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ABSTRACT  

This study aims to develop a multi-response semiparametric regression model using a truncated 
spline multi-group approach to understand the factors influencing rice pest control under light 
and dark conditions. The approach utilized is a multi-response semiparametric regression based 
on truncated splines, with analyses conducted on secondary and simulated data. The model was 
tested under various scenarios to identify the best model based on the coefficient of 
determination. The analysis revealed that the optimal model for secondary data is a 
semiparametric regression model with a linear order and a single knot point, achieving a 
coefficient of determination of 89.2%. For simulated data, the linear model with a single knot 
point also showed the best performance, with the highest coefficient of determination at 96.1%, 
particularly when error variance and multicollinearity levels were kept low to moderate. The 
study concludes that the multi-response semiparametric regression model using a truncated 
spline approach is effective in capturing relationships between variables in rice pest control, 
both in actual and simulated data. This model proves optimal for situations involving complex 
data variability. The research contributes methodologically to the development of more flexible 
multi-response regression models. 
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INTRODUCTION 

A statistical method that is often used to determine the relationship pattern between 
one or more variables is regression analysis. Regression analysis can identify the 
relationship between predictor variables and response variables [1]. Predictor and 
response variables must first be determined as the first step in performing regression 
analysis. After that, it is necessary to determine the relationship between predictor 
variables and response variables through the relationship curve displayed by the scatter 
diagram. Based on the shape of the relationship curve and the fulfillment of the linearity 
assumption tested using Ramsey RESET, there are three approaches used to estimate 
the regression curve, namely parametric, nonparametric, and semiparametric 

http://dx.doi.org/10.18860/ca.v10i1.29773
mailto:laila.nurazizah52@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/


Simulation Study and Development of Semiparametric Multiresponse Multigroup 

Laila Nur Azizah 37 

approaches [2]. 
In parametric regression, a linear relationship between predictor and response 

variables. If this linearity assumption is not met, a nonparametric regression model can 
be used as an alternative. The parametric regression approach has rigid and strong 
assumptions, and the regression curve's shape is already known. Conversely, in the 
nonparametric regression approach, the regression curve's shape is assumed to be 
unknown. Nonparametric regression curves are considered to have high flexibility [3]. If 
part of the regression curve pattern is known and part is unknown, then a 
semiparametric regression approach is used [4]. The regression curve pattern can be 
identified by examining the scatter plot of each predictor and response variable.  

One form of nonparametric regression is spline, which is continuous and segmented 
polynomial pieces [2]. Spline is divided into two models namely smoothing spline and 
truncated spline. Smoothing spline is used to predict functions based on model accuracy 
criteria and smoothing parameters that determine the size of the smoothing curve. 
While the truncated spline considers the presence of knot points in determining the 
optimal points that should be used. Truncated spline has knot points that show changes 
in data behavior patterns so that the spline has the advantage and finds the data pattern 
by itself. This advantage is because the spline can provide good flexibility so that it is 
possible to adjust to the local characteristics of the function or data [5]. Truncated spline 
has the main advantage in overcoming data that has significant changes in behavior at 
certain sub-intervals. Truncated Spline analysis using spline knot points can produce a 
more flexible regression curve because it is able to overcome data patterns that show 
sharp up and down patterns [6]. 

Truncated spline regression allows the model to adapt to data complexity without 
imposing a linear shape that may not fit the data. Therefore, it is necessary to ensure 
that the relationship between the predictor and response variables is linear or requires 
a more complex model, such as a truncated spline. The linearity assumption test used is 
the Ramsey RESET (Regression Equation Specification Error Test). Currently, there is a 
modification of the Ramsey RESET test developed by [2], namely the quadratic Ramsey 
RESET modification. This test is designed to capture quadratic patterns in the data, 
thereby identifying models that may require simple nonlinear elements like second-
degree polynomials. However, the quadratic Ramsey RESET modification is limited to 
quadratic patterns and cannot detect more complex patterns, such as those captured by 
truncated spline models. To date, there has been no further development leading to a 
Ramsey RESET modification that can specifically detect the need for a truncated spline 
model. This indicates an opportunity to develop a more sophisticated test approach, 
which can directly evaluate whether the data requires a more complex spline approach. 

A relationship in regression analysis is not always between predictor variables and 
one response variable. Multi-response regression is a regression model when the 
response variable is more than one and a response variable has a relationship with 
other response variables. Multirespon regression allows the relationship between 
variables that can be seen through the variance matrix [7]. The estimation used is 
Weighted Least Square. WLS allows more accurate estimation in truncated spline 
regression models for multirespon data, especially in capturing complex pattern 
changes in various data segments.  

The development of the multirespon multigroup regression model in this study lies 
in the simultaneous multirespon multigroup analysis, where usually each group is 
analyzed one by one for each response variable. In the multigroup multiresponse 
regression approach, several response variables are analyzed simultaneously for each 
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group and facilitated by the use of dummy variables to accommodate differences in 
characteristics between groups. Multigroup multiresponse semiparametric regression 
models have a wide range of potential applications, including in the agricultural field 
related to pests. 

As an agricultural country, Indonesia aims to increase rice productivity to achieve 
food self-sufficiency. One of the biggest challenges in rice cultivation is pest attacks that 
can significantly reduce yields. According to [8], effective rice pest control involves the 
using of various methods, including chemical pesticides, pest-resistant varieties, and 
integrated ecosystem management. Pests such as brown planthoppers (Nilaparvata 
lugens), stem borers (Scirpophaga incertulas), and rice field rats often cause significant 
losses in rice production in Indonesia, even up to 30-50% of the potential harvest in 
some regions [9]. Farmers can experience increased yields and better welfare when pest 
control methods are applied correctly. The effectiveness of pest control is crucial to 
ensure the sustainability of rice production and farmers' welfare. Therefore, pest control 
strategies must be comprehensively designed to achieve optimal results by considering 
environmental and economic factors. This study divides rice pest control into two 
conditions, namely day and night, because pests in both conditions have different 
activities. 

The research conducted aims to develop a model of the effectiveness of rice pest 
control in Indonesia through multirespon multigroup semiparametric regression 
analysis with a truncated spline estimator. This model is expected to help farmers and 
policy makers in designing effective pest control strategies in order to increase rice 
productivity so as to achieve food self-sufficiency. In addition, this model also conducts 
simulation studies to see the best multirespon multigroup semiparametric regression 
model scenario. This model is expected to assist farmers and policymakers in designing 
effective pest control strategies to improve rice productivity, ultimately achieving food 
self-sufficiency. The novel approach proposed for rice pest control utilizes a multi-
response multi-group semiparametric regression model. This approach accounts for 
differences in pest activity under light and dark conditions, offering flexibility in 
analyzing complex and heterogeneous data, and supporting increased crop yields and 
the welfare of farmers in Indonesia. The multi-response multi-group approach has not 
been applied in previous research, making it an innovative contribution of this study. 

 

METHODS  

Data and Research Variables 

This study used secondary data from research by Wardhani, et al (2024) to analyze the 
presence of pests and natural enemies in two temporal conditions, namely day and 
night. three pests analyzed in this study were Oxya sp. (𝑋1), Nilaparvata sp. (𝑋2), and 
Chilo sp. (𝑋3). Meanwhile, the three natural enemies analyzed were Sympetrum sp. (𝑌1), 
Pardosa sp. (𝑌2), and Coccinella sp. (𝑌3). The relationship between predictor variables 
and response variables is as shown in Figure 1. 
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Figure 1. Research Model 

A sample size of 60 observations was determined for each group (120 samples in total). 

Stages of Data Analysis 
The stages of data analysis carried out in this study are as follows: 
1. Prepare secondary data 
2. Test the linearity assumption with the modified Regression Specification Error Test 

(RESET).  
3. Estimating the component functions of multiresponse semiparametric regression 

using Iterative Weighted Least Square. WLS has a diagonal matrix whose elements 
consist of the components of vector W called the weighting matrix, where W is equal 

to 
1ˆ 

Σ . Thus, the estimator form of the spline function using WLS is as follows [10]. 

                       
1 1T 1 Tˆ ( )ˆ ˆf y  X X X ΣXΣ  (1) 

4. Build multigroup multiresponse semiparametric regression model with truncated 
spline function. 

5. Selecting the optimal knot points in the truncated spline multirespon 
semiparametric regression based on the minimum Generalized Cross Validation 
(GCV). The GCV method can be expressed using the following formula [11]. 

                                                                𝐺𝐶𝑉(𝐾) =
𝑀𝑆𝐸(𝑘

~
)

𝑛−1𝑡𝑟 [𝐈 − 𝐀𝑘
~
]
2 

(2) 

        𝑀𝑆𝐸 (𝑘
~
) = 𝑛−1 ∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑛

𝑖=1

 

6. Determining the best spline model by calculating the minimum GCV value of all 
models formed. 

7. Estimating the best semiparametric multirespon multigrup truncated spline 
regression model in pest control modeling. The best model is determined based on 
the model with the highest coefficient of determination. 

8. Calculating the model determination coefficient. The coefficient of determination 
represents the proportion of total variability around the mean value explained by 
the regression model [12]. The formula for the coefficient of determination is 
defined as follows [13]. 
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9. Generating simulated data from secondary data. 
10. Form a model from the simulation data according to the scenario that has been 

determined from the simulation data. 
11. Testing the accuracy of the results of each simulation data scenario using the GCV 

value. 
12. Interpret the results of secondary data analysis and simulation data analysis results. 

Data Simulation Steps 
The stages of data simulation in multigroup multirespon semiparametric regression are 
as follows: 
1. Assign data for predictor variables derived from secondary data.  
2. Using regression coefficients obtained from secondary data for simulation data to be 

applied. 
3. Generate multivariate normally distributed error values with error variances of 0.3; 

0.5; 0.8. 
4. Establish multicollinearity with low, medium, and high categories. Multicollinearity 

is a condition where there is a linear relationship or high correlation between 
predictor variables in a regression model. The presence of multicollinearity can be 
identified if the Variance Inflation Factor (VIF) value exceeds 10.  

                                               𝑉𝐼𝐹ℎ =
1

1−𝑅ℎ
2                           (4) 

𝑅ℎ is the coefficient of determination of a single predictor variable in a regression 
model as the response variable (𝑋ℎ) and the predictor variables in the regression 
model as other predictor variables (𝑋𝑖, 𝑖 ≠ ℎ). The criteria for VIF values are as 
follows [14]. 

Table 1. Category of Multicollinearity 
Criteria Multicollinearity Level Categories 
𝑉𝐼𝐹 < 5 Low 

5 < 𝑉𝐼𝐹 < 10 Middle 
𝑉𝐼𝐹 > 10 High 

5. Forming simulation data by combining predictor variables and response variables 
based on scenarios with each scenario performed 100 times. 

6. The generation scenario was designed to determine the impact of different 
semiparametric components on the regression model and different multigroup 
conditions. The designed scenarios consisted of possible models that were obtained 
and designed in such a way as to fulfill the conditions in accordance with the design 
of the scenarios described in Table 2. 

Table 2. Data Simulation Scenario 

Scenario 

Relationship Between Variable 

Group 1 Group 2 
𝑋1 → 𝑌1 
𝑋1 → 𝑌2 
𝑋1 → 𝑌3 

𝑋2 → 𝑌1 
𝑋2 → 𝑌2 
𝑋2 → 𝑌3 

𝑋3 → 𝑌1 
𝑋3 → 𝑌2 
𝑋3 → 𝑌3 

𝑋1 → 𝑌1 
𝑋1 → 𝑌2 
𝑋1 → 𝑌3 

𝑋2 → 𝑌1 
𝑋2 → 𝑌2 
𝑋2 → 𝑌3 

𝑋3 → 𝑌1 
𝑋3 → 𝑌2 
𝑋3 → 𝑌3 

1 L L1K L1K L L1K L1K 
2 L L L2K L L L2K 
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Scenario 

Relationship Between Variable 

Group 1 Group 2 
𝑋1 → 𝑌1 
𝑋1 → 𝑌2 
𝑋1 → 𝑌3 

𝑋2 → 𝑌1 
𝑋2 → 𝑌2 
𝑋2 → 𝑌3 

𝑋3 → 𝑌1 
𝑋3 → 𝑌2 
𝑋3 → 𝑌3 

𝑋1 → 𝑌1 
𝑋1 → 𝑌2 
𝑋1 → 𝑌3 

𝑋2 → 𝑌1 
𝑋2 → 𝑌2 
𝑋2 → 𝑌3 

𝑋3 → 𝑌1 
𝑋3 → 𝑌2 
𝑋3 → 𝑌3 

3 L Q1K Q1K L Q1K Q1K 

4 L L Q2K L L Q2K 

5 L L1K Q2K L L2K Q1K 

      L: Linear; L1K: Linear 1 Knot; L2K : Linear 2 Knot; Q1K: Quadratic 1 Knot, Q2K: Quadratic 2 Knots 

RESULTS AND DISCUSSION  

Ramsey RESET Modification 
 The Ramsey RESET (Regression Equation Specification Error Test) modification 
is a diagnostic tool designed to assess whether a linear regression model suffers from 
misspecification, such as omitted variables or incorrect functional forms. The steps of 
testing the modified Ramsey RESET are as follows: 
 Regress the estimated value of the response variable as follows. 

0 1 1
ˆ ˆˆ

i iY X                                                    (5)  

Calculate the coefficient of determination of the regression with equation (6) 
2
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Where 
𝑌𝑖  : Response variable at the i-th observation 
�̂�𝑖

∗ : Estimated response variable with the i-th additional predictor variable 
�̅� : Average value of response variable 
𝑅2

2 : Coefficient of determination of linear regression 
 Form a regression equation by adding exogenous variables, namely so that the 

estimated value of the response variable is obtained as follows. 
Linear Order Truncated Spline with 1 Knot 

1 1

* * *
0 1 1 2( )ˆ ˆ ˆˆ

ii i X kY X                                                   (7)  

Linear Order Truncated Spline with 2 Knots 

1 1 1 2

* * * *
0 1 1 2 3( ) ( )ˆ ˆ ˆ ˆˆ

i ii i X k X kY X               (8) 

Calculate the coefficient of determination of the regression with equation (9). 
* 2
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Where: 
𝑌𝑖  : Response variable at the i-th observation 
�̂�𝑖

∗ : Estimated response variable with the i-th additional predictor variable 
�̅�   : Average value of response variable 
𝑅2

2 : Coefficient of determination of linear regression with additional predictor 
variables 

 Test the linearity between predictor variables on the response with the following 
hypothesis 
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Linear Order Truncated Spline with 1 Knot 

0 2: 0H    

       1 :H
2 0   

Linear Order Truncated Spline with 2 Knots 

0 2 3: 0H     

1 :H at least one 0; 2,3j j    

With the value of the F test statistic using formula (10). 
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                                                  (10) 

j = 1,2,…,m; m : additional exogenous variables 
p : initial exogenous variable 
i = 1,2,3,…n; n : number of observations 

 Determining the critical value approximates the F distribution at 𝛼 = 5%.  
The test criterion is if the test statistic 𝐹ℎ𝑖𝑡𝑢𝑛𝑔 ≥ 𝐹(𝛼,𝑚,𝑛−𝑝−1−𝑚) or p-value < 𝛼 then 

it’s 𝐻0 rejected, meaning the model is not linear.  
The classic Ramsey RESET linearity test aims to detect the relationship between 

predictor variables and response variables. The Ramsey RESET test was applied to the 
temporally stratified data (No Group, Day Group, and Night Group) presented in Table 3. 

Table 3. Ramsey RESET Classic Linearity Test Results 

Num Relationship between Variables 
p-value 

Without 
Group 

Group 1 
(Day) 

Group 2 
(Night) 

1 Oxya sp. pests. (𝑋1) → Natural Enemies of Sympetrum 
sp. (𝑌1)  

0,856 0,953 0,953 

2 Nilaparvata sp pests. (𝑋2) → Natural Enemies of 
Sympetrum sp. (𝑌1) 

0,963 0,926 0,951 

3 Chilo sp. pests. (𝑋3) → Natural Enemies of Pardosa sp. 
(𝑌2) 

0,942 0,990 0,252 

4 Oxya sp. pests. (𝑋1) → Natural Enemies of Pardosa sp. 
(𝑌2)  

<0,001* 0,987 0,272 

5 Nilaparvata sp pests. (𝑋2) → Natural Enemies of 
Pardosa sp. (𝑌2) 

0,001* 0,010* 0,968 

6 Chilo sp. pests. (𝑋3) → Natural Enemies of Coccinella sp. 
(𝑌3) 

0,647 0,565 0,693 

7 Oxya sp. pests. (𝑋1) → Natural Enemies of Coccinella sp. 
(𝑌3) 

0,268 0,469 <0,001* 

8 Nilaparvata sp. pests. (𝑋2) → Natural Enemies of 
Coccinella sp. (𝑌3) 

0,440 0,985 0,115 

9 Chilo sp. pests. (𝑋3) → Natural Enemies of Coccinella sp. 
(𝑌3) 

0,235 0,800 <0,001* 

 
Table 3 shows that the non-linear relationship in the category without groups is found in 
the relationship between Oxya sp. against natural enemies Pardosa sp. and the 
relationship between Nilaparvata sp. against natural enemies Pardosa sp. While in the 
day group category, the non-linear relationship is found in the relationship between 
Nilaparvata sp. against Pardosa sp. In the night group category, the non-linear 
relationship is found in the relationship between Oxya sp. pests against Coccinella sp. 
and the relationship between Chilo sp. pests against natural enemies Coccinella sp. These 
four relationships will be further identified regarding the non-linear relationship of the 
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most suitable truncated spline approach by means of a linearity test with modified 
Ramsey RESET. The results of the Ramsey RESET modification from the application of 
equations (5) to (10). 
 
 
 

Table 4. Linearity Test Results Modified Ramsey RESET Linear Order 

Relationship Between Variables 
Linear 1 Knot Linear 2 Knots 

Group 1 
(Day) 

Group 2 
(Night) 

Group 
1 (Day) 

Group 2 
(Night) 

Oxya sp pests (𝑋1) → Natural Enemies of Pardosa sp. (𝑌2) 0,512 0,019* 0,389 0,061* 

Nilaparvata sp pests (𝑋2) → Natural Enemies of Pardosa 
sp. (𝑌2) 

0,001* 0,154 0,006* 0,969 

Oxya sp pests (𝑋1) → Natural Enemies of Coccinella sp. 
(𝑌3) 

0,087* 0,866 0,302 0,905 

Chilo sp pests (𝑋3) → Natural Enemies of Coccinella sp. 
(𝑌3) 

0,106 <0,001* 0,161 <0,001* 

* means significant 

 
Overall, the p-value of the 2-knot linear approach is higher than the 1-knot linear 

approach, which indicates that the 2-knot linear model is less sensitive in capturing the 
nonlinearity of the relationship between variables in the study. The linearity test results 
show that there is a linear and non-linear relationship between variables.  The 
relationship between variables that are linear will be solved with a parametric 
approach. In contrast, the relationship between variables that are not linear will be 
solved by a nonparametric approach using a linear order truncated spline with one knot 
point. The combination of parametric and nonparametric approaches is called 
semiparametric so the next step is a multi-response multi-group truncated spline 
semiparametric regression analysis. 
 

Function Estimation of Semiparametric Truncated Spline Multi-Response Multi-
Group Regression Model 

Multi-response multi-group semiparametric regression is an equation model that 
facilitates multi-response semiparametric regression on certain categories through a 
dummy approach. One form of multi-response regression involves three predictor 
variables (𝑥1, 𝑥2, 𝑥3)  and three response variables (𝑦1, 𝑦2, 𝑦3)  with some parametric and 
nonparametric relationships. The relationship between the variables follows the 
modified Ramsey RESET in Table 2 and Table 3. The multirespon multigroup truncated 
spline semiparametric regression equation model can be formulated according to this 
pattern as equation (11). 

 
�̂�1𝑖 = 𝛽01 + 𝛽11𝑥1𝑖 + 𝛽21𝑥1𝑖𝐷𝑖 + 𝛽31𝑥2𝑖 + 𝛽41𝑥2𝑖𝐷𝑖 + 𝛽51𝑥3𝑖 + 𝛽61𝑥3𝑖𝐷𝑖                (11) 
�̂�2𝑖 = 𝛽02 + 𝛽12𝑥1𝑖 + 𝛽22𝑥1𝑖𝐷𝑖 + 𝛼12(𝑥1𝑖 − 𝑘1)+𝐷𝑖 + 𝛽32𝑥2𝑖 + 𝛽42𝑥2𝑖𝐷𝑖 + 
           𝛼22(𝑥2𝑖 − 𝑘2)+(1 − 𝐷𝑖) + 𝛽52𝑥3𝑖 + 𝛽62𝑥3𝑖𝐷𝑖  
�̂�3𝑖 = 𝛽03 + 𝛽13𝑥1𝑖 + 𝛽23𝑥1𝑖𝐷𝑖 + 𝛼13(𝑥1𝑖 − 𝑘3)+(1 − 𝐷𝑖) + 𝛽33𝑥2𝑖 + 𝛽43𝑥2𝑖𝐷𝑖 + 
           𝛽53𝑥3𝑖 + 𝛽63𝑥3𝑖𝐷𝑖+𝛼23(𝑥3𝑖 − 𝑘4)+𝐷𝑖 
 
The matrix form of equation (11) is:  
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Where: 

𝑿𝒏×𝟕 = [

1 𝑥11

1 𝑥12

𝑥11𝐷𝑖 𝑥21

𝑥12𝐷𝑖 𝑥22

𝑥21𝐷𝑖 𝑥31 𝑥31𝐷𝑖

𝑥22𝐷𝑖 𝑥32 𝑥32𝐷𝑖

⋮ ⋮
1 𝑥1𝑛

⋮ ⋮
𝑥1𝑛𝐷𝑖 𝑥2𝑛

⋮ ⋮         ⋮
𝑥2𝑛𝐷𝑖 𝑥3𝑛 𝑥33𝐷𝑖

]

𝑛 × 7

 

Notes: 
𝑦𝑖𝑗  : i-th value of j-th response variable 

𝑥𝑖𝑗  : i-th value of j-th predictor variable 

𝛽0𝑗 : Intercept on the jth response variable 

𝛽𝑖𝑗 : Regression coefficient on the j-th response variable 

𝜀𝑖𝑗 : The i-th error on the j-th response variable 

Equation (11) is written in the form of multirespon regression for each group with 𝐷𝑖  
value is bellow. 
Model equation for the day group with the value of D is 0. 
�̂�11𝑖 = 𝛽01 + 𝛽11𝑥1𝑖 + 𝛽31𝑥2𝑖 + 𝛽51𝑥3𝑖 
�̂�21𝑖 = 𝛽02 + 𝛽12𝑥1𝑖 + 𝛽32𝑥2𝑖 + 𝛼22(𝑥2𝑖 − 𝑘2)+ + 𝛽52𝑥3𝑖 
�̂�31𝑖 = 𝛽03 + 𝛽13𝑥1𝑖 + 𝛼13(𝑥1𝑖 − 𝑘3)+ + 𝛽33𝑥2𝑖 + 𝛽53𝑥3𝑖              (12) 
 
Model equation for the night group with D value of 1. 
�̂�12𝑖 = 𝛽01 + (𝛽11 + 𝛽21)𝑥1𝑖 + (𝛽31 + 𝛽41)𝑥2𝑖 + (𝛽51 + 𝛽61)𝑥3𝑖 
�̂�22𝑖 = 𝛽02 + (𝛽12 + 𝛽22)𝑥1𝑖 + 𝛼12(𝑥1𝑖 − 𝑘1)+ + (𝛽32 + 𝛽42)𝑥2𝑖 + (𝛽52 + 𝛽62)𝑥32𝑖       (13) 
�̂�32𝑖 = 𝛽03 + (𝛽13 + 𝛽23)𝑥1𝑖 + (𝛽33 + 𝛽43)𝑥2𝑖 + (𝛽53 + 𝛽63)𝑥3𝑖 + 𝛼23(𝑥3𝑖 − 𝑘4)+ 
Where the truncated function is as follows. 
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The parameter estimation used for multi-response multi-group semiparametric 
regression is Weighted Least Square (WLS). This is because in multi-response 
semiparametric regression, the errors are not identical resulting in unequal error 
variances for each 𝑖, denoted by 𝑣𝑎𝑟(𝜀𝑖) =  𝜎𝑖

2 so that the OLS method cannot be done 
because the OLS method has the assumption that the errors are identical (homogeneity 
in error variance). In order to fulfill the identical assumption, the transformation is done 
by multiplying 𝜖𝑖with 𝑾. 

The diagonal matrix whose elements consist of the component vectors 𝑾 is called 

the weighting matrix where 𝑾 is equal to 1ˆ 
Σ . The WLS method estimates the 

parameters by minimizing equation (14). 
 

1 1T Tˆ ˆ( ) ( )y y      Σ ΣX X  (14) 
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1 1T ˆ ˆ( ) ( )y y    X Σ XΣ  

1T T T T T1 T1 1ˆ ˆ ˆ ˆy y y y         X XΣ Σ Σ ΣX X  

The minimum value of
1T ˆ Σ  obtained when 

T 1( )
0

ˆ 








Σ
 resulting in equation (15). 

1 1T 1 Tˆ ( )ˆ ˆ y    X X ΣXΣ   (15) 

After that, equation (15) is formed into ˆ ˆf  X  hence the form of the spline function 

estimator as equation (16). 
1 1T 1 Tˆ ( )ˆ ˆf y  X X X ΣXΣ  (16) 

Knot Point Determination with GCV 
Linearity test results with Ramsey modification in Table 2, there are 4 out of 18 

relationships between predictor variables and response variables that have a non-linear 
relationship with linear order and one knot point. Completion with truncated spline 
requires knot points in the modeling so that the selection of the best knot points in 
nonparametric analysis is done using GCV. The best knot is obtained from the knot with 
the smallest GCV value. Table 5 is a table containing knots for each non-linear 
relationship between predictor variables and their response variables along with GCV 
values. 

 
Table 5. Optimal Knot Points for Each Relationship 

Group Predictor Variable Response Variabke Knots Point GCV 𝑹𝟐 
1 Nilaparvata sp. pests (𝑋2) Natural Enemies of Pardosa sp. (𝑌2) 2 

2,254 89,174% 
1 Oxya sp pests. (𝑋1) Natural Enemies of Coccinella sp. (𝑌3) 2 
2 Oxya sp pests (𝑋1) Natural Enemies of Pardosa sp. (𝑌2) 1 
2 Chilo sp pests (𝑋3) Natural Enemies of Coccinella sp. (𝑌3) 1 

Table 5 shows each of the best knot points that will be used to model the 
truncated spline on each relationship between predictor variables and response 
variables. The results of the multi-response multi-group truncated spline 
semiparametric regression model when linear with 1 knot point for three predictor 
variables and three response variables are as follows. 
 
�̂�1𝑖 = 2,516 + 0,085𝑥1𝑖 − 0,549𝑥1𝑖𝐷𝑖 − 0,166𝑥2𝑖 − 1,012𝑥2𝑖𝐷𝑖 + 0,015𝑥3𝑖 − 0,054𝑥3𝑖𝐷𝑖  
�̂�2𝑖 = 0,494 − 0,021𝑥1𝑖 + 0,367𝑥1𝑖𝐷𝑖 − 0,573(𝑥1𝑖 − 1)+𝐷𝑖 + 0,304𝑥2𝑖 − 0,366𝑥2𝑖𝐷𝑖 + 
           0,001(𝑥2𝑖 − 2)+(1 − 𝐷𝑖) − 0,003𝑥3𝑖 + 0,063𝑥3𝑖𝐷𝑖  
�̂�3𝑖 = 0,363 − 0,0004𝑥1𝑖 − 0,066𝑥1𝑖𝐷𝑖 + 0,178(𝑥1𝑖 − 2)+(1 − 𝐷𝑖) − 0,049𝑥2𝑖   
         +0,339𝑥2𝑖𝐷𝑖 +  0,052𝑥3𝑖 − 0,511𝑥3𝑖𝐷𝑖 + 0,552(𝑥3𝑖 − 1)+𝐷𝑖 

Model equation in the day group with D value 0. 
�̂�11𝑖 = 2,516 + 0,085𝑥1𝑖 − 0,166𝑥2𝑖 + 0,015𝑥3𝑖 
�̂�21𝑖 = 0,494 − 0,021𝑥1𝑖 + 0,304𝑥2𝑖 + 0,001(𝑥2𝑖 − 2)+ − 0,003𝑥3𝑖  
�̂�31𝑖 = 0,363 − 0,0004𝑥1𝑖 + 0,178(𝑥1𝑖 − 2)+ − 0,049𝑥2𝑖 +  0,052𝑥3𝑖  

Model equation for the night group with D value of 1.  
�̂�12𝑖 = 2,516 − 0,464𝑥1𝑖 − 1,178𝑥2𝑖 − 0,039𝑥3𝑖 
�̂�22𝑖 = 0,494 + 0,351𝑥1𝑖 − 0,573(𝑥1𝑖 − 1)+ − 0,062𝑥2𝑖 + 0,060𝑥3𝑖 
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�̂�32𝑖 = 0,363 − 0,0664𝑥1𝑖 + 0,29𝑥2𝑖 − 0,459𝑥3𝑖 + 0,552(𝑥3𝑖 − 1)+ 
 

The coefficient of determination is 89.174%. This means that the model is able to 
explain the diversity of the response variable by 89.174% and the rest is explained by 
other unknown factors in the model. Furthermore, partial regression coefficients were 
conducted to determine the contribution of each predictor variable to the response 
variable. The largest contribution was the arrival of Nilaparvata sp. pests to the arrival 
of Sympetrum sp. natural enemies by 33.5%. Meanwhile, the smallest contribution was 
the arrival of Oxya sp. pests against the arrival of natural enemies Pardosa sp. by 1.5%. 
The percentage contribution of each variable varies. Highlights that the effect of pests on 
natural enemies is different, where certain pests such as the arrival of Nilaparvata sp. 
play an important role in showing the arrival of natural enemies Sympetrum sp. In 
addition, the arrival of Chilo sp. contributes greatly to the arrival of natural enemies 
Pardosa sp. The arrival of Chilo sp. contributes greatly to natural enemies Coccinella sp. 

Test Results with Bootstrap Resampling 

The results of the hypothesis test using bootstrap resampling conducted 1000 times are 
presented in Table 6 (the * sign indicates significant at the 5% real level).  

Table 6. Significance Test Results with Bootstrap Resampling 
Relation Group Coefficient Test Statistics P Value Description 
𝑥1 → 𝑦1 1 0,085 3,954 <0,001* Sig 
𝑥2 → 𝑦1 1 -0,166 -7,687 <0,001* Sig 
𝑥3 → 𝑦1 1 0,015 0,690 0,313 Not Sig 
𝑥1 → 𝑦2 1 -0,021 -0,988 0,243 Not Sig 
𝑥2 → 𝑦2 1 0,304 14,064 <0,001* Sig 
𝑥2 → 𝑦2 1 -0,001 -0,001 0,398 Not Sig 
𝑥3 → 𝑦2 1 -0,003 -0,183 0,391 Not Sig 
𝑥1 → 𝑦3 1 -0,001 -0,019 0,397 Not Sig 
𝑥1 → 𝑦3 1 0,178 8,236 <0,001* Sig 
𝑥2 → 𝑦3 1 -0,049 -2,268 0,031* Sig 
𝑥3 → 𝑦3 1 0,052 2,388 0,024* Sig 
𝑥1 → 𝑦1 2 -0,046 -21,442 <0,001* Sig 
𝑥2 → 𝑦1 2 -1,178 -54,526 <0,001* Sig 
𝑥3 → 𝑦1 2 -0,039 -1,831 0,075 Sig 
𝑥1 → 𝑦2 2 0,345 15,990 <0,001* Sig 
𝑥1 → 𝑦2 2 -0,573 -26,526 <0,001* Sig 
𝑥2 → 𝑦2 2 -0,063 -2,897 0,006* Sig 
𝑥3 → 𝑦2 2 -0,067 -3,111 0,003* Sig 
𝑥1 → 𝑦3 2 -0,066 -3,062 0,003* Sig 
𝑥2 → 𝑦3 2 0,291 13,444 <0,001* Sig 
𝑥3 → 𝑦3 2 -0,460 -21,283 <0,001* Sig 
𝑥3 → 𝑦3 2 0,552 25,544 <0,001* Sig 

 
Overall, during the day and night, the arrival of the natural enemy Sympetrum sp. 

is influenced by the presence of pests such as Oxya sp. and Nilaparvata sp.. Sympetrum 
sp. belongs to the dragonfly genus, which are active predators during the day. 
Dragonflies possess excellent vision for detecting prey movement, making the presence 
of pests like Oxya sp. (grasshoppers) and Nilaparvata sp. (planthoppers), often seen in 
open areas during the day, trigger the predator's activity. Dragonflies also have a 
preference for open and watery habitats, where pests often lay eggs or gather for 
feeding, making it easier for Sympetrum sp. to detect their prey. At night, although the 
activity of pests such as Nilaparvata sp. persists, the activity level of dragonflies may be 
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lower. However, some species of Sympetrum remain active during dusk and nighttime, 
utilizing their sensitive motion detection abilities to target pest insects, though less 
frequently than during the day. 

During the day, the arrival of the natural enemy Pardosa sp. is influenced by the 
presence of Nilaparvata sp., while at night, the arrival of Pardosa sp. is influenced by 
Oxya sp., Nilaparvata sp., and Chilo sp. Pardosa sp., a type of wolf spider, exhibits 
nocturnal behavior or activity during low-light conditions. Wolf spiders rely on 
movement and vibrations from pests as their primary prey detection methods. 
Planthoppers (Nilaparvata sp.) are generally active and visible on plants during the day, 
allowing spiders to detect and wait around such areas. However, during the day, the 
influence of Oxya sp. and Chilo sp. may be insignificant as the spiders tend to hide and 
become active only at dusk [15]. At night, the presence of Oxya sp. is more noticeable to 
Pardosa sp. as these spiders have good night vision and quick reactions to pursue slow-
moving prey like grasshoppers. However, Chilo sp., which tends to hide within stems or 
plant cavities, is less likely to be detected by Pardosa sp. during either day or night. 

During both day and night, the arrival of the natural enemy Coccinella sp. is 
influenced by Oxya sp., Nilaparvata sp., and Chilo sp. However, during the day, the 
presence of Oxya sp. only has an effect when there are more than two grasshopper pests. 
Meanwhile, at night, the arrival of Coccinella sp. is influenced by Nilaparvata sp. and Chilo 
sp. Coccinella sp., or ladybugs, are predatory insects that are more effective during the 
day as they rely on vision to locate prey such as aphids and planthoppers. The influence 
of Oxya sp. and Chilo sp. during the day can be explained by the increased activity of 
these pests on the surface of plants, which attracts the attention of Coccinella. At night, 
although ladybugs are not fully active, some species continue to hunt, particularly 
targeting pests that do not hide, such as planthoppers [16]. Meanwhile, Oxya sp., which 
typically hides at night, becomes less visible to Coccinella sp., resulting in an insignificant 
influence. 

Overall, this study shows that natural predators have varying effectiveness 
depending on the type of pest and environmental conditions. These results support the 
importance of biological pest control strategies in agriculture, where the use of natural 
enemies can help manage pest populations without relying on chemical pesticides that 
may harm the ecosystem. 

Simulation Study Results 
Simulated data scenarios are model shapes that are set up to illustrate whether the best 
multigroup semiparametric multirespon regression model is in the form of a linear, 
quadratic, or flexible relationship as listed in Table 1. 

Table 7. Simulation Results 

Error Variance VIF Scenario 𝑹𝟐 𝒓𝒓𝒂𝒕𝒂
𝟐  

0,1 

Low 

1 0,9612 0,2609 

2 0,9414 0,2499 

3 0,9329 70,2502 

4 0,9377 0,2461 

5 0,9431 0,2506 

Middle 

1 0,9512 0,2537 

2 0,9148 0,2379 

3 0,9274 0,2455 

4 0,9251 0,2471 

5 0,8707 0,2269 

High 1 0,9532 0,2653 
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Error Variance VIF Scenario 𝑹𝟐 𝒓𝒓𝒂𝒕𝒂
𝟐  

2 0,9214 0,2522 

3 0,9322 0,2580 

4 0,9345 0,2584 

5 0,9456 0,2502 

0,3 

Low 

1 0,9517 0,2578 

2 0,9231 0,2406 

3 0,9378 0,2460 

4 0,9381 0,2482 

5 0,9372 0,2509 

Middle 
 
 

1 0,9345 0,2495 

2 0,9285 0,2421 

3 0,9317 0,2463 

4 0,9231 0,2423 

5 0,8907 0,2264 

High 

1 0,9575 0,2594 

2 0,9307 0,2492 

3 0,9213 0,2498 

4 0,9016 0,2454 

5 0,9290 0,2344 

0,5 
 

Low 

1 0,9588 0,2623 

2 0,9397 0,2472 

3 0,9306 0,2435 

4 0,9195 0,2411 

5 0,9484 0,2528 

Middle 

1 0,9414 0,2552 

2 0,9316 0,2442 

3 0,9290 0,2421 

4 0,9178 0,2398 

5 0,8743 0,2259 

High 

1 0,9488 0,2496 

2 0,9173 0,2363 

3 0,8887 0,2246 

4 0,8955 0,2292 

5 0,8995 0,2188 

 
The results in Table 7 show the performance of the model under the five 

simulation scenarios, which includes the overall coefficient of determination as well as 
the partial coefficient of determination for some combinations of variables. The 
coefficient of determination in each scenario indicates how well the model generally 
explains the variability of the data. Scenario 1 has the highest coefficient of 
determination, at 0.9612, which means that the model is able to explain about 96.12% of 
the data variability, while scenario 5 has the lowest value with an R² of 0.8743. This 
shows that the model's ability to explain data variability decreases slightly as the 
scenarios change. The average value of the partial determination coefficient in each 
scenario shows the average performance of the model in explaining the relationship 
between predictor variables and response variables. 

The error bars in this simulation range from 0,1 to 0,5. The EV value indicates the 
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amount of error variability in the model, the higher of which will affect the accuracy of 
the model in capturing the relationship pattern between the dependent and 
independent variables. Based on table 4.14, the larger the error variance value, the 
model tends to experience a decrease in the coefficient of determination, which 
indicates a decrease in the model's ability to explain data variability. 

In the aspect of multicollinearity (VIF), there are three categories that indicate 
the level of multicollinearity between predictors in the model, namely low, medium, and 
high. At a low VIF level, multicollinearity between predictors is not so influential, then 
the predictors in the model are relatively more independent of each other. There is a 
multicollinearity effect at a medium VIF level, but still within insignificant limits. 
Meanwhile, at a high VIF level, multicollinearity between predictors is quite strong, so 
there is a large relationship between predictors in the model. 

Looking at the coefficient of determination, which shows how well the model 
explains the variability of the data, it can be seen that at an error variance of 0.1, the 
coefficient of determination is quite high, even in scenarios with high VIF. This indicates 
that at low error variance, the model is able to explain the variability of the data well 
despite multicollinearity. However, at an error variance of 0.3, the coefficient of 
determination begins to decrease, especially in scenarios with high VIF, indicating that 
as the error variance increases, the model's ability to explain data variability begins to 
weaken. At an error variance of 0.5, the decrease in the coefficient of determination is 
even more significant, especially at high VIF levels, where the coefficient of 
determination is in the range of 0.87 to 0.90, indicating that the model experiences a 
significant decline in performance when the error variance and multicollinearity levels 
are both high. 

𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒
2  is the partial determination coefficient, indicating the contribution of the 

predictor variable in partially explaining the variance of the response variable. At an 
error variance of 0.1 and a low VIF, the value of the partial determination coefficient is 
around 0.25, indicating a moderate contribution from the predictors, suggesting that 
most of the variability can still be explained. However, at moderate VIF levels, the value 
of the partial determination coefficient decreases slightly, especially in scenario 5 where 
it reaches a value of 0.2269, indicating that multicollinearity is having an impact, albeit a 
modest one. At high VIF at all levels of error variance, the coefficient of partial 
determination fluctuates more. For example, at an error variance of 0.5 and a high VIF, 
the partial determination coefficient decreases to a minimum value of 0.2188, indicating 
that the partial contribution of each predictor weakens as multicollinearity increases. 

Overall, Table 7 shows that the performance of the model is affected by an 
increase in the error variance and VIF. At low to moderate error variances and low to 
moderate VIF levels, the model is more stable and able to capture the data pattern well. 
However, as the error variance and VIF increase to higher levels, the model experiences 
a significant decline in performance, both in terms of the lower coefficient of 
determination and in terms of the partial coefficient of determination, which shows a 
weakening partial contribution. This confirms that multi-response regression models 
are more optimal when the error variance and multicollinearity levels are kept low to 
moderate. 
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CONCLUSIONS 
The model using truncated splines demonstrated a high coefficient of determination 
(89.17%), indicating good accuracy in predicting the arrival of natural enemies based on 
rice pests. The development of a multi-response multi-group semiparametric regression 
model using a truncated spline approach at linear and quadratic orders with varying 
knot levels allows for more flexible estimation in modeling the relationship between 
pests and their natural enemies in rice plants. By applying a dummy variable approach 
to create two groups, day and night, the function estimation process can be simplified. 
Based on rice pest abundance data, pest arrivals had a greater influence on the arrival of 
natural enemies at night than during the day. The significance tests revealed that the 
arrival of Nilaparvata sp. and Oxya sp. affected the arrival of Sympetrum sp. during both 
day and night. The arrival of Nilaparvata sp. also influenced the arrival of Pardosa 
sp. during the day. Meanwhile, all three pests, namely Oxya sp., Nilaparvata sp., and Chilo 
sp., influenced the arrival of Coccinella sp. during both day and night. Simulation study 
results indicated that the best model was found in Scenario 1, which involved a 
semiparametric model with a nonparametric component of linear order, one knot point, 
and low multicollinearity levels. 
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