]𝑋𝛿 + [(𝑎11 + 1)𝑏2 + 𝑎12𝑐2]𝑈𝛿 + [(𝑎11 + 1)𝑏3]𝑋2𝛿

+ [(𝑎11 + 1)𝑏4]𝑋𝑈𝛿 + 𝑂 ((|𝑋| + |𝑈| + |𝛿|)
4

)}, 

and 𝑋 = 𝑎12(�̃� + �̃�), 𝑈 = −(1 + 𝑎11)�̃� + (𝜆2 − 𝑎11)�̃�. 

Now, we apply the center manifold theorem [19]. We set center manifold 𝑊𝑐(0,0) 

of the system (2) in the small neighborhood of 𝛿 = 0. There exists a center manifold that 

has the following expression for it. 

𝑊𝑐(0,0) = {(�̃�, �̃�, 𝛿) ∈  ℝ3 ∶  �̃�  =  ℎ(�̃�, 𝛿), ℎ(0,0) = 0, 𝐷ℎ(0,0) = 0}. 

Assume that 

ℎ(�̃�, 𝛿) = 𝑎1�̃�2 + 𝑎2�̃�𝛿 + 𝑎3𝛿2 + 𝑂 ((|�̃�| + |𝛿|)
3

), 

Then the center manifold must satisfy 

ℱ (ℎ(�̃�, 𝛿)) = ℎ[𝐴�̃� + 𝑓(�̃�, ℎ(�̃�, 𝛿), 𝛿), 𝛿)] − 𝐵ℎ(�̃�, 𝛿) − 𝑔(�̃�, ℎ(�̃�, 𝛿), 𝛿), 𝛿) = 0 

By substituting (9) and (10) into (11) and comparing the coefficients of like powers of 

(8) 

(10) 

(11) 

(9) 
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(10), we obtain that 

𝑎1 =
(𝑎11 + 1)

1 − 𝜆2
2

{𝑎12𝑎13 − 𝑎14(𝑎11 + 1)}, 

𝑎2 =
1

𝑎12(𝜆2 + 1)2
{−𝑎12[(𝑎11 + 1)𝑏1 + 𝑎12𝑐1] + (𝑎11 + 1)[(𝑎11 + 1)𝑏2 + 𝑎12𝑐2]}, 

𝑎3 = 0. 

Thus, we consider (7) restricted to the 𝑊𝑐(0,0) is given by 

𝐺 ∶  �̃� →  −�̃� + ℎ1�̃�2 + ℎ2�̃�𝛿 + ℎ3�̃�2𝛿 + ℎ4�̃�𝛿2 + ℎ5�̃�2  +  𝑂((|�̃�| + |𝛿|)
3

), 

where 

ℎ1 =
(𝜆2 − 𝑎11)

𝑎12(𝜆2 + 1)
{𝑎12𝑎13 − 𝑎14(𝑎11 + 1)}, 

ℎ2 =
1

𝑎12(𝜆2 + 1)
{𝑎12[(𝜆2 − 𝑎11)𝑏1 − 𝑎12𝑐1] − (𝑎11 + 1)[(𝜆2 − 𝑎11)𝑏2 − 𝑎12𝑐2]}, 

ℎ3 =
𝑎2(𝜆2 − 𝑎11)

(𝜆2 + 1)
{2𝑎12𝑎13 + (𝜆2 − 2𝑎11 − 1)𝑎14}

+
𝑎1

𝑎12(𝜆2 + 1)
{𝑎12[(𝜆2 − 𝑎11)𝑏1 − 𝑎12𝑐1] + (𝜆2 − 𝑎11)[(𝜆2 − 𝑎11)𝑏2 − 𝑎12𝑐2]}

+
(𝜆2 − 𝑎11)

(𝜆2 + 1)
{𝑎12𝑏3 − 𝑏4(𝑎11 + 1)}, 

ℎ4 =
𝑎2

𝑎12(𝜆2 + 1)
{𝑎12[(𝜆2 − 𝑎11)𝑏1 − 𝑎12𝑐1] + (𝜆2 − 𝑎11)[(𝜆2 − 𝑎11)𝑏2 − 𝑎12𝑐2]}, 

ℎ5 =
𝑎1

(𝜆2 + 1)
{2𝑎12[(𝜆2 − 𝑎11)𝑎13] + (𝜆2 − 2𝑎11 − 1)[(𝜆2 − 𝑎11)𝑎14]} +

𝑎12
2 [(𝜆2 − 𝑎11)𝑎16]

(𝜆2 + 1)
. 

In order to show that the map (11) undergoes a period- 2 bifurcation, we need to exhibit 

that 𝛼1 and 𝛼2  ≠ 0 [20], where 

𝛼1 = (2𝐺�̃��̃� + 𝐺�̃�𝐺�̃��̃�)|(0,0) = 2ℎ2, 

𝛼2 =
1

3
𝐺�̃��̃��̃� +

1

2
(𝐺�̃��̃�)2|(0,0) = 2ℎ5 + 2ℎ1

2. 

Neimark-Sacker Bifurcation 

Next we will investigate the Neimark-Sacker bifurcation of 𝐸1(𝑥1, 𝑢1) when the 

parameters (𝑚, 𝑏, 𝑐, 𝑎, 𝛼, 𝛿) vary in a small neighborhood of 𝑁. Considering the 

parameters arbitrary from 𝑁, the system (2) represented by 

{
𝑥 → 𝑥 + 𝛿∗ (𝑥 [1 − 𝑥 −

𝑚

𝑥 + 𝑎
] − 𝑏𝑥𝑢) ,

𝑢 → 𝑢 + 𝛿∗[−𝛼𝑢 + 𝑐𝑥],
 

where 𝛿∗ = −
𝐺

𝐻
. Choosing 𝛿̅ as a bifurcation parameter, we consider a perturbation of the 

map  (12) as follows: 

(11) 

(13) 
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{
𝑥 → 𝑥 + (𝛿∗ + 𝛿̅) (𝑥 [1 − 𝑥 −

𝑚

𝑥 + 𝑎
] − 𝑏𝑥𝑢)

𝑢 → 𝑢 + (𝛿∗ + 𝛿̅)[−𝛼𝑢 + 𝑐𝑥]
 

where |𝛿̅| ≪  1 is a small perturbation parameter. 

Let 𝑋 = 𝑥 − 𝑥1  and 𝑈 = 𝑢 − 𝑢1, then the fixed point 𝐸1(𝑥1, 𝑢1) is transformed into the 
origin represented by 

(
𝑋
𝑈

) → (
𝑎11𝑋 + 𝑎12𝑈 + 𝑎13𝑋2 + 𝑎14𝑋𝑈 + 𝑎16𝑋3 + 𝑂((|𝑋| + |𝑈|)4)

𝑎21𝑋 + 𝑎22𝑈 + 𝑂((|𝑋| + |𝑈|)4)
) 

where all coeficients are given in (7) by substituting 𝛿1 = 𝛿∗ + 𝛿̅. The characteristic 
equation associated with the linearization of model (15) at (𝑋, 𝑈) = (0,0) is given by 

𝜆2 + 𝑝(𝛿̅)𝜆 + 𝑞(𝛿̅) = 0, 

where 

𝑝(𝛿̅) = −2 − 𝐺(𝛿∗ + 𝛿̅), 𝑞(𝛿̅) = 1 + 𝐺(𝛿∗ + 𝛿̅) + 𝐻 ((𝛿∗ + 𝛿̅))
2

. 

Hence, since parameters belong to 𝑁, we have a pair of complex conjugate eigenvalues 𝜆 
and �̅� with modulus 1 at  (𝑋, 𝑈) = (0,0) which is  

𝜆, �̅� =
−𝑝(𝛿̅) ± √𝑝2(𝛿̅) − 4𝑞(𝛿̅)

2
=

−𝑝(𝛿̅) ± 𝑖√4𝑞(𝛿̅) − 𝑝2(𝛿̅)

2
. 

and |𝜆, �̅�| = √𝑞(𝛿̅). Then we have 
𝑑|𝜆,�̅�|

𝑑�̅�
|�̅�=0 = 𝑙 = −

𝐺

2
. 

Moreover, it is required that when 𝛿̅ = 0, then 𝜆𝑛, 𝛿̅ = 0 ≠  1, 𝑛 = 1,2,3,4. This is 
equivalent to 𝑝(0) ≠  −2,0,1,2. Note if parameters belong to 𝑁 then 𝑝(0)2 < 4𝑞(0) =
4. Therefore we have 𝑝(0) ≠ ±2. Thus we just need to show that 𝑝(0) ≠ 0,1, which leads 
to 𝐺2 ≠ 2𝐻, 3𝐻. 
Next, we study the normal form of (13) when 𝛿̅ = 0. Put  

𝜇 = 1 +
𝐺𝛿∗

2
, 𝜔 =

𝛿∗

2
√4𝐻 − 𝐺2, 𝑇2 = (

𝑎12 0
𝜇 − 𝑎11 −𝜔

), 

and 𝑇2 is invertible. Using the translation (
𝑋
𝑈

) = 𝑇2 (
�̃�
�̃�

), the map (14) becomes 

(
�̃�
�̃�

) → (
𝜇 −𝜔
𝜔 𝜇 ) (

�̃�
�̃�

) + (
𝑓(�̃�, �̃�)
𝑔(�̃�, �̃�)

), 

where 

𝑓(�̃�, �̃�) =
1

𝑎12

{𝑎13𝑋2 + 𝑎14𝑋𝑈 + 𝑎16𝑋3 + 𝑂((|𝑋| + |𝑈| + |�̃�|)4}, 

𝑔(�̃�, �̃�) =
1

𝑎12𝜔
{[(𝜇 − 𝑎11)𝑎13]𝑋2 + [(𝜇 − 𝑎11)𝑎14]𝑋𝑈 + [(𝜇 − 𝑎11)𝑎16]𝑋3

+ 𝑂((|𝑋| + |𝑈|)4)}, 
and 

𝑋 = 𝑎12�̃�, 𝑈 = (𝜇 − 𝑎11)�̃� − 𝜔�̃�. 
Then we get. 

𝑓�̃��̃� =
2

𝑎12

[𝑎12
2 𝑎13 + 𝑎14𝑎12(𝜇 − 𝑎11)], 𝑓�̃�𝑢 = −

𝜔𝑎12𝑎14

𝑎12
, 𝑓𝑢𝑢 = 0, 𝑓�̃��̃��̃� = 6𝑎16𝑎12

2 , 

𝑓�̃��̃�𝑢, 𝑓�̃�𝑢𝑢, 𝑓𝑢𝑢𝑢 = 0, �̃��̃��̃� =
2(𝜇 − 𝑎11)

𝜔
{𝑎12𝑎13 + 𝑎14(𝜇 − 𝑎11)}, 

 �̃��̃�𝑢 = −𝑎14(𝜇 − 𝑎11), �̃�𝑢𝑢 = 0, �̃��̃��̃��̃� =
6

𝜔
{𝑎12

2 [(𝜇 − 𝑎11)𝑎16]}, �̃��̃��̃�𝑢, �̃��̃�𝑢𝑢, �̃�𝑢𝑢𝑢 = 0. 

 
The map (14) can undergoes the Neimark-Sacker bifurcation when 𝛾 ≠ 0 [8]: 

(15) 

(14) 

(16) 

(17) 
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𝛾 = −𝑅𝑒 [
(1 − 2𝜆)�̅�2

1 − 𝜆 
𝜉11𝜉20] −

1

2
|𝜉11|2 − |𝜉02|2 + 𝑅𝑒(�̅�𝜉21) ≠ 0, 

where 

𝜉20 =
1

8
[(𝑓�̃��̃� − 𝑓𝑢𝑢 + 2�̃��̃�𝑢) + 𝑖(�̃��̃��̃� − �̃�𝑢𝑢 − 2𝑓�̃�𝑢)], 

𝜉11 =
1

4
[(𝑓�̃��̃� + 𝑓𝑢𝑢) + 𝑖(�̃��̃��̃� + �̃�𝑢𝑢)], 

𝜉02 =
1

8
[(𝑓�̃��̃� − 𝑓𝑢𝑢 − 2�̃��̃�𝑢) + 𝑖(�̃��̃��̃� − �̃�𝑢𝑢 + 2𝑓�̃�𝑢)], 

𝜉21 =
1

16
[(𝑓�̃��̃��̃� + 𝑓�̃�𝑢𝑢 + �̃��̃��̃��̃� + �̃�𝑢𝑢𝑢) + 𝑖(�̃��̃��̃��̃� + �̃��̃�𝑢𝑢 − 𝑓�̃��̃�𝑢 − 𝑓𝑢𝑢𝑢)]. 

Numerical Simulations 

Now we will show the bifurcation diagrams and phase portraits of system (2) to 
confirm our theoretical analysis and illustrate the complex dynamical behaviors using 
numerical simulations. The bifurcation parameters will be examined in the following two 
cases. 

1) Varying 𝛿 in the range 2 ≤ 𝛿 ≤ 3 and fixing 𝑚 = 0.1, 𝑏 =  0.21, 𝑐 =  0.005, 𝑎 =
20, 𝛼 = 0.053. 

2) Varying 𝛿 in the range 1.2 ≤ 𝛿 ≤ 1.6 and fixing 𝑚 = 0.01, 𝑏 =  1.4, 𝑐 =  1.2, 𝑎 =
20, 𝛼 = 0.9. 

Case (i) On the basis of Proposition 1, we find out that the map (2) has a unique 
positive fixed point 𝐸1(𝑥1, 𝑢1). By calculation, the flip bifurcation appear from the fixed 
point 𝐸1(0.976,0.092) at 𝛿 = 𝛿1 = 2.05 with 𝛼1 = −1.95 ≠  0 and 𝛼2 = 1.465 >  0. The 
period-doubling bifurcation happens and the orbits are stable. From bifurcation diagram 
at Fig. 1, the fixed point of system (2) is stable when 𝛿1 < 2.05. The phase portraits which 
are associated with Fig. 1 are diposed in Fig. 2. If 𝛿 = 1.8 < 𝛿1, then system (2) stable. Also 
we observe from Fig. 2, when 𝛿 = 2.1 that there are period-2, when 𝛿 = 2.55 that there 
are period-4, when 𝛿 =  2.8 the chatic sets are seen. 

Case (ii) For case (ii), we choosing the parameter values as 𝑚 = 0.01, 𝑏 =  1.4, 𝑐 =
 1.2, 𝑎 = 20, 𝛼 = 0.9. The initial value (𝑥0, 𝑢0) = (0.35,0.5) and after a simple calculation 
for the fixed point 𝐸1(0.349,0.465), we get 𝛿∗ = 1.388,   𝜆, �̅� = 0.1333750375 ±

 0.9910656375 𝑖. For 𝛿 = 𝛿∗ = 1.388, we’ve got |𝜆, �̅�| = 1, 𝑙 =  0.62432 > 0, 𝛾 =

−0.9915 ≠  0.  

 
Figure 1. Period doubling bifurcation diagram of system (2) for case (i). 
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Figure 2. Phase portraits for various values of 𝛿. 

 
We conduct the bifurcation diagrams in (𝛿, 𝑥) plane in Fig 3. We can see that the 

fixed point 𝐸1(0.349,0.465) of system (2) is stable for 𝛿 < 1.388, that it loses its stability 
at 𝛿 = 1.388, and that an invariant circle emerges if the parameter 𝛿 pass 1.388. The phase 
portraits which are associated with Fig. 3 are diposed in Fig. 4 and the attractive cycle is 
smooth, as can be seen. 

 
Figure 3. Neimark-Sacker bifurcation diagram of system (2) for case (ii). 

 
 
 
 
 
 

𝛿 = 1.8 𝛿 = 2.1 

𝛿 = 2.55 𝛿 = 2.8 
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 Figure 4. Phase portraits for various values of  𝛿. 

CONCLUSIONS 

The primary focus of this study has been the dynamic behaviour of a discrete logistic 
model with additive Allee effect and feedback control. Through the use of the bifurcation 
theory, we exhibit that the positive fixed point 𝐸1 can undergoes flip and Neimark-Sacker 
bifurcation. Moreover, when 𝛿 is choosen as a bifurcation parameter, numerical 
simulations show that system (2) much interesting dynamical behaviors, including 
period-doubling orbits, the chaotic sets, and attracting invariant circles. 
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