
CAUCHY: Jurnal Matematika Murni dan Aplikasi 
Volume 9(2) (2024), Pages 329-340 
p-ISSN: 2086-0382; e-ISSN: 2477-3344 

Submitted: September 12, 2024 Reviewed: September 23, 2024 Accepted: October 24, 2024 
DOI: http://dx.doi.org/10.18860/ca.v9i2.29398  

 A Generalized Benders Decomposition Method for Mixed-Integer 
Nonlinear Programming: Theory and Application 

Fadiah Hasna Nadiatul Haq*, Diah Chaerani, Anita Triska 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas 
Padjadjaran, 45363 Jatinangor, Sumedang, Indonesia 

Email: fadiah20001@mail.unpad.ac.id  

ABSTRACT 

The Mixed-Integer Nonlinear Programming (MINLP) model is an optimization model involving 
integer and continuous variables with nonlinear objectives or constraints. One method to solve 
the MINLP model is the Generalized Benders Decomposition (GBD) method. The GBD method 
decomposes the problem into primal and master problems that are solved alternately until the 
optimal solution is found. This paper comprehensively explains how to solve the MINLP models 
using the GBD method, provides detailed proofs of theorems related to GBD that were not fully 
addressed in previous literature, and presents the application of the GBD method to solving real-
world MINLP problems. The results show that the theorems related to GBD were successfully 
proven, and the practical MINLP problems were solved using the GBD method, demonstrating how 
the method can be effectively used to solve real-world MINLP problems. Overall, this research 
contributes theoretically and practically to understanding the GBD method and its application in 
solving the MINLP optimization problems. 
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INTRODUCTION 

Optimization is the process of finding the best solution for specific situations [1]. An 
optimization model is a mathematical representation of real-life situations aimed at decision-
making through objective and constraint functions. The classes of optimization problems are 
categorized based on the types of decision variables and functions involved including linear 
programming problems, nonlinear programming problems, nonlinear programming with 
integer variables, mixed-integer nonlinear programming, and others[2]. The Mixed-Integer 
Nonlinear Programming (MINLP) model is an optimization model involving integer and 
continuous variables with nonlinear objective or constraint functions [3]. MINLP models are 
standard in various applications such as oil and gas [4], geothermal energy [5], natural gas 
[6], transportation [7], energy systems [8], and others.   

The MINLP models are notoriously difficult to solve since they involve both discrete and 
continuous variables. For certain MINLP problems that are highly complex, commercial software 
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may face difficulties or even fail to solve these problems [9]. The Generalized Benders 
Decomposition (GBD) method effectively addresses the complexity of MINLP problems. GBD 
enchances the Benders Decomposition (BD) method for mixed-integer linear problems (MILP) 
introduced by Benders [10]. This method decomposes the problem into more minor 
problems by separating the problem into a master problem, which contains difficult-to-
solve integer variables, and a primal problem, which only involves continuous variables 
that are easier to solve. During the solution process, the primal and master problems are 
tackled in turns until the optimal solution is found. 

Geoffrion [11] adapted the BD method for MINLP problems, known as the GBD 
method. The primary distinction between the GBD and BD approaches is that GBD uses 
nonlinear duality in the master problem so that GBD can solve the nonlinear problem, 
whereas BD applies linear duality.  Floudas [12] improved GBD by adding binary variables 
and equality constraints. The disadvantage of this method modified by Floudas is that the 
constraints of the equation are not relaxed into the form of inequalities so that it may lead 
to a dead end or not obtaining an optimal solution. In addition, the disadvantage of GBD 
explained by Geoffrion [11] and Floudas [12] is that it does not consider the convex 
problem related to all variables and adds linear constraints to the master problem, which 
is the easiest way to implement.  

Furthermore, Karbowski [13] refined the discussion on the GBD method for 
solving MINLP problems. In this work, Karbowski revisited the method by considering the 
relaxation of equality constraints and adding linear constraints to the master problem for 
cases involving convex objective functions and constraints. In [13], there are several 
theorems related to gbd. However, the proofs for three out of six  theorems are not 
presented [13]. In addition,  [13] did not provide examples of solving MINLP models using 
the GBD method. From the previous literature on the GBD method, Geoffrion [11] 
provides a step-by-step explanation of the technique, with a detailed proof for one 
theorem and an application of GBD. However, the other two theorems are not fully 
addressed. Floudas [12] also offers a guide and an example but does not present the proof 
for these three theorems. Karbowski presents the method thoroughly but does not 
provide evidence for these three theorems or an instance of its application.  

The need for discussions on solving MINLP models using the GBD method has 
increased alongside the growing number of practical MINLP optimization models that can 
be addressed using this approach, such as telecommunication [15,16], transportation 
[16], energy [18,19], portfolio management [19],  and others. Therefore, this paper 
explains how to solve MINLP models using the GBD method and provides detailed proofs 
of three theorems related to GBD, which were not fully addressed in previous literature. 
Additionally, the application of the GBD method is illustrated to demonstrate a step-by-
step approach to solving the MINLP model, highlighting its effectiveness in addressing 
real-world MINLP problems. The organization of the paper is as detailed below: The 
Methods section discusses the MINLP model and the GBD method. The Results and 
Discussions section addresses the proofs of three theorems related to GBD and the 
application of the GBD method the application of the GBD method for solving MINLP 
problem. The Conclusions section provides the final remarks. 
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METHODS  

Mixed-Integer Nonlinear Programming (MINLP) 

The MINLP problem is an optimization problem characterized by nonlinear objective 
or constraint functions, and the decision variables include continuous and integer values 
[3].  Consider the problem (1)-(4) as expressed by [13]: 

min
𝑥,𝑣

 𝑓(𝐱, 𝐯) (1) 

𝑠. 𝑡   𝐠(𝐱, 𝐯) ≤ 𝟎 (2) 

       𝐱 ∈ 𝑋 ⊆ ℝ𝑛 (3) 

          𝐯 ∈ 𝑉 ⊆ ℤ𝑞, (4) 

where 𝐱 and 𝐯 donate the vector of continuous and integer decision variables, 
respectively, within the feasible sets 𝑋 ⊆ ℝ𝑛 and 𝐯 ∈ 𝑉 ⊆ ℤ𝑞 . Here, 𝑛 and 𝑞 specifies the 
count of continuous and integer decision variables respectively. Function 𝑓:ℝ𝑛 ×ℝ𝑞 → ℝ 
is the objective function,  and 𝐠:ℝ𝑛 × ℝ𝑞 → ℝ𝑚 is a constraint functions vector that 
contains individual constraints 𝑔𝑖(𝐱, 𝐯). The functions 𝑓(𝐱, 𝐯)and 𝑔𝑖(𝐱, 𝐯) can be either 
linear or nonlinear. When considering 𝑉 as 𝑉 ⊆ ℤ𝑞 , problems (1)-(4) contain decision 
variables with both continuous and integer values, thereby classifying them as MINLP 
problems. The equality constraints can be transformed into inequality forms, becoming 
inequality pair [20]. For an equality constraint of the form 𝑔𝑖(𝐱, 𝐯) = 0, it can be rewritten 
as an inequality pair 𝑔𝑖(𝐱, 𝐯) ≤ 0 and 𝑔𝑖(𝐱, 𝐯) ≥ 0. 

Generalized Benders Decomposition (GBD) 

GBD is a conceptual framework that contains steps for solving MINLP problems using 
decomposition principles[12]. This method decomposes the MINLP problem into smaller 
problems by separating the problem into a master problem, which contains integer 
variables that are difficult to solve, and a primal problem, which only involves continuous 
variables that are easier to solve. In the iterative process, the primal and the master 
problems are solved alternately until the objective function converges to the same or 
nearly the same value, indicating that the solution is close to the actual optimal solution. 

Karbowski [13] explained the completion of the minimization MINLP model (1)-(4) 
with 𝐯 ∈ 𝑉 ⊆ ℤ𝑞 using the GBD Method. The primal problem is the solution of the initial 
problem (1)-(4) with a fixed 𝐯, i.e., 𝐯 = 𝐯∗ ∈ 𝑉. It can be rewritten as: 

min
𝐱∈X

 {𝑓(𝐱, 𝐯∗): 𝐠(𝐱, 𝐯∗) ≤ 𝟎}. (5) 

The master problem in GBD involves the variable v, which is more difficult to solve. The 
problem (1)-(4) are expressed in the following manner: 

min
𝐯∈𝑉

 [ inf
𝐱∈𝑋

𝑓(𝐱, 𝐯) : 𝐠(𝐱, 𝐯) ≤ 𝟎] . (6) 

Let 

𝑧(𝐯) = inf
𝐱∈𝑋

{𝑓(𝐱, 𝐯): 𝐠(𝐱, 𝐯) ≤ 𝟎}. (7) 

In problem (6) v must lie within the domain 𝑉0  where 𝑉0 = {𝐯: ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯) ≤ 𝟎}.  The 
set 𝑉0 is also known as the solvability set. Therefore, problems (6)-(7) are expressed as: 

min
𝐯∈𝑉∩𝑉0

𝑧(𝐯) (8) 

𝑉0 = {𝐯: ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯) ≤ 𝟎}. (9) 
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The requirement 𝐯 ∈ 𝑉 ∩ 𝑉0 is necessary to ensure that 𝑧(𝐯) is defined and has a valid 
results. Problem (8)-(9) are called as the master problem.  

In [13], there are several theorems which related to 𝑉𝑜 and 𝑧(𝐯). However, [13] this 
does not present proof for these theorems. The following section presents proofs for these 
theorems. 
Theorem 1. Assume 𝑋 is a non-empty convex set and the function g is convex in 𝑋 for each 
fixed value 𝐯 ∈ 𝑉. Also, assume 𝑍v = {𝐳 ∈ ℝ𝑚: ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯) ≤ 𝐳} is closed for each fixed 
value 𝐯 ∈ 𝑉. Then 𝐯∗ ∈ 𝑉 lies in 𝑉0if and only if 

inf
𝐱∈𝑋

𝐿𝑓(𝐱, 𝐯
∗, 𝛌) ≤ 0,   ∀𝛌 ∈∧, (10) 

Where 

∧= {𝛌 ∈ ℝ𝑚: 𝛌 ≥ 𝟎,∑𝜆𝑗 = 1

𝑚

𝑗=1

} , (11) 

𝐿𝑓(𝐱, 𝐯, 𝛌) = 𝛌𝑇𝐠(𝐱, 𝐯). (12) 

Theorem 2. Assume 𝑋 is a non-empty convex set and the function g is convex in 𝑋 for each 
fixed value 𝐯 ∈ 𝑉. Also, assume for 𝐯∗, at least one of the following conditions holds: 

1. 𝑧(𝐯∗) is bounded and the problem (7) has an optimal vector of Lagrange 
multipliers; 

2. 𝑧(𝐯∗) is bounded, , 𝐠(𝐱, 𝐯∗) and 𝑓(𝐱, 𝐯∗) are continuous in 𝑋, 𝑋 is a closed set, and 
the set of optimal solutions for problem (7) with accuracy 𝜀 ≥ 0  is non-empty and 
bounded, 

Then 

𝑧(𝐯 ) = sup
𝛌≥0 

inf
𝐱∈𝑋

𝐿0(𝐱, 𝐯, 𝛌) , ∀𝐯 ∈ 𝑉 ∩ 𝑉0 (13) 

Where 

𝐿0(𝐱, 𝐯, 𝛌) = 𝑓(𝐱, 𝐯) + 𝛌𝑇𝐠(𝐱, 𝐯). (14) 

Using Theorem 1, Theorem 2, and the interpretation of supremum as the least upper limit, 
the master problem (8)-(9) can be expressed as: 

min
𝐯∈𝑉,𝜇

  𝜇                                                    (15) 

𝑠. 𝑡  inf
𝐱∈𝑋

 𝐿0(𝐱, 𝐯, 𝛌) ≤ 𝜇, ∀𝛌 ≥ 𝟎 (16) 

         inf
𝐱∈𝑋

 𝐿𝑓(𝐱, 𝐯, 𝛌) ≤ 0,         ∀𝛌 ∈ Λ. (17) 

The master problem (15)-(17) has many constraints because constraint (16) holds for 
all  𝛌 ≥ 𝟎 and constraint (17) holds for all 𝛌 ∈ Λ. To solve it, relax the master problem by 
first involving only some of the constraints in (16) and (17). The master problem (15)-
(17) in its relaxed form is as follows: 
In the nonlinear version:  

min
𝐯∈𝑉,𝜇

  𝜇                                                    (18) 

𝑠. 𝑡      𝐿0(𝐱
𝑙, 𝐯, 𝛌𝑙) ≤ 𝜇, 𝑙 ∈ 𝐾0 (19) 

      𝐿𝑓(𝐱
𝑙, 𝐯, 𝛌𝑙) ≤ 0,    𝑙 ∈ 𝐾𝑓 (20) 
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In the linear version:  
 
 
 

min
𝐯∈𝑉,𝜇

  𝜇                                                                                              (21) 

            𝑠. 𝑡      𝐿0(𝐱
𝑙, 𝐯, 𝛌𝑙) +

𝜕𝐿0
𝑇

𝜕v
(𝐱𝑙, 𝐯𝑙, 𝛌𝑙)(𝐯 − 𝐯𝑙) ≤ 𝜇,    𝑙 ∈ 𝐾0 (22) 

            𝐿𝑓(𝐱
𝑙, 𝐯, 𝛌𝑙) +

𝜕𝐿0
𝑇

𝜕𝐯
(𝐱𝑙, 𝐯𝑙 , 𝛌𝑙)(𝐯 − 𝐯𝑙) ≤ 0,    𝑙 ∈ 𝐾𝑓 (23) 

with 𝐱𝑙, 𝐯, 𝛌𝑙 being the optimal values at the l-th iteration obtained from solving the primal 
problem. The set of 𝐾0 contains an iteration index where the optimal solution of the primal 
problem is successfully found, while the set of 𝐾𝑓 contains an iteration index where the 

optimal solution of the primal problem is found through the feasibility problem. 
The procedure for determining the optimal solution through the primal and master 

problem is as follows: 
 

Initiation Stage:  
Choosing an initial point 𝐯0 ∈ 𝑉 that is feasible for the primal problem (5), 𝐾0 = ∅,𝐾𝑓 =

∅, 𝑘 = 0, 𝑈𝐵𝐷 = ∞, and a convergence tolerance 𝜀 > 0. 
 
Iteration Stage: 
Step 1: For a value 𝐯 = 𝐯𝑘 , solve the primal problem (5), set 𝑘 = 𝑘 + 1. 

a) If the primal problem is feasible, note that 𝐱𝑘 is the optimal value obtained, and 
the corresponding 𝛌𝑘 is the optimal Lagrange multiplier vector. Set 𝐾0 = 𝐾0 ∪ {𝑘}, 
which means adding a constraint of type (16) to the master problem. Revise 
𝑈𝐵𝐷 = min{𝑈𝐵𝐷, 𝑧(v𝑘)}. If the upper bound (𝑈𝐵𝐷) has improved, set the pair 
(𝐱𝑘, 𝐯𝑘) as the current most effective solution. 

b) If the primal problem is infeasible, solve the feasibility problem. Note that  𝐱𝑘 is 
the optimal solution obtained and  𝛌𝑘 is the corresponding optimal Lagrange 
multiplier vector. Set 𝐾𝑓 = 𝐾𝑓 ∪ {𝑘}, which means adding a constraint of type (17) 

to the master problem. 
Step 2: Solving the relaxed master problem, in the nonlinear version, following (18)-(20), 
or in the linear version, following (21)-(23). Suppose (𝐯𝑘, 𝛌𝑘) is the optimal solution of 
the relaxed master problem, then 𝜇𝑘 is a lower estimate of the initial problem. Set 𝐿𝐵𝐷 =
𝜇𝑘. If 𝑈𝐵𝐷 − 𝐿𝐵𝐷 ≤ 𝜀, the optimal solution is found, and the iteration stops. If 𝑈𝐵𝐷 −
𝐿𝐵𝐷 > 𝜀, go back to Step 1. 

RESULTS AND DISCUSSION  

Proving Karbowski’s Theorem 

There are three theorems related to GBD in [13]. However, the proofs for these three 
theorems are not presented. Therefore, this study presents the proofs for these three 
theorems. 

Theorem 1 addresses the dual representation of  𝑉0 establishes a condition under 
which a particular integer decision variable leads to a solution that meets all constraints 
defined by 𝐠(𝐱, 𝐯). This provides a foundational criterion for the feasibility of solutions in 
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optimization contexts where convex functions are involved. 
Theorem 1. Assume 𝑋 is a non-empty convex set and the function g is convex in 𝑋 for each 
fixed value 𝐯 ∈ 𝑉. Also, assume 𝑍v = {𝐳 ∈ ℝ𝑚: ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯) ≤ 𝐳} is closed for each fixed 
value 𝐯 ∈ 𝑉. Then 𝐯∗ ∈ 𝑉 lies in 𝑉0if and only if 

inf
𝐱∈𝑋

𝐿𝑓(𝐱, 𝐯
∗, 𝛌) ≤ 0,   ∀𝛌 ∈∧, (24) 

Where 

∧= {𝛌 ∈ ℝ𝑚: 𝛌 ≥ 𝟎,∑𝜆𝑗 = 1

𝑚

𝑗=1

} , (25) 

𝐿𝑓(𝐱, 𝐯, 𝛌) = 𝛌𝑇𝐠(𝐱, 𝐯). (26) 

Proof.  
(⇒) Suppose 𝐯∗ ∈ 𝑉0, then ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯∗) ≤ 𝟎. Therefore, 𝐿𝑓(𝐱, 𝐯

∗, 𝛌) = 𝛌𝑇𝐠(𝐱, 𝐯∗) ≤

𝟎, ∀𝛌 ∈∧, because  𝛌𝑇 ≥ 0 and 𝐠(𝐱, 𝐯∗) ≤ 𝟎. Thus, inf
𝐱∈𝑋

𝐿𝑓(𝐱, 𝐯
∗, 𝝀) ≤ 0,   ∀𝛌 ∈∧. 

 
(⇐) Suppose 𝐯∗ satisfies (10)-(12), 

inf
𝐱∈𝑋

𝐿𝑓(𝐱, 𝐯
∗, 𝝀) = inf 

x∈𝑋
𝛌𝑇𝐠(𝐱, 𝐯∗) ≤ 0,   ∀𝛌 ∈∧ (27) 

Then 

sup 
𝛌≥𝟎

[inf 
𝐱∈𝑋

𝛌𝑇𝐠(𝐱, 𝐯∗)] ≤ 0 (28) 

so that 

sup 
𝛌≥𝟎

[inf 
𝐱∈𝑋

𝛌𝑇𝐠(𝐱, 𝐯∗)] = 0, (29) 

Equation (29) represents the duality of the convex programming problem 

min
𝐱∈𝑋

 0𝑇𝐱  𝑠. 𝑡 𝐠(𝐱, 𝐯∗) ≤ 𝟎 (30) 

which has a minimum value of  0. Given that 𝑍𝑣 is closed and the value of the dual problem 
(29) is finite, the primal problem (30) is feasible[11], which means the constraint 
𝐠(𝐱, 𝐯∗) ≤ 𝟎 is satisfied, so 𝐯∗ ∈ 𝑉0  
 

Theorem 2 deals with the dual representation of 𝑧(𝐯). It states that under certain 
conditions, the optimal value 𝑧(𝐯∗) can be expressed as a supremum of infima, providing 
a pathway to determine optimal strategies in MINLP. This relationship is crucial for 
establishing optimality conditions in scenarios where convexity is present. 
Theorem 2. Assume 𝑋 is a non-empty convex set and the function g is convex in 𝑋 for each 
fixed value 𝐯 ∈ 𝑉. Also, assume for 𝐯∗, at least one of the following conditions holds: 

1. 𝑧(𝐯∗) is bounded and the problem (7) has an optimal vector of Lagrange 
multipliers; 

2. 𝑧(𝐯∗) is bounded, , 𝐠(𝐱, 𝐯∗) and 𝑓(𝐱, 𝐯∗) are continuous in 𝑋, 𝑋 is a closed set, and 
the set of optimal solutions for problem (7) with accuracy 𝜀 ≥ 0  is non-empty and 
bounded, 

Then 

𝑧(𝐯 ) = sup
𝛌≥0 

inf
𝐱∈𝑋

𝐿0(𝐱, 𝐯, 𝛌) , ∀𝐯 ∈ 𝑉 ∩ 𝑉0 (31) 
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Where 

𝐿0(𝐱, 𝐯, 𝛌) = 𝑓(𝐱, 𝐯) + 𝛌𝑇𝐠(𝐱, 𝐯). (32) 

Proof. Considering equation (7). For 𝐯 = 𝐯∗, equation (7) becomes 

𝑧(𝐯∗) =  inf
𝐱∈𝑋

𝑓(𝐱, 𝐯∗)

𝑠. 𝑡    𝐠(𝐱, 𝐯∗) ≤ 𝟎.
(33) 

Given that 𝑋 is non-empty and convex, 𝑓 and 𝑔 are convex on 𝑋, it is obtained 

𝑧(𝐯∗) = inf
𝐱∈𝑋

 𝐿0(𝐱, 𝐯
∗, 𝛌) = inf

𝐱∈𝑋
[ 𝑓(𝐱, 𝐯∗) + 𝛌𝑇𝐠(𝐱, 𝐯∗)]. (34) 

The dual of the equation above can be written as: 

sup
𝛌≥𝟎 

inf
𝐱∈𝑋

[ 𝑓(𝐱, 𝐯∗) + 𝛌𝑇𝐠(𝐱, 𝐯∗)]. (35) 

(i) If condition 1 is satisfied 
Since 𝑧(𝐯∗) is bounded and there exists an optimal Lagrange multiplier vector for 𝑧(𝐯∗). 
This Lagrange multiplier vector is also an optimal Lagrange multiplier for its dual, and the 
optimal solutions for the primal and dual will be the same. 

(ii) If condition 2 is satisfied 
Since 𝑋 is closed, 𝑓 and 𝐠 are continuous on 𝑋, and 𝑧(𝐯∗) is bounded,  the dual and the 
primal values will be the same [11]. 
Based on (i) and (ii), the dual solution obtained will be the same as the primal solution, resulting 
in: 

𝑧(𝐯∗) = sup
𝛌≥𝟎 

inf
𝐱∈𝑋

[ 𝑓(𝐱, 𝐯∗) + 𝛌𝑇𝐠(𝐱, 𝐯∗)]. (36) 

The value 𝐯∗ applies to all possible fixed values of  𝐯, hence  

𝑧(𝐯 ) = sup
𝛌≥𝟎 

inf
𝐱∈𝑋

[𝑓(𝐱, 𝐯) + 𝛌𝑇𝐠(𝐱, 𝐯)] , ∀𝐯 ∈ 𝑉 ∩ 𝑉0 (37) 

or, 
𝑧(𝐯 ) = sup

𝛌≥𝟎 
inf
𝐱∈𝑋

𝐿0(𝐱, 𝐯
 , 𝛌) , ∀𝐯 ∈ 𝑉 ∩ 𝑉0, (38) 

where 

𝐿0(𝐱, 𝐯, 𝛌) = 𝑓(𝐱, 𝐯) + 𝛌𝑇𝐠(𝐱, 𝐯)   (39) 

Theorem 3 characterizes the projection of problems (1)-(4) into (8)-(9). It 
demonstrates the interconnectedness of solutions between the original MINLP problem 
and its projections. 
Theorem 3. For the projection from (1)-(4) to (8)-(9)., the following holds: 

1. The problem (1)-(4) has no solution or is unbounded if and only if the same is true 
for the problem (8)-(9). 

2. If  (𝐱̂, 𝐯̂) is an optimal solution to the problem (1)-(4), then 𝐯̂ is an optimal solution 
to the problem (8)-(9). 

3.  If 𝐯̂ is an optimal solution to the problem (8)-(9), and 𝐱̂ attains the infimum in the 
problem (7) when 𝐯 = 𝐯̂ then (𝐱̂, 𝐯̂) is an optimal solution to the problem (1)-(4). 

 
Proof.  

(i) It will be proven that the problem (1)-(4) has no solution or is unbounded if 
and only if the same holds for the problem (8)-(9). 
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(⇒) Suppose (1)-(4) has no solution. This means there is no (𝐱, 𝐯) that satisfies the 
constraint 𝐠(𝐱, 𝐯) ≤ 𝟎. Consequently, ∀𝐯 ∈ 𝑉, there is no 𝐱 ∈ 𝑋 that satisfies 𝐠(𝐱, 𝐯) ≤ 𝟎, 
resulting in 𝑉0 = ∅. Therefore, the problem (8)-(9) has no solution. Suppose (1)-(4) is 
unbounded, this means that ∀𝑀 > 0, ∃𝐱 ∈ 𝑋, 𝐯 ∈ 𝑉 ∋ 𝑓(𝐱, 𝐯) < 𝑀. Since the problem (8) 
has the same objective function as the problem (1)-(4) with a smaller set 𝑉, i.e., 𝐯 ∈ 𝑉 ∩
𝑉0 which is a subset of 𝑉, it is clear that ∀𝑀 > 0, ∃ 𝐯 ∈ 𝑉 ∩ 𝑉0  ∋ 𝑧(𝐯) < 𝑀, making the 
problem (8)-(9) also unbounded. 

(⇐) Suppose (8)-(9) has no solution. This means there is no 𝐯 ∈ 𝑉 ∩ 𝑉0. Consequently, 
there is no (𝐱, 𝐯) that satisfies the constraint 𝐠(𝐱, 𝐯) ≤ 𝟎 solution, resulting in the problem 
(1)-(4). Suppose (8)-(9) is unbounded. This means ∀𝑀 > 0, ∃𝐱 ∈ 𝑋, 𝐯 ∈ 𝑉 ∋ 𝑓(𝐱, 𝐯) < 𝑀. 
Since 𝑉0 = {𝐯: ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯) ≤ 𝟎}, there will be 𝐱 ∈ 𝑋 ∀𝐯 ∈ 𝑉0 such that 𝑓(𝐱, 𝐯) < 𝑀. 
Therefore, the problem (1)-(4) is also unbounded. 

 
(ii) It will be proven that if (𝐱 , 𝐯 ) is an optimal solution for the problem (1)-(4), 

then 𝐯  is an optimal solution for the problem (8)-(9). Suppose (𝐱 , 𝐯 ) is an 

optimal solution for the problem (1)-(4), then  (𝐱̂, 𝐯̂) satisfies 𝐠(𝐱 , 𝐯 ) ≤ 𝟎. By 

definition of 𝑉0, 𝐯 ∈ 𝑉0. Since (𝐱 , 𝐯 ) is an optimal solution for the problem (1)-

(4), we have 𝑓(𝐱 , 𝐯 ) ≤ 𝑓(𝐱, 𝐯 ) for every 𝐱 ∈ 𝑋. Based on the definition of 𝑧(𝐯 ), 

for every 𝐯 ∈ 𝑉 ∩ 𝑉0 and 𝐱 ∈ 𝑋, 𝑧(𝐯 ) ≤ 𝑓(𝐱 , 𝐯 ) ≤ 𝑓(𝐱, 𝐯 ). This means 𝐯  

minimizes 𝑧(𝐯) over 𝑉 ∩ 𝑉0, so v  is an optimal solution for the problem (8)-(9). 

 

(iii) If v̂ is an optimal solution for the problem (8)-(9) and x̂ reaches the infimum in 

problem (7) when 𝐯 = 𝐯 , then (𝐱 , 𝐯 ) is an optimal solution for the problem (1)-

(4). Suppose 𝐯  is an optimal solution for the problem (8)-(9), then 𝐯 ∈ 𝑉 and 

𝐯 ∈ 𝑉0. Since 𝐯 ∈ 𝑉0, ∃𝐱 ∈ 𝑋 ∋ 𝐠(𝐱, 𝐯 ) ≤ 𝟎. Also, suppose 𝐱  reaches the infimum 

in problem (7) when 𝐯 = 𝐯 , then ∀𝐱 ∈ 𝑋, 𝑓(𝐱 , 𝐯 ) ≤ 𝑓(𝐱, 𝐯 ) and (𝐱 , 𝐯 ) satisfies 

𝐠(𝐱 , 𝐯 ) ≤ 𝟎. Therefore, (𝐱 , 𝐯 ) is an optimal solution for the problem (1)-(4). 

Based on (i), (ii), and (iii), Theorem 3 is proven   

The Application of the GBD Method for Solving MINLP Models 

Consider the following problem: 
A production company produces two varieties of products, Product A and Product B, 

measured in meters. The company must consider the production costs and available 
resources to produce these products. The production cost for each product depends on 
the number of meters produced and the choice of production method. The production cost 
for Product A is calculated as 0.3 times the square of the number of meters produced. The 
production cost for Product B is calculated as 1.5 times the square of the number of meters 
produced. Additionally, if the company decides to use a faster production method, there 
will be an additional fixed cost of 20 for Product A and 30 for Product B. The company has 
several constraints that must be considered:  

 The total number of meters produced for Product A and Product B must be at least 
170.  

 The company can produce up to 150 meters of Product A and 100 meters of 
Product B.  

 If the company chooses the faster production method for Product A, the number of 
meters produced must be at least 50 meters. Similarly, if the speedier production 
method is chosen for Product B, the total number of meters produced must be at 
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least 30.  
 At least one of the products, either A or B, must use the faster production method. 
How many meters of Product A and Product B should the company produce, and 

should it use the faster production method for each product, to minimize the total 
production cost? 
Define the following variables:  
𝑥1 : the quantity of Product A produced (in meters) 
𝑥2 : the quantity of Product B produced (in meters) 
𝑣1 : 1 if the faster production method is used for Product A, 0 otherwise 
𝑣2 : 1 if the faster production method is used for Product B, 0 otherwise 

The optimization model for the above problem is as follows: 

min 0.3𝑥1
2 + 1.5𝑥2

2 + 20𝑣1 + 30𝑣2
𝑠. 𝑡  𝑥1 + 𝑥2 ≥ 170,                          

𝑥1 ≤ 150,                           
𝑥2 ≤ 100,                           
𝑥1 ≥ 50𝑣1,                        
𝑥2 ≥ 30𝑣2,                        
𝑣1 + 𝑣2 ≥ 1                     

𝑣1, 𝑣2 ∈ {0,1}, 𝑥 ∈ ℝ.     

(40) 

To simplify, transform problem (40) into the MINLP standard form (1)-(4) which only 
contains "≤" constraints. The problem (40) can be expressed as: 

min0.3𝑥1
2 + 1.5𝑥2

2 + 20𝑣1 + 30𝑣2 (41) 

𝑠. 𝑡  170 − 𝑥1 − 𝑥2 ≤ 0,                         (42) 

𝑥1 − 150 ≤ 0,                           (43) 

𝑥2 − 100 ≤ 0,                          (44) 

50𝑣1 − 𝑥1 ≤ 0,                      (45) 

30𝑣2 − 𝑥2 ≤ 0,                     (46) 

1 − 𝑣1 − 𝑣2 ≤ 0,                 (47) 

𝑣1, 𝑣2 ∈ {0,1}, 𝑥 ∈ ℝ.            (48) 

The primal problem of problems (41)–(48) is part of the problem that depends only 
on the variable integer (𝐱), with the value 𝐯 already defined. Since constraint (47) only 
contains variable 𝐯, these can be removed and directly integrated into the master 
problem. The primal formulation obtained is: 

min
𝑥1,𝑥2

0.3𝑥1
2 + 1.5𝑥2

2 + 20𝑣1 + 30𝑣2

𝑠. 𝑡  170 − 𝑥1 − 𝑥2 ≤ 0,                    
𝑥1 − 150 ≤ 0,                           
𝑥2 − 100 ≤ 0,                           
50𝑣1 − 𝑥1 ≤ 0,                        
30𝑣2 − 𝑥2 ≤ 0,                        
 𝑥 ∈ ℝ,                                          

(49) 

where 𝑣1, 𝑣2 are constants. The corresponding Lagrange function for the primal problem 
is: 
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𝐿0(𝐱, 𝐯, 𝛌) = 0.3𝑥1
2 + 1.5𝑥2

2 + 20𝑣1 + 30𝑣2 + 𝜆1(170 − 𝑥1 − 𝑥2) + 𝜆2(𝑥1 − 150)

+𝜆3(𝑥2 − 100) + 𝜆4(50𝑣1 − 𝑥1 ≤ 0) + 𝜆5(30𝑣2 − 𝑥2)
(50) 

 
The resulting relaxed master problem in nonlinear form follows (18)-(20), with the 
addition of constraint (47) as follows: 

min
v∈𝑉,𝜇

𝜇                                         

𝑠. 𝑡  𝐿0(x
𝑙 , v, λ𝑙) ≤ 𝜇,    𝑙 ∈ 𝐾0,

        𝐿𝑓(x
𝑙, v, λ𝑙) ≤ 0,    𝑙 ∈ 𝐾𝑓 ,

                  1 − 𝑣1 − 𝑣2 ≤ 0,                           

(51) 

 
Initiation Stage: Choosing an initial point (𝑣1, 𝑣2) = (1,1). Set 𝑘 = 0,𝐾0 = ∅,𝐾𝑓 =

∅,𝑈𝐵𝐷 = ∞, and 𝜀 = 0.1. 
 
Iteration Stage: 
Iteration 1: 
 
Step 1: Substituting (𝑣1

1, 𝑣2
1) = (1,1) into the primal problem (49). The optimal solution 

obtained is: 𝑥1
1 = 139.999, 𝑥2

1 = 30, 𝜆1
1 = 83.999, 𝜆2

1 = 0, 𝜆3
1 = 0,  𝜆4

1 = 0, 𝜆5
1 = 6, with an 

optimal value of 7280. Set 𝑈𝐵𝐷 = min{∞, 7280) = 7280 and 𝑘 = 𝑘 + 1 = 1. Since the 
optimal solution is directly obtained from the primal problem, set 𝐾0 = 𝐾 ∪ {𝑘} = {1}. 
Step 2: Solve master problem: 
 

min
v∈𝑉,𝜇

𝜇                                         

𝑠. 𝑡  7050 + 20𝑣1 + 210𝑣2 ≤ 𝜇,
           1 − 𝑣1 − 𝑣2 ≤ 0,                           

(52) 

 
The optimal solution obtained is: (𝑣1

2, 𝑣2
2) = (1,0), 𝜇 = 7070. Set 𝐿𝐵𝐷 = 𝜇 = 7070 and 

𝑈𝐵𝐷 − 𝐿𝐵𝐷 = 7280 − 7070 = 210 > 0.1. Since 𝑈𝐵𝐷 − 𝐿𝐵𝐷 > 𝜀, the iteration is 
continued. 
 
Iteration 2: 
 
Step 1: Substituting (𝑣1

2, 𝑣2
2) = (1,0) into the primal problem (49). The optimal solution 

obtained is: : 𝑥1
2 = 141.667, 𝑥2

2 = 28.333, 𝜆1
2 = 85, 𝜆2

2 = 0, 𝜆3
2 = 0,  𝜆4

2 = 0, 𝜆5
1 = 0, with an 

optimal value of 7245. Set 𝑈𝐵𝐷 = min{7280,7245} = 7245 and 𝑘 = 𝑘 + 1 = 2. Since the 
optimal solution is directly obtained from the primal problem, set 𝐾0 = 𝐾 ∪ {𝑘} = {1,2}. 
 
Step 2: Solve the master problem: 

min
v∈𝑉,𝜇

𝜇                                         

𝑠. 𝑡  7050 + 20𝑣1 + 210𝑣2 ≤ 𝜇,
      7225 + 20𝑣1 + 30𝑣2 ≤ 𝜇,

           1 − 𝑣1 − 𝑣2 ≤ 0,                           

(53) 

The optimal solution obtained is: (𝑣1
3, 𝑣2

3) = (1,0), 𝜇 = 7245. Set 𝐿𝐵𝐷 = 𝜇 = 7245 and 
𝑈𝐵𝐷 − 𝐿𝐵𝐷 = 7245 − 7245 = 0 < 0.1. Since 𝑈𝐵𝐷 − 𝐿𝐵𝐷 ≤ 𝜀, the iteration is stopped. The 
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optimal solution obtained is 𝑥1 = 141.667, 𝑥2 = 28.333, 𝑣1 = 1, 𝑣2 = 0, achieve a result of the 
objective function of  7245.  

Based on the optimal solution obtained, the company should produce 141.667 meters 
of Product A and 28.333 meters of Product B. To minimize costs, the faster production 
method should be applied to Product A, while it is unnecessary for Product B. By following 
this production plan, the total production cost will amount to 7245. 

CONCLUSIONS 

This paper explains how to solve the MINLP models using the GBD method. This 
approach breaks down the MINLP problem into smaller components by dividing it into a 
master problem, which includes challenging integer variables, and a primal problem, 
which only consists of continuous variables that are simpler to solve. The iterative process 
alternately solves the master and primal problems until the objective function converges 
to the same or nearly identical value, indicating that the solution is approaching the true 
optimal solution. This paper also provides detailed proofs of three theorems related to 
GBD, which were not fully addressed in previous literature. This contributes theoretically 
to understanding the GBD method in solving the MINLP optimization problems. 

Furthermore, this paper presents the practical application of the GBD method in 
solving real-world MINLP problems. The results demonstrate that the GBD method 
consistently identifies optimal solutions that satisfy all constraints, showcasing its 
effectiveness in tackling complex MINLP challenges. This shows the potential of GBD to 
address various MINLP issues in the future. 
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