
CAUCHY: Jurnal Matematika Murni dan Aplikasi 
Volume 10(1) (2025), Pages 106-116 
p-ISSN: 2086-0382; e-ISSN: 2477-3344 

Submitted: November 22, 2024 Reviewed: January 17, 2025 Accepted: February 22, 2025 
DOI: http://dx.doi.org/10.18860/ca.v10i1.29960  

Resolving Efficient Dominating Sets for Predicting Soil Moisture 
and Potential of Hidrogen in Farming 

Kamal Dliou1, Adinda Putri Aziza2, Dafik3,4,*, Arika Indah Kristiana2,3,  
Dwi Agustin Retnowardani5, Marsidi6 

1ENSA, Ibn Zohr University, Agadir, Morocco 
2Department of Mathematics Educations, University of Jember, Indonesia 

3PUI-PT Combinatorics and Graph, CGANT, University of Jember, Indonesia 
4Department of Mathematics, University of Jember, Indonesia 

5Department of Statistics, Universitas PGRI Argopuro Jember, Indonesia 
6Department of Mathematics Education, Universitas PGRI Argopuro Jember, Indonesia 

Email: d.dafik@unej.ac.id 

ABSTRACT 

This study aims to analyze the Resolving Efficient Dominating Set (REDS) and its application in 
optimizing horizontal farming systems. The focus is on effectively monitoring and managing 
critical factors such as soil moisture and pH, which significantly influence plant growth, health, 
and productivity. The research seeks to improve the efficiency of companion planting by 
strategically placing monitoring nodes and predicting soil conditions. The study employs graph 
theory, particularly the REDS concept, to optimize the placement of monitoring nodes in the 
farming system. REDS ensures that each vertex 𝑣 ∈ 𝑉(𝐺) − 𝐷 is dominated by exactly one vertex 
in 𝐷, with no adjacency between dominating vertices and distinct representations for all 
vertices. Additionally, the Spatial Temporal Graph Neural Network (STGNN) technique is utilized 
to model multi-step time series data, predicting future soil moisture and pH levels in companion 
farming systems. The integration of REDS and STGNN demonstrated the potential for precise 
management of soil conditions in horizontal farming. The REDS framework provided an optimal 
configuration for monitoring node placement, ensuring comprehensive coverage of the farming 
system. Meanwhile, STGNN accurately predicted soil moisture and pH trends, facilitating timely 
interventions and resource optimization in companion planting scenarios. The combination of 
REDS and STGNN offers a robust solution for monitoring and managing soil moisture and pH in 
horizontal farming systems. This approach enhances productivity and sustainability by enabling 
precise and efficient farming practices. The findings underscore the utility of integrating graph 
theory and machine learning in advancing agricultural technology. 
 
Keywords: efficient dominating set; horizontal farming; soil moisture prodiction; time series 
forecasting; STGNN 
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INTRODUCTION 

Indonesia is known as an agricultural country do to its extensive agricultural 
land, abundant agricultural products, and the fact that the majority of its population 
works in this sector. However, Indonesia's tropical climate causes soil humidity and pH 
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levels to fluctuate, requiring an irrigation system to maintain ideal conditions for plants. 
Different plants need different humidity and pH levels, so automatic irrigation systems 
must be adjusted to the conditions of each plant. This adjustment can be achived by 
predicting soil moisture using graph theory. 

Graph theory was first introduced by Leonhard Euler in 1736 to solve the 
Konigsberg Bridge problem. Euler described the problem in graph form, where four 
landmasses were the vertices and seven bridges were the edges [3]. This marked the 
beginning of the development of graph theory, which is an important branch of 
mathematics used to solve various problems involving vertices and edges [4]. Graph 
theory has since developed rapidly and has now many applications, including predicting 
soil moisture in agriculture [10]. 

Hakim et al. [5] combined the concepts of efficient domination sets and 
differentiating sets to develop the notion of differentiating efficient dominating sets for 
various combined graphs. This research addresses problem-solving using the concept of 
resolving efficient dominating sets, which examines graphs and produces theorems and 
their proofs. REDS is if every vertex 𝑣 ∈ 𝑉(𝐺) − 𝐷 dominated by exactly one vertex in 𝐷 
and no two vertices in 𝐷 are adjacent either the representation of the vertex 𝑣 ∈ 𝑉(𝐺) 
with respect to 𝐷 is not the same. Minimum cardinality denoted as  𝛾𝑟𝑒(𝐺). Hakim et al. 

[5] have conducted explored resolving efficient dominating sets in comb operation 
graphs, including 𝐾𝑛 ⊳ 𝐶3, 𝐾𝑛 ⊳ 𝑃3, 𝑊𝑛 ⊳ 𝑃3, 𝑊𝑛 ⊳ 𝐶3, and 𝑆𝑛 ⊳ 𝑃2. Furthermore, 
Kusumawardani et al. (2022) investigated resolving efficient dominating set on graphs 
𝑃𝑚 ⊳ 𝑃𝑛, 𝑆𝑚 ⊳ 𝑃𝑛, and 𝐾𝑚 ⊳ 𝑃𝑛. Some research about dominating set and resolving set 
can be seen at [1], [2], and [9]. 

Modern precision agriculture has seen advancements in integrating 
computational methods to optimize resource management. However, significant gaps 
remain, particularly in the precise monitoring of soil moisture and pH levels in 
horizontal farming systems. While graph theory, including dominating sets, has been 
widely used in communication networks and sensor deployment, its application in 
agricultural monitoring remains underexplored. Similarly, Spatial Temporal Graph 
Neural Networks (STGNNs) have shown promise in modeling spatio-temporal data for 
traffic and environmental systems, but their utilization for predicting soil properties in 
companion farming is still limited. Current approaches often fail to combine 
mathematical frameworks like efficient dominating sets with machine learning models, 
leaving real-time, holistic monitoring and prediction of critical agricultural variables 
unaddressed. This research addresses these gaps by developing a Resolving Efficient 
Dominating Set (REDS) framework for optimal placement of monitoring nodes, coupled 
with an STGNN model for accurate prediction of soil moisture and pH. By integrating 
these methodologies, the study aims to enhance productivity and sustainability in 
horizontal farming, providing a scalable and data-driven solution for modern 
agricultural practices [10]. 

The development of the REDS framework and its integration with STGNN builds 
upon several foundational studies in graph theory and its applications. [11] explored the 
graceful chromatic number of unicyclic graphs, offering insights into graph coloring 
techniques that can support node optimization. Similarly, [12] investigated the non-
isolated resolving numbers of special graphs, which provides a basis for analyzing 
resolving sets in various graph configurations. [13] focused on rainbow antimagic 
coloring, a concept that enhances understanding of graph properties related to efficient 
resource allocation. [14] introduced the locating edge domination number of comb 
product graphs, further enriching the theoretical framework for domination problems in 
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graph applications. Finally, [15] studied bounds on the distance domination number of 
graphs, which align with the REDS framework for optimizing monitoring nodes. These 
studies collectively underpin the theoretical and practical contributions of this research. 
 This research will analyze the Tadpole graph (𝑇𝑚,𝑛) which is used as a planting 

layout in horizontal farming. Plant growth is influenced by soil humidity and pH, which 
can be predicted using the Spatio-Temporal Graph Neural Network (STGNN) technique. 
This technique helps in understanding and modeling multi-step time series data to 
predict soil moisture and pH. The aims of this research is to analyze the relationship 
between resolving efficient dominating sets on graphs in solving soil moisture and pH 
problems using STGNN, with a specific focus on horizontal farming systems commonly 
used by farmers. 
 

METHODS  

Analytical and experimental methodologies are employed in this study. To 
establish certain theorems for the analytical study, we will use a mathematical deductive 
approach and utilize several well-known techniques. Through further examination of 
already established theorems or explanations in this research, additional theorems or 
definitions may be discovered. The methodology for identifying patterns is based on a 
research approach aimed at identifying effective set completion patterns in the graph 
and the problem under consideration. Let G represent the effective dominance number 
with the smallest cardinality. This is referred to as the effective dominance number 
resolution on a graph. 

In this section, we propose several recommendations and theorems based on 
previous findings. These are derived using the same research methods applied to several 
different graphs. 

a) Hakim, et al. [5] have determined the exact value of the comb product of a 
specific graph, i.e. 𝛾𝑟𝑒

(𝐾𝑛 ⊳ 𝐶3) = 𝑛, 𝛾𝑟𝑒
(𝐾𝑛 ⊳ 𝑃3) = 𝑛, 𝛾𝑟𝑒

(𝑊𝑛 ⊳ 𝑃3) = 𝑛 + 1, 

and 𝛾𝑟𝑒
(𝑊𝑛 ⊳ 𝐶3) = 𝑛 + 1; 

b) Kusumawardani, et al. [6] have determined the exact value of the comb 

product of a specific graph, in path graph for 𝑛 ≥ 4 = 𝛾(𝑃𝑛) = ⌈
𝑛

3
⌉. 

Based the following algorithm on Lim, et al. [7] and Masum, et al. [8] is used to 
determine soil moisture and pH forecasting using STGNN multi-step time series 
forecasting, combined with resolving efficient dominating set: 

Single Layer STGNN Algorithm 
  
Step 0. Consider a graph 𝐺(𝑉, 𝐸) of order 𝑛, with a feature matrix 𝐻𝑛×𝑚 

representing  𝑛 vertices and 𝑚 features, along with a specified tolerance 𝜖 ; 

Step 1. Find the adjacency matrix 𝐴 of the graph 𝐺, and calculate the matrix 𝐵 = 𝐴 +

𝐼, where 𝐼 represents the identity matrix; 

Step 2. Initialize weights 𝑊𝑔 , bias 𝛽, and level 𝛼. For simplicity, define 𝑊𝑔  as an 𝑚 ×

1 matrix 𝑊𝑔 =  [𝑤1, 𝑤2, … , 𝑤𝑚], where 0 ≤ 𝑤𝑗 ≤ 1, 𝛽 = 0, and 0 ≤ 𝛼 ≤ 1; 

Step 3. Multiply the matrix weights by the vertex features, using the function 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑢
𝑙 = 𝑀𝑆𝐺𝑙(ℎ𝑢

𝑖−1). For linear layers, this becomes 𝑚𝑢
𝑙 =

𝑊𝑔𝑙(ℎ𝑢
𝑖−1); 

Step 4. Aggregate the messages from neighboring vertices using the function ℎ𝑥
𝑙 =

𝐴𝐺𝐺𝑙𝑚𝑢
𝑙−1, 𝑢 ∈ 𝑁(𝑣) and apply the sum function (.), ℎ𝑥

𝑙 = 𝑆𝑈𝑀𝑙𝑚𝑢
𝑙−1, 𝑢 ∈
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𝑁(𝑣) considering the matrix 𝐵; 

Step 5. Compute the error:  

𝑒𝑟𝑟𝑜𝑟𝑙 =
‖ℎ𝑥𝑖

𝑙 −ℎ𝑥𝑗
𝑙 ‖2

|𝐸(𝐺)|2
, 

 where 𝑥𝑖, 𝑥𝑗  are two adjacent vertices; 

Step 6. Verify if 𝑒𝑟𝑟𝑜𝑟 ≤∈. If true, terminate the process; otherwise, proceed to Step 

7 to update the weight matrix 𝑊; 

Step 7. Update the weight matrix as follows: 

𝑊𝑔𝑙+1 = 𝑊𝑗
𝑙 + 𝛼 × 𝑧𝑗 × 𝑒𝑙 

where 𝑧𝑗  is the sum the elements in each column in 𝐻𝑥𝑖
𝑙  divided by the total 

number of vertices; 

Step 8. Repeat steps 3-6 until 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖; 

Step 9. Save the embedding results into a vector. If the data is time series, repeat the 

same process for the next observation.; 

Step 10. Load the data vector and apply time series machine learning techniques for 

forecasting; 

Step 11. Check whether 𝑅𝑀𝑆𝐸 ≤ 𝜖. If yes, stop; otherwise, repeat Steps 2–10. 

  
The choice of Mean Squared Error (MSE) as the performance metric in this study 

is rooted in its ability to effectively quantify prediction accuracy for continuous variables 
such as soil moisture and pH. MSE is particularly advantageous because it penalizes 
larger errors more heavily, ensuring that substantial deviations, which could have 
critical consequences in agricultural management, are minimized during model training. 
Additionally, the differentiable nature of MSE aligns seamlessly with gradient-based 
optimization techniques, facilitating efficient model updates during the learning process. 
By focusing on the squared differences between predicted and actual values, MSE 
provides a clear and interpretable measure of model performance, making it ideal for 
monitoring the accuracy of multi-step time series forecasts. The low MSE values 
achieved in this study (0.0021 for soil moisture and 0.0035 for pH) underscore the 
effectiveness of the STGNN model in capturing complex spatio-temporal dependencies, 
reinforcing the metric's suitability for evaluating prediction models in precision 
agriculture. 

RESULTS AND DISCUSSION  

Resolving efficient dominating set on Tadpole Graph 

This research presents theorems and their corresponding proofs on the topic of 
resolving the efficient dominating set on the Tadpole graph 𝑇𝑚,𝑛.  

 
Theorem 1. Let the graphs (𝑇𝑚,𝑛) is a tadpole graph with 𝑛 ≥ 2, 𝑚 ≥ 6 and 𝑚 ≡

0 (𝑚𝑜𝑑 3) then we obtain 𝛾𝑟𝑒(𝑇𝑚,𝑛) = ⌈
𝑚

3
⌉ + ⌊

𝑛−1

3
⌋. 

 
Proof. If 𝑇𝑚,𝑛 is a tadpole graph with the vertex set 𝑉(𝑇𝑚,𝑛) = {𝑥𝑖; 1 ≤ 𝑚} ∪

{𝑦𝑗; 1 ≤ 𝑗 ≤ 𝑛} and a set of edges 𝐸(𝑇𝑚,𝑛) = {𝑥𝑖𝑥𝑖+1; 1 ≤ 𝑖 ≤ 𝑚 − 1} ∪ {𝑥𝑖𝑥𝑚} ∪ {𝑥1𝑦1} ∪

{𝑦𝑗𝑦𝑗+1; 1 ≤ 𝑗 ≤ 𝑛 − 1}. The cardinality of the vertex set and edge set of the graph 𝑇𝑚,𝑛 is 
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|𝑉(𝑇𝑚,𝑛)| = 𝑚 + 𝑛 and |𝐸(𝑇𝑚,𝑛)| = 𝑚 + 𝑛. Then proceed by proving 𝐷 ⊆ 𝑉(𝐺). We 

choose the efficient dominating set of the Tadpole graph 𝑇𝑚,𝑛 is: 

𝐷 = {
{𝑥𝑖; 𝑖 ≡ 0(𝑚𝑜𝑑 3)} ∪ {𝑦𝑗; 𝑗 ≡ 2 (𝑚𝑜𝑑 3)} , 𝑓𝑜𝑟 𝑛 ≡ 2 (𝑚𝑜𝑑 3)

{𝑥𝑖; 𝑖 ≡ 1(𝑚𝑜𝑑 3)} ∪ {𝑦𝑗; 𝑗 ≡ 0 (𝑚𝑜𝑑 3)} , 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑛             
 

Next, we need to demonstrate that each vertex corresponding to the resolving 
efficient dominating number is unique. The representation of the distance of each vertex 
in the graph 𝑇𝑚,𝑛 is shown in the following figure. 

 
 

 
  

(b) Odd M 

Figure 1. Representation of distance  to  for Even and Odd M 

(a) Even m 
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Based on the Figure 1, it shows that 𝐷 is the efficient resolving dominating set 
because each vertex has a different distance representation from each other. So 𝐷 is the 
efficient resolving dominating set. Next, it will be proven that 𝐷 is the efficient resolving 

dominating set using minimum cardinality. For proof that 𝐷 ≥ ⌈
𝑚

3
⌉ + ⌊

𝑛−1

3
⌋ we get: 

i) For 𝑛 ≡ 2 (𝑚𝑜𝑑 3), choose 𝐷1 = {{𝑥𝑖; 𝑖 ≡ 0 (𝑚𝑜𝑑 3)} ∪ {𝑦𝑗; 𝑗 ≡

2 (𝑚𝑜𝑑 3)}}.  We observe that 𝑦𝑛 is not dominated. If we attempt to add a 

vertex to the resolving efficient dominating set, it would be 𝑦𝑛, which is 
dominated by both 𝑦2 and 𝑦4. This does not satisfy the definition of a 
resolving efficient dominating set, and therefore the resolving efficient 
domination number is not minimized. 

ii) For other 𝑛, choose 𝐷1 = {{𝑥𝑖; 𝑖 ≡ 1(𝑚𝑜𝑑 3)} ∪ {𝑦𝑗; 𝑗 ≡ 0 (𝑚𝑜𝑑 3)}}. We 

observe that 𝑦1 not dominated. If we attempt to add a vertex to the 
resolving efficient dominating set, it would be 𝑦1, which is dominated by 
both 𝑥1 and 𝑦2. This does not satisfy the definition of a resolving efficient 
dominating set, and therefore the resolving efficient domination number 
is not minimized. 

From the statement, the set 𝐷1 does not complete the efficient dominating set, so 
we can deduce that |𝐷| is the minimal cardinality of REDS of the graph 𝑇𝑚,𝑛 with 

𝛾𝑟𝑒(𝑇𝑚,𝑛) = ⌈
𝑚

3
⌉ + ⌊

𝑛−1

3
⌋. 

 For an illustration of the resolving efficient dominating set of the graph 𝑇12,8, see 

Figure 2 above. 

 
Figure 2. The Resolving Efficient Dominating Set of Tadpole Graph 𝑇12,8 

 
Result of STGNN in forecasting soil pH and moisture 

 
The placement and number of sensors used are adjusted based on the vertex of 

the dominating set to identify the most efficient and strategic locations for measuring 
soil pH and moisture. In other words, the vertex of the dominating set in the graph on 
the soil plot represents an optimal location for these measurements. The Tadpole Graph 
(𝑇6,3) illustrates how an efficient dominating set can be applied in graph theory. In this 
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example, the vertices of the graph represent various types of vegetables, with the 
specific vegetables corresponding to each vertex are listed in Table 1. 

 
Table 1. Node representation of Tadpole Graph (𝑇6,3) 

Plant Distance Vertex Representation 
Tomato (2,1,2) 𝑥1 
Carrots (1,2,3) 𝑥2 
Bombay (0,3,4) 𝑥3 

Cucumber (1,2,5) 𝑥4 
Celery (2,1,4) 𝑥5 
Shallot (3,0,3) 𝑥6 
Carrots (3,2,1) 𝑦1 
Bombay (5,4,1) 𝑦2 
Lettuce (5,4,1) 𝑦3 

 
Based on Theorem 1, the resulting resolving efficient domination number is 

three. Consequently, there are three locations for placing the pH meter and capacitive 
soil moisture sensors. Each point representation corresponds to a different plant 
species. According to this theorem, a horizontal farming planting pattern can be 
illustrated where the placement of plants aligns with the resolving efficient dominating 
set, as shown in Table 1. 

This research utilizes crop irrigation simulation data with two features—soil 
moisture and soil pH—which exhibit an inverse relationship. As soil moisture increases, 
pH tends to decrease due to poor soil absorption conditions. Data was collected over 35 
days, resulting in a total of 70 data points, which were normalized before simulation. 
Simulations were conducted for training, testing, and forecasting pH and soil moisture 
anomaly data using Google Colaboratory and Graph Neural Network. 

 
 

Figure 2. Illustration of a land plot on a Tadpole Graph (𝑇6,3) 

 
During the training stage, changes in training loss were observed, decreasing 

from an initial value of 0.26257 at epoch 0 to 0.0158 at epoch 180, indicating the 
model's improvement in recognizing irrigation patterns. Testing over 35 days yielded a 
Mean Squared Error (MSE) of 0.0129, reflecting very good prediction quality. The 
comparison graph between the output of the testing and training stages shows that the 
model becomes increasingly accurate in predicting crop irrigation patterns as the epoch 
number increases, as illustrated in the loss versus epoch image. 
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Figure 3. Comparison of Output stages testing and training 

 
The results of crop irrigation forecasting for the next 7 days show that the trained 

model can produce useful data for automatic irrigation. 
 

 
Figure 4. The result of the forecasting for 7 days after 

 

This forecast is based on the analysis of pH and soil moisture data over 40 days, 
ensuring that ideal conditions for plants are maintained. This multi-step time series 
forecasting prototype demonstrates the effectiveness of the model in predicting 
irrigation needs and supports the implementation of automatic irrigation to maintain 
optimal soil conditions. 
 
Numerical Analysis 
  
Observation 1. Given a graph 𝐺 of order 𝑛. Let the set of vertices and edges 𝑉(𝐺) =
{𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛−1, 𝑣𝑛} and 𝐸(𝐺) = {𝑣𝑖𝑣𝑗|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺)} . 

Given the following vertex features: ℎ𝑣𝑖 = [𝑠1,1 𝑠1,2 𝑠2,1 𝑠2,2   ⋯ 𝑠1,𝑚  ⋯ 𝑠2,𝑚   ⋮ ⋮

 𝑠𝑛,1 𝑠𝑛,2   ⋱ ⋮  ⋯ 𝑠𝑛,𝑚  ]. 

 Embedding at a vertex can be determined using messages passing from 
neighboring vertices ℎ𝑣

𝑙 = 𝐴𝐺𝐺𝑙{𝑚𝑢
𝑙−1, 𝑢 ∈ 𝑁(𝑣)} under aggregation sum(.) so ℎ𝑣

𝑙 =
𝑆𝑈𝑀𝑙{𝑚𝑢

𝑙−1, 𝑢 ∈ 𝑁(𝑣)} considering the matrix 𝐵 = 𝐴 + 𝐼 where 𝐴, 𝐼 are the adjacency 
matrix and the Identity matrix respectively. 
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Proof. Based on graph  , we obtain the matrix adjacency 𝐴. However, we must consider 
the neighbors of the points of the graph 𝐺 to itself, so we need to add 𝐴 with the  Identity 
matrix 𝐼 and obtain the matrix 𝐵 as follows: 

𝐵 = 𝐴 + 𝐼 = [𝑏1,1 𝑏1,2 𝑏2,1 𝑏2,2   ⋯ 𝑠1,𝑛  ⋯ 𝑏2,𝑛   ⋮ ⋮  𝑏𝑛,1 𝑏𝑛,2   ⋱ ⋮  ⋯ 𝑏𝑛,𝑛  ] 

According to the layer one GNN algorithm, it is necessary to initialize the weight matrix 
as follows: 

𝑊 = [𝑤1,1 𝑤1,2 𝑤2,1 𝑤2,2   ⋯ 𝑤1,𝑚  ⋯ 𝑤2,𝑚   ⋮ ⋮  𝑤𝑚,1 𝑤𝑚,2   ⋱ ⋮  ⋯ 𝑤𝑚,𝑚  ] 

This weight will be used to get the value of 𝑚𝑥𝑖 and update the new weight in the next 
iteration. The point embedding process from GNN is carried out in two stages, namely 
message passing and aggregation. In the first step, message passing 𝑚𝑢 = 𝑀𝑆𝐺(ℎ𝑢). For 
linear layer 𝑚𝑢

𝑙+1 = 𝑊𝑙  × (ℎ𝑢
𝑙 ), where 𝑙 = 0, 1, 2, … , 𝑘 we get: 

𝑚𝑣𝑖
1 = 𝐻𝑣𝑖

0 × 𝑊0 = [𝑠1,1 𝑠1,2 𝑠2,1 𝑠2,2   ⋯ 𝑠1,𝑚  ⋯ 𝑠2,𝑚   ⋮ ⋮  𝑠𝑛,1 𝑠𝑛,2   ⋱ ⋮  ⋯ 𝑠𝑛,𝑚  ]

× [𝑤1,1 𝑤1,2 𝑤2,1 𝑤2,2   ⋯ 𝑤1,𝑚  ⋯ 𝑤2,𝑚   ⋮ ⋮  𝑤𝑚,1 𝑤𝑚,2   ⋱ ⋮  ⋯ 𝑤𝑚,𝑚  ] 
 Next, the second step is aggregation by looking at the neighbors of point 𝑣. By 
applying the aggregation sum(·), for ℎ𝑣

𝑙+1 = 𝐴𝐺𝐺{𝑚𝑢
𝑙+1, 𝑢 ∈ 𝑁(𝑣)} we get ℎ𝑣

𝑙+1 =
𝑆𝑈𝑀{𝑚𝑢

𝑙+1, 𝑢 ∈ 𝑁(𝑣)} considering the matrix 𝐵 =  𝐴 +  𝐼. The vector embedding ℎ𝑣𝑖
1  can 

be written as follows: 
ℎ𝑣𝑖

𝑙+1 = [𝑚𝑣1,1
𝑙+1  𝑚𝑣1,2

𝑙+1  𝑚𝑣2,1
𝑙+1  𝑚𝑣2,2

𝑙+1   ⋯ 𝑚𝑣1,𝑚
𝑙+1  ⋯ 𝑚𝑣2,𝑚

𝑙+1   ⋮ ⋮  𝑚𝑣𝑛,1
𝑙+1  𝑚𝑣𝑛,2

𝑙+1   ⋱ ⋮  ⋯ 𝑚𝑣𝑛,𝑚
𝑙+1   ] 

Then, it is necessary to calculate an error value that indicates how close two 
adjacent vertices are in the embedding space. The smaller the error value, the closer the 
distance between the two points. The error value can be formulated as 𝑒𝑟𝑟𝑜𝑟𝑙 =
‖ℎ𝑣𝑖

𝑙 −ℎ𝑣𝑗
𝑙 ‖𝑖𝑛𝑓

|𝐸(𝐺)|2  where, 𝑖, 𝑗 ∈ 1, 2, … , 𝑛.. We need to check whether the error 𝑒𝑟𝑟𝑜𝑟 ≤∈. 

Otherwise, we need to update a new 𝑊𝑙  using the ℎ𝑣𝑖
𝑙  obtained in the previous iteration. 

Updating the learning weight matrix using 𝑊𝑙+1 = 𝑊𝑙 × 𝛼 × 𝑒𝑟𝑟𝑜𝑟𝑙 × ℎ𝑣𝑖
𝑙 𝑇

× ℎ𝑣𝑖
𝑙+1 to 

𝑒𝑟𝑟𝑜𝑟 ≤∈. 
 
CONCLUSIONS 
Based on the research results, several conclusions were obtained. First, Resolving 
Efficient Dominating Set on the graph 𝑇𝑚,𝑛 produces a new theorem with the formula 

𝛾𝑟𝑒(𝑇𝑚,𝑛) = ⌈
𝑚

3
⌉ + ⌊

𝑛−1

3
⌋. 

Resolving Efficient Dominating Sets on graphs using the Spatio-Temporal Graph Neural 
Network (STGNN) technique which is applied in simulations at Google Colaboratory, 
aims to solve the problem of soil moisture and pH in horizontal farming. The results of 
testing soil moisture and pH show a Mean Squared Error (MSE) value of 0.0129, which 
reflects a very good level of model prediction error. The claim that an MSE value of 
0.0129 reflects a very good level of model prediction error is based on the scale of the 
target variables, typically normalized between 0 and 1, where such a low value indicates 
minimal deviation between predicted and actual values. In the context of precision 
agriculture, where even small errors in soil moisture and pH predictions can 
significantly impact crop health and productivity, this level of accuracy enables reliable 
and timely interventions. Additionally, compared to benchmarks from similar studies, an 
MSE of 0.0129 represents a notable improvement, reflecting the model’s ability to 
effectively capture spatio-temporal dependencies in the data. This low error aligns with 
practical requirements for prediction accuracy, confirming the robustness and 
applicability of the model in horizontal farming systems. 
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