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ABSTRACT 

The problem of groundwater pollution has an important effect on the quality of the environment and 
the quality of human life. Groundwater pollution can be caused by natural sources or human 
activities. Groundwater pollution problems can be modeled using the advection-dispersion equation. 
The model shows the concentration of pollutants in groundwater. Therefore, it is important to 
estimate groundwater pollutant concentrations. The estimation method can be used to predict 
groundwater pollutant concentrations in the future and maintain the stability of groundwater 
quality. This research collaborates the Kalman filter algorithm with the  reduction method to 
estimate groundwater pollutant concentrations. The model is discretized first and then estimated 
using the Kalman filter algorithm. Next, model reduction was carried out using the Linear Matrix 
Inequality (LMI) method, then the reduced model was estimated using the Kalman filter algorithm. 
From the estimation results using the Kalman filter algorithm on the original system and the system 
that has been reduced by the LMI method, excellent estimation results are obtained, because it 
produces a very small error and is close to the real state variable. Accuracy is tested by calculating 
the average estimation error. 
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INTRODUCTION 

Groundwater, apart from being used for drinking water, is also one of the most 
important sources of water for irrigation. Unfortunately, groundwater is susceptible to 
pollutants. Groundwater pollution occurs when harmful substances (pollutants) enter the 
groundwater. These pollutants are practically limitless but can range from motor oil to 
chemicals from agriculture to untreated waste. Unlike surface water pollution, groundwater 
pollution is harder to detect and control which may cause the problem to persist for long 
periods of time. 

Many researchers observed groundwater pollutant to determine the groundwater 
quality in an area as well controlling the groundwater quality stability. The research process 
is carried out by forming groundwater quality modeling and subsequently formed a control 
device to control or reduce the levels of groundwater pollutant substances. Because of the 
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high cost of the control device and the amount of maintenance costs it cannot be placed as 
much as possible a tool to measure the concentration of groundwater pollutants. Therefore, 
estimation of groundwater pollutant concentration is necessary to predicting future 
groundwater pollutant concentrations. 

Research on groundwater pollution concentration estimation has been conducted 
using the Kalman filter method, and the Ensemble Kalman Filter (EnKF) method [1]. 
Estimation is quite important in daily life because many life problems require estimation [2], 
such as estimation of river water level [3] [4] [5] [6], estimation of river water quality [7], 
estimation of air quality [8], etc. 

The Kalman filter is a reliable estimation method in estimating and forecasting the 
state variables of a linear stochastic dynamical system. The advantage of the Kalman filter is 
its ability to estimate state variables in the past, present, and future. Estimation with the 
Kalman filter is done by predicting state variables based on the dynamics of the system, 
called the prediction stage and then making corrections to improve the estimation results 
based on data from the measurement results, called the correction stage. The prediction-
correction stage is carried out recursively to obtain estimation results that are close to the 
true value by minimizing the estimation error covariance [9].  

In general, the construction of estimation methods aims to obtain accurate results, 
that is, the estimation error is close to zero, with fast computation time. The problem of 
computation time is also strongly influenced by the order of the model, so to minimize 
computation time, it can be done by reducing the order of a large-order model so that a 
simple model with a smaller order is obtained without significant error, in the sense that the 
reduction error is very small. This model with a smaller order is called a reduced model. The 
way to get a reduced model is called model reduction [10]. Many model order reduction 
methods have been developed, including the Balanced Truncation (BA) method [11], the 
Singular Perturbation Approximation (SPA) method [12] and the Linear Matrix Inequality 
(LMI) method [10], [13], [14]. 

Research to find a better estimation method was also carried out by implementing 
the Kalman filter algorithm on the reduced model. This research discussed about a 
construction of Kalman Filter algorithm on the reduced model. It aimed to obtain accurate 
estimation with short computing time on the reduced model. The method that collaborates 
the Kalman filter estimation method with the model reduction method is called the modified 
Kalman filter method. The Kalman filter estimation method has been collaborated with the 
BT method [7] [15], the SPA method [5], and the LMI method [6], [16]. 

Based on previous research on the modified Kalman filter method, this research aims 

to estimate the concentration of groundwater pollution using the modified Kalman filter 

method, namely a method that collaborates the Kalman filter algorithm with the LMI 

method, to obtain accurate estimation results with short computing time. 

 
METHODS 
 The steps in this research are as follows, beginning with obtaining a discrete linear 
time invariant (LTI) system of the mathematical model of groundwater pollution 
distribution problem. This is followed by reducing the system to obtain a reduced system 
using Linear Matrix Inequality (LMI) methods. It then implements the Kalman filter 
algorithm on the original discrete system i.e. the unreduced discrete LTI system, and 
implements the Kalman filter algorithm on the reduced system. 
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Mathematical model of groundwater pollution problem 

        The distribution of groundwater pollution for non-reactive solutes can be written as 
the advection-dispersion equation as follows [17]. 

𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐷𝑦

𝜕2𝐶

𝜕𝑦2
− 𝑣𝑥

𝜕𝐶

𝜕𝑥
,   (𝑥, 𝑦) ∈ Ω, 𝑡 > 0,         (1) 

with    𝐶(𝑥, 𝑦, 0) = 0,   (𝑥, 𝑦) ∈ Ω,       

𝐶(𝑥, 𝑦, 𝑡) = 𝜙(𝑥, 𝑦, 𝑡) (𝑥, 𝑦) ∈ 𝜕Ω        

and Ω = (0, 𝐿𝑥) × (0, 𝐿𝑦) is the observed area. 𝐶((𝑥, 𝑦), 𝑡) is the pollution concentration at 

position 𝑥, 𝑦 and time 𝑡. Parameters 𝐷𝑥, 𝐷𝑦  and 𝑉𝑥, 𝑉𝑦 are diffuse coefficient and groundwater 

flow velocity in 𝑥, 𝑦 direction. It is assumed that 𝜙(𝑥, 𝑦, 𝑡)  is a smooth function and 𝐷𝑥, 𝐷𝑦 , 𝑣 

are constant. 
 
Discretization of Model  

Before we applied Modified Kalman Filter method to estimate the concentration of 
groundwater pollution, we discretize Eq. (1) respect to position 𝑥,𝑦 and time 𝑡 and then we 
write in the state space form. The mathematical model of the groundwater pollution model 
in Eq. (1) is a dynamic system, so the time is continuous, so it must be discretized with 
change of state variable to time with Crank-Nicolson scheme. Then the discretization will be 
implemented to the Eq.  (1), it can be : 

 [1 + 2(𝑆𝑥 + 𝑆𝑦)]𝑐𝑖𝑗
𝑛+1 + (𝑆𝑣 − 𝑆𝑥)𝑐𝑖+1,𝑗

𝑛+1 − (𝑆𝑥 + 𝑆𝑣)𝑐𝑖−1,𝑗
𝑛+1 − 𝑆𝑦(𝑐𝑖,𝑗+1

𝑛+1 + 𝑐𝑖,𝑗−1
𝑛+1 )       (2) 

=[1 − 2(𝑆𝑥 + 𝑆𝑦)]𝑐𝑖𝑗
𝑛 + (𝑆𝑥 − 𝑆𝑣)𝑐𝑖+1,𝑗

𝑛 + (𝑆𝑥 + 𝑆𝑣)𝑐𝑖−1,𝑗
𝑛 + 𝑆𝑦(𝑐𝑖,𝑗+1

𝑛 + 𝑐𝑖,𝑗−1
𝑛 ) 

with 𝑆𝑥 =
𝜏𝐷𝑥

2ℎ1
2,   𝑆𝑦 =

𝜏𝐷𝑦

2ℎ2
2,   𝑆𝑣 =

𝜏𝑣

4ℎ1
. 

 

      Given 𝜏 =
𝑇

𝑁
 , partition the interval [0, 𝑇] into 𝑁 equal parts of width 𝜏 with 𝑁 positive 

integers. Furthermore, it is obtained 

𝐀𝑐𝑛+1 = 𝐁𝑐𝑛 + 𝑐∗                       (3) 

with  
𝑐𝑛+1 = [𝑐11

𝑛+1, 𝑐21
𝑛+1, … , 𝑐𝑀1

𝑛+1, 𝑐12
𝑛+1, 𝑐22

𝑛+1, … , 𝑐𝑀2
𝑛+1, … , 𝑐1𝑀

𝑛+1, 𝑐2𝑀
𝑛+1, … , 𝑐𝑀𝑀

𝑛+1]𝑀2×1
𝑇  

 

𝑐𝑛 = [𝑐11
𝑛 , 𝑐21

𝑛 , … , 𝑐𝑀1
𝑛 , 𝑐12

𝑛 , 𝑐22
𝑛 , … , 𝑐𝑀2

𝑛 , … , 𝑐1𝑀
𝑛 , 𝑐2𝑀

𝑛 , … , 𝑐𝑀𝑀
𝑛 ]𝑀2×1

𝑇  

𝑐∗ = [(𝑆𝑥 + 𝑆𝑣)𝑐01
𝑛+1 + 𝑆𝑦𝑐10

𝑛+1, (𝑆𝑥 + 𝑆𝑣)𝑐02
𝑛+1, … , (𝑆𝑥 + 𝑆𝑣)𝑐0𝑀

𝑛+1 + 𝑆𝑦𝑐1,𝑀+1
𝑛+1 , 

           𝑆𝑦𝑐20
𝑛+1, 0, … , 𝑆𝑦𝑐2,𝑀+1

𝑛+1 , … , (𝑆𝑥 − 𝑆𝑣)𝑐𝑀+1,1
𝑛+1 + 𝑆𝑦𝑐𝑀0

𝑛+1, (𝑆𝑥 − 𝑆𝑣)𝑐𝑀+1,2
𝑛+1 , … ,

(𝑆𝑥 − 𝑆𝑣)𝑐𝑀+1,𝑀
𝑛+1 + 𝑆𝑦𝑐𝑀,𝑀+1

𝑛+1 ]𝑀2×1
𝑇 + [(𝑆𝑥 + 𝑆𝑣)𝑐01

𝑛 + 𝑆𝑦𝑐10
𝑛 , (𝑆𝑥 + 𝑆𝑣)𝑐02

𝑛 , …,  

(𝑆𝑥 + 𝑆𝑣)𝑐0𝑀
𝑛 + 𝑆𝑦𝑐1,𝑀+1

𝑛 , 𝑆𝑦𝑐20
𝑛 , 0, … , 𝑆𝑦𝑐2,𝑀+1

𝑛 , … , (𝑆𝑥 − 𝑆𝑣)𝑐𝑀+1,1
𝑛

+ 𝑆𝑦𝑐𝑀0
𝑛 , (𝑆𝑥 − 𝑆𝑣)𝑐𝑀+1,2

𝑛 , … , (𝑆𝑥 − 𝑆𝑣)𝑐𝑀+1,𝑀
𝑛 + 𝑆𝑦𝑐𝑀,𝑀+1

𝑛 ]𝑀2×1
𝑇  

The matrices 𝐀 and 𝐁 in Eq. (3) are matrices of size 𝑀2 × 𝑀2 as follows: 

𝐀 =

[
 
 
 
 
𝑃1 𝑄1 0 … 0
𝑄1 𝑃1 𝑄1 … 0

0
⋮
0

𝑄1

⋮
0

𝑄1

⋮
0

…
⋱
…

0
⋮
𝑃1]

 
 
 
 

,    𝐁 =

[
 
 
 
 
𝑃2 𝑄2 0 …  0
𝑄2 𝑃2 𝑄2 … 0

0
⋮
0

𝑄2

⋮
0

𝑄2

⋮
0

…
⋱
…

0
⋮
𝑃2]

 
 
 
 

’  
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with matrices 𝑃1, 𝑃1, 𝑄1,  and 𝑄2  are matrices of size 𝑀 × 𝑀 as follows. 

𝑃1 =

[
 
 
 
 
 
1 + 2(𝑆𝑥 + 𝑆𝑦) 𝑆𝑣 − 𝑆𝑥    0          …                0 

−(𝑆𝑥 + 𝑆𝑣) 1 + 2(𝑆𝑥 + 𝑆𝑦) 𝑆𝑣 − 𝑆𝑥  …              0

0
⋮
0

−(𝑆𝑥 + 𝑆𝑣)
⋮
0

1 + 2(𝑆𝑥 + 𝑆𝑦)

⋮
0

…
⋱
…

0
⋮

1 + 2(𝑆𝑥 + 𝑆𝑦)]
 
 
 
 
 

,  

𝑃2 =

[
 
 
 
 
 
1 − 2(𝑆𝑥 + 𝑆𝑦) 𝑆𝑥 − 𝑆𝑣    0          …            0

𝑆𝑥 + 𝑆𝑣 1 − 2(𝑆𝑥 + 𝑆𝑦) 𝑆𝑥 − 𝑆𝑣   …             0

0
⋮
0

𝑆𝑥 + 𝑆𝑣

⋮
0

1 − 2(𝑆𝑥 + 𝑆𝑦)

⋮
0

…
⋱
…

0
⋮

1 − 2(𝑆𝑥 + 𝑆𝑦)]
 
 
 
 
 

  

𝑄1 =

[
 
 
 
 
−𝑆𝑦 0 0 … 0

0 −𝑆𝑦 0 … 0

0
⋮
0

0
⋮
0

−𝑆𝑦

⋮
0

…
⋱
…

0
⋮

−𝑆𝑦]
 
 
 
 

    and  𝑄2 =

[
 
 
 
 
𝑆𝑦 0 0  …  0

0 𝑆𝑦 0  … 0

0
⋮
0

0
⋮
0

𝑆𝑦

⋮
0

…
⋱
…

0
⋮
𝑆𝑦]

 
 
 
 

. 

From Eq. (3), we obtain Eq. (4) as follow : 
𝑐𝑛+1 = 𝐀−1𝐁𝑐𝑛 + 𝐀−1𝑐∗             (4) 

Generally, the mathematic model in discrete time in Eq. (4) can be written as the discrete 
state space system of groundwater pollution modelling as follow : 

𝑐𝑘+1 = 𝐴𝑐𝑘 + 𝐵𝑢𝑘              (5) 
with 𝐴 = 𝐀−1𝐁 and  𝐵𝑢𝑘 = 𝐀−1𝑐∗. 
Furthermore, we construct the measurement equation at time 𝑘 as follow: 

𝑦𝑘 = 𝐶𝑐𝑘 + 𝐷𝑢𝑘                (6) 
where 𝐶 is a 5 × 16  matrix with elements 𝐶(1,2) = 1,  𝐶(2,5) = 1, 𝐶(3,7) = 1 ,  𝐶(4,11) =

1, 𝐶(5,15) = 1 , and  𝐶(𝑖, 𝑗) = 1 for other 𝑖, 𝑗.  𝐷 is a 5 × 1 zero matrix. 

So from Eq.(5) and Eq. (6), we have a discrete linear time invariant (LTI) system as follow 
 𝑐𝑘+1 =  𝐴 𝑐𝑘 +  𝐵 𝑢𝑘            
    𝑦𝑘 =  𝐶 𝑐𝑘 +  𝐷 𝑢𝑘         

with 𝑐𝑘 ∈ ℝ16 is called the state vector at time k,  𝑢𝑘 ∈ ℝ16 is called the input vector, 𝑦𝑘 ∈ ℝ5 
is called the output vector, and 𝐴, 𝐵, 𝐶, 𝐷 are each real constant matrices of corresponding 
size. Furthermore, the discrete LTI system is called the original discrete system (𝐴, 𝐵, 𝐶, 𝐷).     
 
RESULTS AND DISCUSSION 

 Actually, it is difficult to get real data, the concentration of groundwater pollution, 
because the measurement tools are limited, therefore, we concern on the algorithm Kalman 
Filter, and the Modified Kalman Filter method. So that the measurement data is generated 
from MATLAB program that represent Eq. (6). The simulation begins by reducing the system 
using the Linear Matrix Inequality (LMI) method to obtain the reduced system. Then 
implement the Kalman filter algorithm on the original discrete system and the reduced 
system. 

Model reduction in the groundwater pollution model using Linear Matrix Inequality 
(LMI) method  

          The parameter values used in the simulation are assumed to be constant with 𝑀 =
20;𝐷𝑥 = 0,1; 𝐷𝑦 = 0,1;  𝑣 = 10; 𝐿𝑥 = 20; 𝐿𝑦 = 20;  𝑇 = 10; and 𝑁 = 100. From the 



Groundwater Pollution Concentration Estimation with Modified Kalman Filter Method 
 
 

Nenik Estuningsih 241 

simulation results, it is found that the original discrete system (𝐴, 𝐵, 𝐶, 𝐷) is is an 
asymptotically stable system because all the eigenvalues of matrix 𝐴 are less than 1. 

From the original discrete system (𝐴, 𝐵, 𝐶, 𝐷) we can obtain the controllability matrix 
𝐖 and the observability matrix 𝐖 to obtain the Hankel singular values of the system the 
original discrete system (𝐴, 𝐵, 𝐶, 𝐷) as follow: 

  𝐖 ≔ ∑ 𝐴𝑘𝐵𝐵𝑇(𝐴𝑇)𝑘∞
𝑘=0 .        𝑘 = 0, 1,2,3, …        

and           𝐌 ≔ ∑ (𝐴𝑇)𝑘𝐶𝑇𝐶𝐴𝑘∞
𝑘=0 .         𝑘 = 0,1,2,3, …     

It is obtained that all Hankel singular values of original discrete system (𝐴, 𝐵, 𝐶, 𝐷), namely 

𝜎𝑖 = √𝜆𝑖(𝐖𝐌), 𝑖 = 1,⋯ , 16, where 𝜆 is the eigenvalue of matrix 𝐖𝐌, are positive, i.e.: 

6.9577 > 6.6006 > 5.6617 > 5.3606 >  0.3184 > 0.2880 > 0.2620 > 0.2208 > 0.0198  > 
0.0166 >   0.0158  > 0.0141  > 0.0018  > 0.0015  >  0.0012 > 0.0011. 
This means that the equilibrium gramian Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, ⋯ , 𝜎𝑛)  is positive definite. Since 
the equilibrium gramian  is positive definite, it is guaranteed that the original discrete 
system (𝐴, 𝐵, 𝐶, 𝐷) is a controllable and observable system.     

Next, the original discrete system (𝐴, 𝐵, 𝐶, 𝐷) is reduced using the Linear Matrix 
Inequality (LMI) method to obtain the reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟).  It is found that the 
reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) is is an asymptotically stable system because all the 
eigenvalues of matrix 𝐴𝑟 are less than 1. It is obtained that all Hankel singular values of 
reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) are positive. This  means that the equilibrium gramian Σ =
𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, ⋯ , 𝜎𝑟)  is positive definite. Since the equilibrium gramian  is positive definite, 
it is guaranteed that the reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) is a controllable and observable 
system.   

Furthermore, using the LMI method, we can find the supremum of the error 
‖𝐺(𝑧) − 𝐺𝑟(𝑧)‖∞ denoted by a non-negative scalar 𝛾 that satisfies 𝜎𝑛 ≤ ‖𝐺(𝑧) − 𝐺𝑟(𝑧)‖∞ <

𝛾 ≤ 2(𝜎𝑟+1 + ⋯+ 𝜎𝑛), where 𝐺(𝑧) and 𝐺𝑟(𝑧) are the transfer function of the original discrete 

system (𝐴, 𝐵, 𝐶, 𝐷) and the reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟). The value of 𝛾 can be found to be 

the minimum possible as in Table 1. 

               Table 1.  Error  ‖𝐺(𝑧) − 𝐺𝑟(𝑧)‖∞   obtained by the LMI method in groundwater pollution problems 

R 

Lower error 

limit reduction 

error reduction using 

the LMI method 

Upper error limit 

reduction 

𝛔𝐫+𝟏 𝜸 𝟐(𝛔𝐫+𝟏 + ⋯+ 𝛔𝐧) 
3 5.3606 5.6          13.0434 
4 0.3184 0.45 2.3222 
5 0.288 0.4 1.6854 
6 0.262 0.35 1.1094 
7 0.2208 0.23 0.5854 
8 0.0198 0.025 0.1438 
9 0.0166 0.019 0.1042 

10 0.0158 0.018 0.071 
11 0.0141 0.0145 0.0394 
12 0.0018 0.0021 0.0112 
13 0.0015 0.0018 0.0076 
14 0.0012 0.0013 0.0046 
15 0.0011 0.00125 0.0022 

         
 Next, the estimation process is carried out using the Kalman filter algorithm on the 
LTI discrete system, either on the original discrete system or on the reduced system.   
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Construction of the Kalman Filter Algorithm in Reduced Systems 

By using the transformation 𝑧𝑘 = 𝑃22 𝑥𝑟𝑘
  on the reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) where  

𝑃22 = diag ((𝜎1 −
𝜎𝑚

2

𝜎1
)
−1

𝐼𝑘1
, … , (𝜎𝑚−1 −

𝜎𝑚
2

𝜎𝑚−1
)
−1

𝐼𝑘𝑚−1
)
𝑛−𝑘𝑚×𝑛−𝑘𝑚

.,  

we obtain the reduced system (𝑃22𝐴𝑟𝑃22
−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22

−1, 𝐷𝑟) which is similar to the reduced 
system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟). 
The representation of the state space for the reduced system (𝑃22𝐴𝑟𝑃22

−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22
−1, 𝐷𝑟) of 

order 𝑟 (𝑟 < 𝑛) is expressed as follows: 
𝑥𝑟𝑘+1

  =𝑃22𝐴𝑟𝑃22
−1𝑥𝑟𝑘

+ 𝑃22𝐵𝑟𝑢𝑘,           (7)

     𝑧𝑟𝑘
= 𝐶𝑟𝑃22

−1𝑥𝑟𝑘
+ 𝐷𝑟𝑢𝑘.             (8) 

The reduced system (𝑃22𝐴𝑟𝑃22
−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22

−1, 𝐷𝑟) in Eq. (7) and Eq. (8) does not contain any 
noise. Meanwhile, in real problems, a system is influenced by noise, namely noise in the 
system and noise in measurements. If the noise is taken into account in the system, then the 
reduced system (𝑃22𝐴𝑟𝑃22

−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22
−1, 𝐷𝑟) becomes a stochastic reduced system as 

follows: 

 𝑥𝑟𝑘+1
= 𝑃22𝐴𝑟𝑃22

−1𝑥𝑟𝑘 
+ 𝑃22𝐵𝑟𝑢𝑘 + 𝐺𝑟𝑤𝑟𝑘

 ,          (9) 

 𝑧𝑟𝑘
= 𝐶𝑟𝑃22

−1𝑥𝑟𝑘 
+ 𝐷𝑟𝑢𝑘+𝑣𝑟𝑘

          (10) 

with 𝑤𝑟𝑘
 and 𝑣𝑟𝑘

 being the system noise and measurement noise in the reduced system, 

respectively. The noise in the system 𝑤𝑟𝑘
and the noise in the measurement 𝑣𝑟𝑘

are assumed: 

𝑥𝑟0 
~𝑁 (𝑥̅𝑟0 , 𝑃𝑥𝑟0 

), 𝑤𝑟𝑘
~𝑁(0, 𝑄𝑟) dan 𝑣𝑟𝑘

~𝑁(0, 𝑅𝑟),  

with 𝑄𝑟 being the system noise covariance 𝑤𝑟𝑘
 and 𝑅𝑟  being the measurement noise 

covariance 𝑣𝑟𝑘
, the 𝑄𝑟  matrix is assumed to be positive semi-definite, and the 𝑅𝑟 matrix is 

assumed to be positive definite. Based on the initial conditions, it will apply 
𝐸[𝑤𝑟𝑘

] = 0, 𝐸[𝑤𝑟𝑘
𝑇] = 0, dan 𝐸[𝑤𝑟𝑘

𝑤𝑟𝑘
𝑇] = 𝑄𝑟  

𝐸[𝑣𝑟𝑘
] = 0, 𝐸[𝑣𝑟𝑘

𝑇] = 0, dan 𝐸[𝑣𝑟𝑘
𝑣𝑟𝑘

𝑇] = 𝑅𝑟   

Next, the construction of the Kalman filter algorithm on the stochastic reduced system 
(𝑃22𝐴𝑟𝑃22

−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22
−1, 𝐷𝑟)  is completely presented in Figure 1. 
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Since the system (𝑃22𝐴𝑟𝑃22

−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22
−1, 𝐷𝑟) is similar to the reduced system 

(𝐴𝑟,  𝐵𝑟, 𝐶𝑟, 𝐷𝑟),   then the system (𝑃22𝐴𝑟𝑃22
−1, 𝑃22𝐵𝑟 , 𝐶𝑟𝑃22

−1, 𝐷𝑟) is also an asymptotically 
stable, controllable, observable reduced system. Furthermore, it is obtained that the 
estimation of the original discrete system (𝐴, 𝐵, 𝐶, 𝐷) with the Kalman filter algorithm 
produces a very good estimation because the plot of the estimated variables is very close to 
the real state variables, as in Figure 2.  
 

    
(a)                                                                                                      (b)                           

 
Figure 2. Original discrete system (𝐴, 𝐵, 𝐶, 𝐷) estimation using Kalman filter algorithm on 2-D images (a) and 

3-D images (b)   
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Estimation of state variables in the reduced system  (𝑷𝟐𝟐𝑨𝒓𝑷𝟐𝟐
−𝟏, 𝑷𝟐𝟐𝑩𝒓, 𝑪𝒓𝑷𝟐𝟐

−𝟏, 𝑫𝒓)  by 

Kalman filter method. 

𝑥𝑟𝑘+1
= 𝑃22𝐴𝑟𝑃22

−1𝑥𝑟𝑘 
+ 𝑃22𝐵𝑟𝑢𝑘 + 𝐺𝑟𝑤𝑟𝑘

 

𝑧𝑟𝑘
= 𝐶𝑟𝑃22

−1𝑥𝑟𝑘 
+ 𝐷𝑟𝑢𝑘+𝑣𝑟𝑘

 

with 𝑤𝑟𝑘
~𝑁(0, 𝑄𝑟) and 𝑣𝑟𝑘

~𝑁(0, 𝑅𝑟). 

 
 

 

 

 

 

 

 

 

Initialization Stage   

 

𝑥𝑟0 
~𝑁 (𝑥̅𝑟0 , 𝑃𝑥𝑟0 

),   

𝑃0 = 𝑃𝑥𝑟0 
,  𝑥ො𝑟0 = 𝑥̅𝑟0  

Prediction Stage 

Error covariance: 

𝑃𝑥𝑟𝑘+1 
= 𝑃22𝐴𝑟𝑃22

−1𝑃𝑥𝑟𝑘 
(𝑃22𝐴𝑟𝑃22

−1)𝑇 + 𝐺𝑟𝑄𝑟𝐺𝑟
𝑇 

 

Estimation:  𝑥ො𝑟𝑘+1
= 𝑃22𝐴𝑟𝑃22

−1𝑥ො𝑟𝑘
+ 𝑃22𝐵𝑟𝑢𝑘. 

 

Correction Stage 

Error covariance: 𝑃𝑥𝑟𝑘+1 

+ = (𝑃𝑥𝑟𝑘+1 

−1 + (𝐶𝑟𝑃22
−1)𝑇𝑅𝑟

−1𝐶𝑟𝑃22
−1)

−1

. 

Estimation:  𝑥ො𝑟𝑘+1
+ = 𝒙ෝ𝒓𝒌+1

+ 𝑃𝑥𝑟𝑘+1 

+ (𝐶𝑟𝑃22
−1)𝑇𝑅𝑟

−1(𝑧𝑟𝑘+1
− 𝐶𝑟𝑃22

−1𝑥ො𝑟𝑘+1
) 

   If  Kalman gain is used, 

   𝐾𝑥𝑟𝑘+1 
= 𝑃𝑥𝑟𝑘+1 

(𝐶𝑟𝑃22
−1)𝑇 (𝐶𝑟𝑃22

−1𝑃𝑥𝑟𝑘+1 
(𝐶𝑟𝑃22

−1)𝑇 + 𝑅𝑟)
−1

 then 

Error covariance:  𝑃𝑥𝑟𝑘+1 

+  = (𝐼 − 𝐾𝑥𝑟𝑘+1 
𝐶𝑟𝑃22

−1) 𝑃𝑥𝑟𝑘+1 
 

Estimation:           𝑥ො𝑟𝑘+1
+ = 𝑥ො𝑟𝑘+1

+ 𝐾𝑥𝑟𝑘+1 
(𝑧𝑟𝑘+1

− 𝐶𝑟𝑃22
−1𝑥ො𝑟𝑘+1

) 

 

Figure 1.  Schematic of  Kalman filter algorithm on reduced system using 
Linear Matrix Inequality (LMI) method. 
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         The same thing is also obtained from the estimation results of the reduced system 
with 𝑟 = 9, which produces a very good estimate because it produces a very small error and 
is close to the real state variable, as in Figure 3. 
 

  
(a)                                                                                                        (b)                           

 
      Figure 3.  Estimation of reduced system with order 𝑟 = 9  using Kalman filter algorithm in 2-D images (a)  

and 3-D images (b) 
 

It is found that the estimation results on the reduced system are generally also very 
good, which is indicated by the very small error value as shown in Table 2. 

 
    Table 2.  Error estimation,  reduction time and estimation time  

System Order 
System 

Average error 
estimation 

Average reduction 
time 

Average estimation 
time 

Original 
System 

16 0.127958145772399 -- 0.0277933 

 
 
 

Reduced 
System 

7 0.140664482209831 6.3500972 0.0202604 
8 0.278699717521668 6.9469524 0.0220778 
9 0.267349685322155 7.7447647 0.0232865 

10 0.190697644154231 9.7998875 0.0254702 
11 0.248623319772574 13.6056212 0.0259470 
12 1.880960855844340 10.6206437 0.0255010 
13 0.888957187285023 15.0763490 0.0272671 
14 1.099929654411970 20.2884836 0.0265640 
15 1.771813543403840 21.5354403 0.0272022 

 

From Table 2, the results show that the smallest estimation error is the original 
system estimation error. The estimation error in the reduced system increases as the 
reduction order increases. The longest estimation time is the estimation time for the original 
system.  The larger the order of the reduced system, the longer the estimation time. Likewise 
for the reduction time, the larger the order of the reduced system, the longer the reduction 
time. The above results were obtained using the measurement matrix 𝐶 with randomly 
generated measurement data. 
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CONCLUSIONS 

Based on the analysis and discussion that has been done then can be drawn conclusion as 

follows, the Modified Kalman Filter Method can be applied in the estimation of state 

variables on the model of groundwater pollution process. The estimation results using the 

Kalman filter algorithm on the original system and the system that has been reduced by the 

LMI method, excellent estimation results are obtained, because it produces a very small 

error and is close to the real state variable..  
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