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ABSTRACT  

This article discusses a local antimagic 𝑏 −coloring which is a combination between antimagic 
labeling and 𝑏 −coloring. We define a vertex weight of 𝑣 ∈ 𝑉 as 𝑤(𝑣) = 𝛴𝑒𝜖𝐸(𝑣)𝑓(𝑒) where 𝐸(𝑣) 

is the set of edges incident to 𝑣. The function 𝑓 is referred to as a local antimagic labeling if, for 
any two adjacent vertices, their vertex weights are distinct. Additionally, a 𝑏 −coloring of a 
graph is defined as a proper 𝑘 −coloring of the vertices of 𝐺 where each color class contains at 
least one vertex that has neighbors in all other 𝑘 − 1  color classes. If we assign colors to vertices 
based on their vertex weights 𝑤(𝑣)  such that the resulting graph coloring satisfies the 
𝑏 −coloring property, this is referred to as a local antimagic 𝑏 −coloring of graphs. The local 
antimagic 𝑏 −chromatic number, denoted 𝜑𝑙𝑎(𝐺), represents the maximum number of colors 

achievable through any local antimagic 𝑏 −coloring of 𝐺. This paper aims to introduce and 
explore new lemmas and theorems concerning 𝜑𝑙𝑎(𝐺). Moreover, to demonstrate the practical 

application of local antimagic 𝑏 −coloring, the paper concludes with an analysis of its 
implementation in Graph Neural Networks (GNN) for multi-step time series forecasting of NPK 
(Nitrogen, Phosphorus, and Potassium) concentrations in companion plantations. The findings 
highlight the utility of this method in determining optimal planting layouts and fertilizer 
application schedules, enhancing precision and sustainability in agriculture. Simplified 
explanations ensure accessibility to a broader audience. 
 
Keywords: Local antimagic 𝑏 −coloring, STGNN, time series forecasting, NPK, precision 
agriculture. 
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INTRODUCTION 

All graphs, in this study, are  simple, connected, and undirected graph. For a 
bijection 𝑓: 𝐸(𝐺) → {1,2,3, … , |𝐸(𝐺)|}. Arumugam et. al. defined local vertex antimagic 
labeling if for every two adjacent vertices 𝑢 and 𝑣, their vertex weight 𝑤(𝑢) ≠ 𝑤(𝑣) 
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where 𝑤(𝑢)  = ∑𝑒𝜖 𝐸(𝑢) 𝑓(𝑒), see [1]. If each vertex is assigned a color based on its 

vertex weight 𝑤(𝑣) such that no two adjacent vertices share the same color, this is 
referred to as a local antimagic coloring. The local antimagic chromatic number, denoted 
as 𝜒𝑙𝑎(𝐺), represents the minimum number of colors required across all possible local 

antimagic labelings of 𝐺. Read some new results of 𝜒𝑙𝑎(𝐺) in 𝐺 [2]-[6]. 

Next, the researchers study the concept of 𝑏 −coloring. It is a proper 𝑘 −coloring 
of 𝐺 such that in each color class there exists a vertex having neighbors in all other 𝑘 − 1 
color classes. The 𝑏 −chromatic number of a graph 𝐺, denoted as 𝜑(𝐺), is the largest 𝑘 
for which 𝐺 has 𝑏 −coloring by 𝑘 −colors. It is easy to understand that 𝜒(𝐺) ≤ 𝜑(𝐺). 
Some new results for 𝑏 −coloring can be referred to Jakovac and Klavzar [7] who 
obtained 𝑏 −chromatic number of cubic graphs. Irving and Manlove [8] found 
𝑏 −chromatic number of trees. Javadi and Omoomi [9, 10] determined 𝑏 −chromatic 
number of Kneser graphs and the cartesian product of paths and cycles with complete 
graphs and the cartesian product of two complete graphs. Kok and Sudev [11] 
determined the 𝑏 −chromatic number of linear Jaco graph, Ornated graph, Rasta graph, 
Chithra family graphs, and set graph. Diego and Gella [12] found the 𝑏 −chromatic 
number of the center graph, middle graph, and total graph of the bistar graph. The other 
results regarding 𝑏 −coloring can be seen in [13]-[21].  

Combining the aforementioned concepts, we propose a new idea called local 
antimagic 𝑏 −coloring. Consider a mapping 𝑓: 𝐸(𝐺) → {1,2,3, … , |𝐸(𝐺)|}.  For a vertex 
𝑣 ∈ 𝑉, its weight is defined as 𝑤(𝑣) = 𝛴𝑒𝜖 𝐸(𝑣)𝑓(𝑒),  where 𝐸(𝑣) represents the set of 

edges incident to 𝑣. The mapping 𝑓 is described as a local antimagic labeling if the vertex 
weights of any two adjacent vertices are distinct. Additionally, a 𝑏 −coloring of a graph 
refers to a valid 𝑘 −coloring of the vertices of 𝐺 such that at least one vertex in each 
color class is adjacent to vertices in all other 𝑘 − 1 color classes. If vertices are colored 
based on their vertex weights 𝑤(𝑣) in a manner that ensures proper graph coloring 
satisfying the conditions of 𝑏 −coloring, this concept is termed local antimagic 
𝑏 −coloring of graphs. 

Furthermore, companion plants are plants that are grown together in a garden or 
agricultural setting because they are believed to have mutually beneficial effects on each 
other. These benefits can include pest control, improved growth, and enhanced flavor. 
Companion planting can  play a role in fulfilling supply and demand in agriculture. By 
strategically choosing companion plants, farmers can optimize their yields, reduce the 
need for synthetic inputs, and enhance the overall sustainability of their agricultural 
practices. Some research on companion planting can be seen in [22]-[26]. The 
application of local antimagic 𝑏 −coloring on companion farming is indeed relevant, 
since in this concept we obtain the largest number of colors instead of the smallest one. 
Thus, in this type of farming, we can maximize the type of agricultural yields.   

Moreover, Graph Neural Networks (GNN) are a class of machine learning models 
designed to operate on graph-structured data [27-29]. Graphs consist of vertices 
connected by edges, and they are a natural way to represent relationships and 
interactions in various domains such as social networks, biological systems, 
recommendation systems, and including the planting layout in precision agriculture [30-
31]. GNN can be utilized for time series forecasting in agriculture to model the spatial 
and temporal interdependencies present in agricultural datasets [32-34]. Representing 
agricultural fields as vertices in a graph, with edges representing spatial relationships, 
enables the model to capture dependencies between neighboring fields. This is 
particularly useful in precision agriculture where the conditions in one field may 
influence adjacent fields. GNN can learn spatial patterns and relationships among 
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different regions or crops, helping to identify how the conditions of one area may affect 
others. 

This research investigate to explore novel lemmas and theorems associated with 
𝜑𝑙𝑎(𝐺). To demonstrate the practical utility of local antimagic 𝑏 −coloring, we will 

conclude by analyzing its application in Graph Neural Networks (GNN) for multi-step 
time series forecasting of Nitrogen, Phosphorus, and Potassium (NPK) concentrations in 
companion plantations within precision agriculture. 

 

METHODS  

This research incorporates both analytical and experimental methodologies. The 
analytical method involves the application of a mathematical deductive framework to 
formulate various theorems. By leveraging established lower bounds, the study extends 
these foundations to generate novel theoretical insights. 

Observation 2.1. [35] For any graph 𝐺,  𝜒𝑙𝑒𝑎
(𝐺) ≥ 𝜒(𝐺), where 𝜒(𝐺) is a chromatic 

number of graph coloring 𝐺. 

.In the experimental method, computer programming will be utilized to simulate 
the development of autonomous Controlled Environment Agriculture (CEA) through 
multi-step time series forecasting of NPK concentrations for companion plantations, 
including Rosa sp., Bougainvillea spectabilis, Cryptanthus spp., and Bromeliaceae. 
Initially, the vertex embedding process of a single-layer Graph Neural Network (GNN) 
will be demonstrated using three feature datasets—Nitrogen (N), Phosphorus (P), and 
Potassium (K)—collected over a three-month observation period. Subsequently, a 
Spatial Temporal Graph Neural Network (STGNN) program will be implemented to train 
a model using 80% of the data from the vertex embedding process, test its performance, 
and forecast NPK fertilization schedules to determine optimal fertilization timing for 
Rosa sp., Bromeliaceae, Bougainvillea spectabilis, and Cryptanthus spp. plantations. The 
algorithm incorporates the study of fuel purchase distribution using STGNN in 
conjunction with local antimagic 𝑏 −coloring. 

GNN Algorithm with a Single Layer 
Input Graph data 𝐺(𝑉, 𝐸), matrix adjacency 𝐴 from graph 𝐺, matrix 

feature 𝐻𝑛×𝑚, and tolerance 𝜖. 
Output Forecasting results. 
Procedure 1 Initialize weights 𝑊, bias 𝛽, learning rate 𝛼. 

 for 𝑒𝑟𝑟𝑜𝑟 < 𝜖 do 
  Message passing 𝑚𝑢

𝑙 = 𝑀𝑆𝐺𝑙(ℎ𝑢
𝑙−1) 

  Aggregate the message ℎ𝑣
𝑙 = 𝐴𝐺𝐺𝑙{𝑚𝑢

𝑙−1, 𝑢 ∈ 𝑁(𝑣)} 
  Determine the 𝑒𝑟𝑟𝑜𝑟𝑙 =

‖ℎ𝑣𝑖−ℎ𝑣𝑖‖
2

|𝐸|
 

  Update the learning weight 𝑊𝑙+1 = 𝑊𝑗
𝑙 + 𝛼 × 𝑧𝑗 × 𝑒𝑙 

 end 
Procedure 2 Save embedding results into a vector. 
Procedure 3 Load the embedding data.mat. 
Procedure 4 Use time series forecasting to do forecasting. 
Procedure 5 Have the best training, testing and forecasting results. 

 

The algorithm can be simply represented in the form of a flowchart as follows. 
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Figure 1. Flowchart for the GNN algorithm. 

 

RESULTS AND DISCUSSION 

In this section we present the results into four subsections, namely: local 
antimagic 𝑏 −coloring; data setup; numerical analysis; and performance of STGNN 
training and testing. Although divided into several sub-sections, we have thoroughly 
explained the interconnections between each of these sub-sections. 

Local Antimagic 𝑏 −Coloring 
This subsection contains new theorems on the topic of local antimagic 

𝑏 −coloring. There are two new theorems, with one of them chosen by the researcher as 
a design for planting topology in companion planting. The following are the theorems 
with their proofs. 

Theorem 2.1. Let 𝐵𝑛 be a book graph, for 𝑛 ≥ 3 the local antimagic 𝑏 −chromatic 
number of 𝐵𝑛 is 4. 

Proof. Let 𝐵𝑛 be a cycle graph with vertex set 𝑉 = {𝑎, 𝑏, 𝑢𝑖 , 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} and edge set 

𝐸 = {𝑎𝑏, 𝑎𝑢𝑖 , 𝑏𝑣𝑖, 𝑢𝑖𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛}. Since 𝜒𝑙𝑎(𝐵𝑛) = 4, such that 𝜑𝑙𝑎
(𝐵𝑛) ≥ 𝜒𝑙𝑎(𝐵𝑛) = 4. 
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Furthermore to show 𝜑𝑙𝑎
(𝐵𝑛) ≤  4, we construct the edge labels on 𝐵𝑛 as follows. We 

divide into cases, namely for even 𝑛 and odd 𝑛. 

Case 1. For even 𝑛 

𝑓(𝑎𝑢𝑖) = {
𝑖, 𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
+ 1

𝑛 + 𝑖, 𝑖𝑓 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛

 𝑓(𝑏𝑣𝑖) = {
𝑛 + 𝑖, 𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
+ 1 

𝑖, 𝑖𝑓 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛

 

𝑓(𝑢𝑖𝑣𝑖) = 3𝑛 + 1 − 𝑖, 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑛 𝑓(𝑎𝑏) = 3𝑛 + 1 
 
Using the edge labeling above, we can determine the vertex weight of each vertex on 𝐵𝑛. 
We can determine the number of different vertex weights. Therefore, we can obtain the 
number of different vertex weights as follows. 

𝑤(𝑢𝑖) = {
3𝑛 + 1, 𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
+ 1 

4𝑛 + 1, 𝑖𝑓 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛 

 𝑤(𝑣𝑖) = {
4𝑛 + 1, 𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
+ 1 

3𝑛 + 1, 𝑖𝑓 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛 

 

𝑤(𝑎) = 𝑛2 +
5𝑛

2
+ 1 𝑤(𝑏) =

15𝑛2

8
+

5𝑛

4
 

Case 2. For odd 𝑛 

𝑓(𝑎𝑢𝑖) = {
𝑖, 𝑖𝑓 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉

𝑛 + 𝑖, 𝑖𝑓 ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛

 𝑓(𝑏𝑣𝑖) = {
𝑛 + 𝑖, 𝑖𝑓 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ 

𝑖, 𝑖𝑓 ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛

 

𝑓(𝑢𝑖𝑣𝑖) = 3𝑛 + 1 − 𝑖, 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑛 𝑓(𝑎𝑏) = 3𝑛 + 1 
 
Using the edge labeling above, we can determine the vertex weight of each vertex on 𝐵𝑛. 
We can determine the number of different vertex weights. Therefore, we can obtain the 
number of different vertex weights as follows. 

𝑤(𝑢𝑖) = {
3𝑛 + 1, 𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
+ 1 

4𝑛 + 1, 𝑖𝑓 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛

 𝑤(𝑣𝑖) = {
4𝑛 + 1, 𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
+ 1

3𝑛 + 1, 𝑖𝑓 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛

 

𝑤(𝑎) = 𝑛2 + 3𝑛 + 1 𝑤(𝑏) = 𝑛2 + 4𝑛 + 1 
 
In the local antimagic 𝑏 −coloring concept, the color on each vertex is induced from the 
vertex weight. From the vertex weights, We know that there are four colors such that it 
means 𝜑𝑙𝑎

(𝐵𝑛) ≤ 4. Since we have 𝜑𝑙𝑎
(𝐵𝑛) ≥ 4 and 𝜑𝑙𝑎

(𝐵𝑛) ≤ 4, it concludes that 

𝜑𝑙𝑎(𝐵𝑛) = 4. 

For example, an illustration of local antimagic 𝑏 −coloring on graph 𝐵5 is presented in 
Figure 2. 
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Figure 2. Local antimagic 𝑏 −coloring on graph 𝐵5. 

Data Setup 
In this subsection we will explain the process of applying local antimagic 

𝑏 −coloring to companion planting. The next step is to perform time series forecasting 
on the dataset obtained from observations of plants on companion planting. The data is 
in the form of nitrogen, phosphorus and potassium data monitored by NPK sensors 
placed on each representative plant. The placement of the NPK sensor is adapted to the 
local antimagic 𝑏 −chromatic number value of the graph we have chosen.  

In this study, the chromatic number of the graph represents the variety of plants 
on the companion planting. The chromatic number is derived from the number of color 
classes in the graph. For example, in the graph 𝐵𝑛, where 𝑛 ≥ 3, the value of 𝜑𝑙𝑎(𝐵𝑛) = 4. 

In this study we choose 𝐵8 as an example. The graph 𝐵8 consists of 18 vertices. In detail, 
the coloring of the graph 𝐵8 can be seen in Figure 3. 

 

 
Figure 3. Local antimagic 𝑏 −coloring on graph 𝐵8 as planting topology design in companion planting. 

Figure 3 shows that there are four color classes in the book graph, namely color classes 
25, 33, 85 and 101. The figure also shows that color class 25 neighbors color classes 33, 
85 and 101. Color class 33 neighbors color classes 25, 85 and 101. Color class 85 
neighbors color classes 25, 33 and 101. In addition, color class 101 neighbors color 
classes 25, 33 and 85. Color class 25 represents watermelon plants, color class 33 
represents pumpkin plants, color class 85 represents melon plants, while color class 101 
represents cantaloupe plants. This shows that there are four types of plants in 
companion planting design which match with local antimagic 𝑏 −coloring concept on 
graph 𝐵𝑛 as shown in Figure 4. In order to predict the fertilization time, we also installed 
NPK sensors on the representatives of each of the four plants. The observation period is 
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90 days. With the prediction results from the time series prediction using GNN, the 
fertilization time to increase the decreasing NPK levels can be done in time. As a result, 
the productivity of this companion planting is more optimal. 

 
Figure 4. Planting design for companion planting based on local antimagic 𝑏 −coloring on graph 𝐵8. 

 
Numerical Analysis 

In this subsection, we will present and explain the results in the following manner. 
Initially, we provide an analytical explanation of the embedding process for the feature 
nodes and the local antimagic 𝑏 −coloring of the given graph. Subsequently, we utilize 
the NPK data to derive the STGNN model, which is then applied to forecast optimal plant 
fertilization timings in the context of companion planting.. 

Observation 3.1. Given that a graph 𝐺 of order 𝑛. Suppose that vertex and edge sets are 
𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛−1, 𝑣𝑛} and 𝐸(𝐺) = {𝑣𝑖𝑣𝑗|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺)}, respectively. Given that 

vertex features as follows ℎ𝑣𝑖
= [𝑎1,1 𝑎1,2 𝑎1,3  … 𝑎1,𝑚  𝑎2,1 𝑎2,2 𝑎2,3  … 𝑎2,𝑚   ⋮  𝑎𝑛,1   ⋮

 𝑎𝑛,2   ⋮  𝑎𝑛,3   ⋱  …   ⋮  𝑎𝑛,𝑚   ]. The vertex embedding can be determined using the 

messages passing from vertex 𝑣's neighbors ℎ𝑣
𝑙+1 = 𝐴𝐺𝐺{𝑚𝑢

𝑙+1, 𝑢 ∈ 𝑁(𝑣)} under the 
aggregation sum(⋅), where 𝑙 = 0,1,2,3, … , 𝑘. Thus ℎ𝑣

𝑙+1 = 𝑆𝑈𝑀{𝑚𝑢
𝑙+1, 𝑢 ∈ 𝑁(𝑣)} in 

regards to the matrix 𝐵 = 𝐴 + 𝐼 where 𝐴, 𝐼 are adjacency and identity matrix, 
respectively. 

Proof. From the graph 𝐺, the adjacency matrix 𝐴 can be obtained. To account for the self-
adjacency of each vertex in 𝐺, the identity matrix 𝐼 is added to 𝐴, producing the matrix 𝐵  
as shown. 

𝐵 = 𝐴 + 𝐼 = [𝑏1,1 𝑏1,2 𝑏1,3  … 𝑏1,𝑛  𝑏2,1 𝑏2,2 𝑏2,3  … 𝑏2,𝑛   ⋮  𝑏𝑛,1   ⋮  𝑏𝑛,2   ⋮  𝑏𝑛,3   ⋱  …   

⋮  𝑏𝑛,𝑛   ] 

Based on the single-layer GNN algorithm, the initialization of the learning weight matrix 
should be performed as follows. 
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𝑊 = [𝑤1,1 𝑤1,2 𝑤1,3  … 𝑤1,𝑚  𝑤2,1 𝑤2,2 𝑤2,3  … 𝑤2,𝑚   ⋮  𝑤𝑛,1   ⋮  𝑤𝑛,2   ⋮  𝑤𝑛,3   ⋱  …   

⋮  𝑤𝑛,𝑚   ] 

This weight is utilized to calculate 𝑚𝑣𝑖
 and subsequently update the weight for the 

next iteration. The vertex embedding process in GNN is divided into two phases: 
message passing and aggregation. During the first phase, message passing is performed 
𝑚𝑢 =  𝑀𝑆𝐺(ℎ𝑢). For linear layer we have 𝑚𝑢

𝑙+1 = 𝑊𝑙 ⋅ ℎ𝑢
𝑙 , where 𝑙 = 0,1,2,3, …  𝑘. We can 

iteratively start the calculation as follows: 

𝑚𝑣𝑖

𝑙 = 𝐻𝑣𝑖

0 ⋅ 𝑊0

= [𝑎1,1 𝑎1,2 𝑎1,3  … 𝑎1,𝑚  𝑎2,1 𝑎2,2 𝑎2,3  … 𝑎2,𝑚   ⋮  𝑎𝑛,1   ⋮  𝑎𝑛,2   ⋮  𝑎𝑛,3   ⋱  …   

⋮  𝑎𝑛,𝑚   ]

× [𝑤1,1 𝑤1,2 𝑤1,3  … 𝑤1,𝑚  𝑤2,1 𝑤2,2 𝑤2,3  … 𝑤2,𝑚   ⋮  𝑤𝑛,1   ⋮  𝑤𝑛,2   ⋮  𝑤𝑛,3   

⋱  …   ⋮  𝑤𝑛,𝑚   ] 

= [𝑎1,1 × 𝑤1,1 + ⋯ + 𝑎1,𝑚 × 𝑤𝑚,1 𝑎2,1 × 𝑤1,1 + ⋯ + 𝑎2,𝑚 × 𝑤𝑚,1  𝑎1,1 × 𝑤1,2 + ⋯ + 𝑎1,𝑚

× 𝑤𝑚,2 𝑎2,1 × 𝑤1,2 + ⋯ + 𝑎2,𝑚 × 𝑤𝑚,2    … …  𝑎1,1 × 𝑤1,𝑚 + ⋯ + 𝑎1,𝑚

× 𝑤𝑚,𝑚 𝑎2,1 × 𝑤1,𝑚 + ⋯ + 𝑎2,𝑚 × 𝑤𝑚,𝑚    ⋮  𝑎𝑛,1 × 𝑤1,1 + ⋯ + 𝑎𝑛,𝑚 × 𝑤𝑚,1   
⋮  𝑎𝑛,1 × 𝑤1,2 + ⋯ + 𝑎𝑛,𝑚 × 𝑤𝑚,2    ⋱  …   ⋮  𝑎𝑛,1 × 𝑤𝑚,1 + ⋯ + 𝑎𝑛,𝑚 × 𝑤𝑚,𝑚   ] 

Once the above process has been done we do the second step, namely aggregation in 
regards with 𝑣's neighbors. By applying the aggregation sum(⋅), for ℎ𝑣

𝑙+1 =
𝐴𝐺𝐺{𝑚𝑢

𝑙+1, 𝑢 ∈ 𝑁(𝑣)} we have ℎ𝑣
𝑙+1 = 𝑆𝑈𝑀{𝑚𝑢

𝑙+1, 𝑢 ∈ 𝑁(𝑣)} in regards with matrix 𝐵 =
𝐴 + 𝐼, the embedding vector ℎ𝑣𝑖

1  can be written as follows. 

After completing the aforementioned process, the next step is to perform aggregation 
concerning 𝑣's neighbors. By applying the aggregation function sum(⋅), where ℎ𝑣

𝑙+1 =
𝐴𝐺𝐺{𝑚𝑢

𝑙+1, 𝑢 ∈ 𝑁(𝑣)}, this can be expressed as ℎ𝑣
𝑙+1 = 𝑆𝑈𝑀{𝑚𝑢

𝑙+1, 𝑢 ∈ 𝑁(𝑣)}. 
Considering the matrix 𝐵 = 𝐴 + 𝐼, the embedding vector ℎ𝑣𝑖

1  can be represented as 

follows. 

ℎ𝑣𝑖

𝑙+1 = [𝑚𝑣1,1
𝑙+1 𝑚𝑣1,2

𝑙+1 𝑚𝑣1,3
𝑙+1  … 𝑚𝑣1,𝑚

𝑙+1   𝑚𝑣2,1
𝑙+1 𝑚𝑣2,2

𝑙+1 𝑚𝑣2,3
𝑙+1  … 𝑚𝑣2,𝑚

𝑙+1   ⋮  𝑚𝑣𝑛,1
𝑙+1   ⋮  𝑚𝑣𝑛,2

𝑙+1   ⋮  𝑚𝑣𝑛,3
𝑙+1   

⋱  …   ⋮  𝑚𝑣𝑛,𝑚
𝑙+1    ] 

To continue, it is essential to compute the error value, which indicates the closeness of 
two neighboring vertices in the embedding space. A lower error value signifies a shorter 

distance between these vertices. The error is defined as follows: 𝑒𝑟𝑟𝑜𝑟𝑙 =

||ℎ𝑣𝑖
−ℎ𝑣𝑗

||
𝑖𝑛𝑓

|𝐸(𝐺)|
 

where 𝑖, 𝑗 ∈ {1,2, . . . , 𝑛}.  We need to check whether 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖. If no, we need to update 
new 𝑊𝑙  using the obtained ℎ𝑣𝑖

𝑙  in the previous iteration. We update the learning weight 

matrix by using 𝑊𝑙+1 = 𝑊𝑙 + 𝛼 × 𝑒𝑟𝑟𝑜𝑟𝑙 × (ℎ𝑣𝑖

𝑙 )
𝑇

× ℎ𝑣𝑖

𝑙+1 until 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖.  

We must verify if the error is less than or equal to 𝜖. If it is not, the weight matrix 𝑊𝑙  
needs to be updated using the previously calculated ℎ𝑣𝑖

𝑙  from the last iteration. The 

update is performed by applying the formula 𝑊𝑙+1 = 𝑊𝑙 + 𝛼 × 𝑒𝑟𝑟𝑜𝑟𝑙 × (ℎ𝑣𝑖

𝑙 )
𝑇

× ℎ𝑣𝑖

𝑙+1, 

and this process continues until the condition 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖 is satisfied. 
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Performance of the STGNN Training and Testing 

Applying the single layer GNN algorithm presented in the method section, we can 
develop and run a program to analyze the fertilization time of all plants in our 
companion planting. Fertilization is done to increase the NPK level which is decreasing 
day by day so that when the NPK level is minimal and fertilization is done, the NPK level 
returns to normal. The first step we do is collect some data from all types of plants 
regarding three features, namely Nitrogen, Phosphorus and Potassium levels within 90 
days of observation. Once the NPK level data has been obtained, STGNN programming is 
developed to train 60% of the input data. Subsequently, the testing process is conducted 
using the remaining 40% of the input data. For the last step, we can estimate the 
fertilization time for the four plants. Figure 5 shows the data distribution over 90 days of 
observation time. 

 

 
Figure 5. Distribusi of NPK data at 90 days of observation. 

To describe the single-layer GNN algorithm, it is essential to establish the graph 
embedding for the four plant varieties. Each plant, represented as a vertex within the 
graph, is assumed to influence other plants if they are adjacent. Consequently, a 
message-passing process is implemented, taking into account the adjacency matrix for 
all plants in the companion planting scenario. Subsequently, we constructed an STGNN 
model for multi-step time series forecasting, utilizing 60% of the input data for training 
purposes. The training phase yielded a model, from which the one with the smallest 
error value was selected. Subsequently, the remaining 40% of the input data was used 
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for testing to determine the smallest Root Mean Square Error (RMSE) or Mean Square 
Error (MSE). The results of the testing process for plant 𝑥1 are depicted in Figure 6. 

 

 
Figure 6. Results from testing the NPK levels data. 

To validate the robustness of the STGNN model, six models were compared: 
Historical Average (HA), Auto Regressive Integrated Moving Average (ARIMA), Support 
Vector Regression (SVR), Graph Convolutional Networks (GCN), Gated Recurrent Unit 
(GRU), and Spatial Temporal Graph Neural Networks (STGNN). The results indicate that 
the STGNN model outperforms the others. As depicted in Figure 7, the STGNN model 
achieves the lowest error value after 200 epochs. Additionally, the RMSE values for the 
STGNN model are the smallest across both Dataset-1 and Dataset-2. Moreover, the graph 
in Figure 7 demonstrates that the STGNN model exhibits minimal fluctuations compared 
to the other models, further supporting its superior performance. 

The comparison of the six models was evaluated using parameters such as RMSE, 
MAE, accuracy, and 𝑅², based on time series forecasting over the next 10, 20, 30, and 40 
days. These comparison results are summarized in Table 1. From the table, it is evident 
that the STGNN model yields the lowest RMSE and MAE values compared to the other 
models, indicating that it has the smallest error. Consequently, the STGNN model is 
identified as the most accurate. Additionally, the STGNN model achieves the highest 
accuracy and 𝑅² values, further reinforcing its superiority among the six models. 
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Therefore, the STGNN model is deemed suitable for forecasting and monitoring 
fertilization schedules for the four plant varieties in the companion planting system. 
Figure 8 illustrates the results of multi-step time series forecasting for crop 𝑥1. 

 
Figure 7. RMSE Value on Dataset-1 and Dataset-2. 

Table 1. The outcomes of the predictions made by the STGNN model, along with those from other baseline 
approaches, on the dataset. 

T Matric 
Dataset of NPK Levels in Four Plant Varieties 

HA ARIMA SVR GCN GRU STGNN 

10 Days 

RMSE 
MAE 

Accuracy 
𝑅2 

11.8770 
9.9291 
0.1782 
0.3819 

14.8773 
12.8572 
0.3216 
0.1725 

13.2317 
11.0732 
0.6461 
0.5099 

15.0073 
13.7322 
0.5419 
0.5099 

12.7911 
10.6533 
0.4053 
0.2428 

10.9271 
8.0097 
0.8197 
0.9726 

20 Days 

RMSE 
MAE 

Accuracy 
𝑅2 

10.9658 
8.8535 
0.2707 
0.1818 

14.3578 
12.0486 
0.4278 
0.3717 

13.0731 
11.8201 
0.4979 
0.4129 

14.7306 
12.5102 
0.6305 
0.5070 

12.0531 
10.6217 
0.1149 
0.6351 

10.0231 
8.0017 
0.8564 
0.8402 

30 Days 

RMSE 
MAE 

Accuracy 
𝑅2 

10.0989 
8.8884 
0.5694 
0.8811 

13.7582 
11.4666 
0.7250 
0.4819 

12.5321 
10.0221 
0.6961 
0.6121 

14.0302 
12.8132 
0.5360 
0.5017 

11.0021 
9.7415 
0.3024 
0.7332 

9.7171 
7.3146 
0.8432 
0.9490 

40 Days 

RMSE 
MAE 

Accuracy 
𝑅2 

9.4163 
7.6342 
0.2694 
0.7810 

13.0954 
11.8248 
0.5267 
0.6801 

11.7017 
9.3517 
0.6969 
0.5132 

13.5991 
11.1912 
0.0242 
0.4873 

10.0221 
8.6331 
0.3005 
0.5427 

9.1287 
7.4799 
0.7218 
0.9798 
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Figure 8. The distribution of NPK levels at the forecasting step 

Discussion 

This chapter will present and analyze the findings obtained from the conducted 
research. The results of this study show that the implementation of local antimagic 
𝑏 −coloring in planting topology design on companion planting is effective. This is 
evidenced by the increase in plant varieties in the planting topology design of the 
companion planting, so that the farming products are more optimal. In addition, based 
on time series forecasting through GNN that has been done, it is also known the right 
fertilization time for all plants on the companion planting.  

Therefore, it can be said that this research contributes to two important areas, 
namely local antimagic 𝑏 −coloring and time series forecasting using GNN. We build 
upon existing literature demonstrating that the concept of local antimagic 𝑏 −coloring 
focuses on identifying the maximum chromatic value, which is subsequently utilized in 
designing crop patterns for companion planting. Some previous research related to this 
field can be found in [36-39]. In addition, this research also enriches the literature 
related to time series forecasting using GNN integrated with local antimagic 𝑏 −coloring. 
Some previous research related to this field can be found in [40-42].  

In exploring the integration of local antimagic b-coloring and time series 
forecasting using GNN, this study also draws upon foundational works in related graph 
coloring topics. [43] discussed rainbow antimagic coloring in special graphs, providing 
insights into antimagic properties that can inform chromatic evaluations. Similarly, [44] 
investigated the resolving numbers of special graphs, which further complements the 
theoretical underpinnings of graph operations and their applications. [45] explored the 
graceful chromatic number of unicyclic graphs, showcasing advanced graph coloring 
techniques that align with the innovative approaches proposed in this research. These 
works collectively strengthen the theoretical foundation of our study. 

This research also has several strengths. First, we combine two different topics, 
namely local antimagic 𝑏 −coloring and time series forecasting using GNN to create an 
innovative approach. Second, we conducted a series of careful experiments to test the 
performance of our method. However, this research also has limitations. We need 
further research in optimizing the parameters of local antimagic 𝑏 −coloring and time 
series forecasting using GNN for special cases. Also, this approach requires special 
attention in data selection and preparation which can be a complicated task for future 
researchers. 
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CONCLUSIONS 

This research contributes significantly to both theoretical advancements and 
practical applications in the fields of local antimagic 𝒃 −coloring and precision 
agriculture. The theoretical contributions include the development of a new theorem, 
namely 𝝌𝒍𝒂(𝑩𝒏) = 𝟒 which provide novel insights into graph coloring applications. 
These results are utilized to design a planting topology for companion planting with four 
crop varieties: watermelon, melon, pumpkin, and cantaloupe. This choice reflects the 
compatibility of local antimagic 𝒃 −coloring with the companion planting concept, 
emphasizing its potential to optimize crop diversity and yield.  

From a practical perspective, the integration of local antimagic 𝒃 −coloring with 
graph neural networks (GNN) for time series forecasting offers a robust approach to 
precision agriculture. The methodology enables accurate prediction of fertilization 
schedules, ensuring optimal npk levels for companion planting. This innovation 
highlights the model's ability to enhance agricultural sustainability and productivity. 

However, this study has several limitations. Firstly, the computational costs and 
data requirements for implementing local antimagic 𝒃 −coloring in large-scale 
agricultural settings needs further optimization. Secondly, the model's performance in 
diverse environmental conditions requires additional validation. Future research should 
focus on refining these parameters and exploring broader applications of the proposed 
theorems in other domains, such as logistics and network optimization. 

Overall, this research bridges theoretical graph concepts with real-world 
applications, laying a foundation for advanced techniques in precision agriculture and 
beyond. 
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