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ABSTRACT 

This research develops a portfolio optimization model using the Mean-Value at Risk (Mean-VaR) 
approach with a target return constraint, addressing the gap in models that specific return 
objectives. The ARIMA-GARCH model is utilized to predict stock returns and volatility, offering 
precise inputs for optimization. By applying the Lagrange method and Kuhn-Tucker conditions, 
the model determines optimal portfolio weights that balance risk and return. Using data from 
infrastructure stocks on the Indonesia Stock Exchange (January 2019-September 2024), the 
model’s effectiveness is validated through numerical simulations. The results illustrate efficient 
frontiers for target returns of 5 × 10⁻⁶, 0.001, and 0.0019, revealing that higher return targets 
proportionally increase risk. ARIMA-GACRH’s advantage lies in its ability to capture both mean 
and variance dynamics, ensuring reliable volatility estimates for informed decision-making. This 
study contributes to portfolio optimization literature by emphasizing target return constraints 
and demonstrating the practical utility of volatility modeling. The findings provide a robust 
framework for investors to align portfolios with financial goals and risk tolerance. Future work 
could explore broader market contexts or integrated additional constraints for enhanced 
applicability. 
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INTRODUCTION 

Investment refers to the allocation of capital into a company or project with the 
aim of achieving positive returns in the future [1]. Investments can serve both short-term 
and long-term goals, providing flexibility for investors to align with their financial 
objectives [2]. In selecting investment instruments, return and risk are critical factors 
frequently evaluated by individuals and institutions [3]. Among these instruments, the 
stock market is particularly attractive due to its high potential returns [4]. However, this 
potential comes with significant risks, primarily stemming from market uncertainties. To 
achieve optimal investment outcomes, investors must construct a portfolio that not only 
seeks to maximize returns but also manages risk within acceptable limits. Successful 
portfolio management necessitates a strategic approach, encompassing asset 
diversification, balanced allocation, and the implementation of effective risk management 
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strategies [5]. Diversification plays a key role in mitigating risk by spreading investments 
across various asset classes [6]. Such strategies are essential for achieving a balance 
between returns and a tolerable level of risk [7], requiring careful planning and precise 
asset selection [8]. 

The principles of portfolio optimization and diversification are central to the 
evolution and understanding of financial markets, especially in efforts to enhance returns 
while minimizing risks [9]. Portfolio selection focuses on constructing an asset 
combination that reflects an investor's risk preferences [10]. In this context, the Value at 
Risk (VaR) framework, an extension of the Mean-Variance methodology, is employed to 
quantify risk. VaR estimates the maximum potential loss over a specific time frame at 
given confidence level [9], offering a clearer perspective on risk by pinpointing the 
percentile of a loss or gain distribution [11]. The stock return data utilized in this study 
consists of time series data, characterized by fluctuating values over time. A primary 
challenge in financial data analysis is heteroskedasticity, where the variance of residuals 
varies over time. Commonly referred to as volatility, this phenomenon amplifies 
variability across different periods. The Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model addresses this issue effectively [12], offering a flexible 
framework to model dynamic variances and capture changing volatility in financial data. 
While ARIMA models are commonly used for trend analysis in time series data, they are 
less effective in managing heteroskedasticity [13]. Integrating ARIMA and GARCH 
provides a robust approach, with ARIMA modeling trends and GARCH capturing volatility 
[14]. 

Several studies have explored portfolio optimization using similar approaches. 
Portfolio optimization using VaR and univariate GARCH models has been shown to 
achieve a superior Mean-VaR trade-off compared to multivariate GARCH and historical 
VaR models across volatility scenarios [15]. Further studies estimated VaR and minimum 
variance for portfolios with non-constant volatility by employing ARMA for return 
estimation and GARCH for volatility modeling, yielding minimum variance values and 
optimal asset weight allocations to minimize risk [16]. The Mean-VaR approach has also 
been enhanced by incorporating asymmetric volatility and investor risk preferences 
through ARMA-GJR-GARCH models, demonstrating its effectiveness in designing 
portfolios with minimal asymmetric effects [13]. 

Despite these advancements, existing studies have not explicitly addressed the 
incorporation of target return in portfolio optimization. Target return is essential for 
investment decision-making, as it defines the expected return objectives of investors and 
ensures alignment between portfolio strategies and financial goals. To address this gap, 
this study aims to develop an investment portfolio optimization model using the Mean-
VaR method. The model integrates ARIMA-GARCH for precise mean and variance 
predictions and introduces target return as a central constraint. The primary objective is 
to create a systematically approach that balances risk and return while meeting specific 
return goals. This research contributes to the stock investment literature by offering a 
practical framework for portfolio optimization, assisting investors in achieving tailored 
financial objectives through informed decision-making. 

METHODS 

This research utilizes daily closing prices data from selected infrastructure stocks 
listed on the Indonesia Stock Exchange (IDX). These data were obtained from the publicly 
accessible financial platform Yahoo Finance (www.finance.yahoo.com), covering the 
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period from January 1, 2019, to September 30, 2024. This five-year dataset ensures a 
comprehensive analysis of stock return behavior over time. Model development and 
numerical analysis was conducted using this data to validate the performance of the 
proposed model. The numerical analysis employed R software version 4.3.2. for ARIMA-
GARCH modeling and Microsoft Excel for portfolio optimization. The research follows 
these key steps: 
1. Development of the Portfolio Optimization Model 

A Mean-VaR portfolio optimization model with a target return was developed to 
determine the optimal portfolio weights by balancing return and risk, with risk 
measured using Value at Risk (VaR). The objective function of the optimization 
problem is to maximize the adjusted portfolio return based on investor risk tolerance. 
The optimization problem is formulated as [17]: 

Maximize  (2𝜏𝜇𝑝𝑡 − 𝑉𝑎𝑅𝑝𝑡) ,

𝑠. 𝑡.  ∑𝑤𝑖 = 1,

𝑁

𝑖=1

 𝑤𝑖 ≥ 0, (1)
 

where 𝜏 ≥ 0 represents the risk tolerance factor, 𝜇𝑝𝑡is the portfolio return, and 𝑉𝑎𝑅𝑝𝑡 

is the portfolio’s Value at Risk. The VaR is calculated assuming a normal distribution 
as [5]: 

𝑉𝑎𝑅𝑝𝑡 = −𝑊0 (𝐰T𝛍 + 𝑧𝛼(𝐰T𝚺𝐰)
1

2) , (2) 

Where 𝑊0 is the initial investment, 𝐰 is the portfolio weight vector, 𝛍 is the expected 
return vector, and 𝚺 is the convariance matrix of returns. For simplicity, 𝑊0 = 1 is 
assumed, allowing the optimization problem to be reformulated as: 

Maximize (2𝜏𝛍T𝐰 + (𝛍T𝐰 + 𝑧𝛼(𝐰T𝚺𝐰)
1

2)) ,

𝑠. 𝑡.  𝐞T𝐰 = 1,𝑤𝑖 ≥ 0, (3)

 

where 𝐞 is a vector of ones with dimensions 1 × 𝑛. The model was further enhanced 
by introducing a target return constraint [18]: 

∑𝜇𝑖𝑤𝑖

𝑛

𝑖=1

= 𝑅𝑝. (4) 

This Equation indicates that the portfolio’s target return (𝑅𝑝) is derived from the 

weighted sum of the expected returns (𝜇𝑖) of individual stocks, with weights (𝑤𝑖) 
representing their respective proportions in the portfolio. Consequently, achieving a 
desired target return requires investors to select appropriate combination of stocks 
and their corresponding weights. 
 

2. Data Transformation and Stationary Testing 
Stock returns were calculated using the log-return formula [19]: 

𝑟𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
) . (5) 
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The log-return approach was chosen for its additive properties, enabling cumulative 
returns to be expressed as the sum of shorter periods. Stationarity of the data was 
verified using the Augmented Dickey-Fuller (ADF) test, and the Box-Cox 
transformation was applied to stabilize variance. 
 

3. ARIMA Modeling 
Stationary data were used to identify the best-fitting ARIMA model. The ARIMA 
parameters (𝑝, 𝑑, 𝑞) were selected using ACF and PACF plots, along with the ADF test 
[20]. The ARIMA model was formulated as [20]: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑟𝑡 = 𝑐 + 𝜃𝑞(𝐵)𝜀𝑡, (6) 

where 𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 − ⋯− 𝜙𝑝𝐵𝑝 represents the AR component of order 

𝑝, 𝜃𝑞(𝐵) = +𝜃1𝐵 + 𝜃2𝐵
2 + ⋯+ 𝜃𝑞𝐵

𝑞 represents the MA component of order 𝑞, and 𝑐 

is a constant capturing any mean shift in the series. the error term 𝜀𝑡~𝑁(0, 𝜎2) is 
assumed to follow a normal distribution with mean 0 and variance 𝜎2. 
 

4. Heteroskedasticity Detection and GARCH Modeling 
The ARCH-LM test was conducted to detect conditional heteroskedasticity in the 
ARIMA residuals [21]. If heteroskedasticity was present, GARCH modeling was applied 
to capture time-varying variance. The GARCH model is expressed as [20]: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯+ 𝛼𝑚𝜀𝑡−𝑚
2 + 𝛽1𝜎𝑡−1

2 + ⋯+ 𝛽𝑠𝜎𝑡−𝑠
2 , (7) 

where 𝜎𝑡
2 represents the conditional variance at time 𝑡, 𝜀𝑡−𝑚

2  are the past squared 
residuals (errors) from the mean Equation, and 𝜎𝑡−𝑠

2  are the past variances. The 
parameters 𝛼0, 𝛼𝑚, and 𝛽𝑠 are estimated from the data, with 𝛼𝑚 representing the 
impact of past squared residuals and 𝛽𝑠 representing the impact of past variances on 
the current variance. 
 

5. Portfolio Optimization and Efficient Frontier 
Portfolio optimization using the Mean-VaR model was conducted for varying target 
returns. Initial target return values were set at the smallest mean forecasted return to 
minimize risk. The process iteratively increased the target return until a series of 
efficient portfolios was identified, each representing the minimum risk for a given 
level of return. The efficient frontier was visualized to depict the trade-off between 
return and risk. 

RESULTS AND DISCUSSION  

Formulation of the Mean-VaR Investment Portfolio Optimization Model with a 
Target Return 

This subsection outlines the detailed formulation of the investment portfolio 
optimization model using the Mean-VaR approach. The target return is incorporated as 
an additional constraint to achieve an optimal portfolio that aligns with the investor's 
preferences. The formulation includes identifying key variables, constructing the 
Lagrange function, and solving the system of Equations that satisfies the Kuhn-Tucker 
conditions. The reformulation process begins by identifying the essential components of 
the portfolio optimization model. The model includes: 
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 Expected Return Vector (𝛍): Representing the average returns of each stock in the 
portfolio, as defined in Equation (8), with dimensions 1 × 𝑛. 

 Unit Vector (𝐞): A vector with all elements equal to 1, ensuring that the sum of the 

portfolio weights equals one, as shown in Equation (8). 

𝛍 = (

𝜇1

𝜇2

⋮
𝜇𝑛

) , 𝐞 = (

1
1
⋮
1

) . (8) 

 Covariance Matrix (𝚺): Representing the volatility correlation among stocks, as defined 

in Equation (9). This matrix is a key element in measuring portfolio risk. 

𝚺 = (

𝜎11
2 𝜎12 ⋯ 𝜎1𝑛

𝜎21 𝜎22
2 ⋯ 𝜎2𝑛

⋮ ⋮ ⋮ ⋮
𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

2

) . (9) 

 Portfolio Risk (VaR): The VaR approach measures the maximum potential loss at a 

specific confidence level, as described in Equation (2). 

 Target Return (𝑅𝑝): The return desired by the investor, included as an additional 

constraint, as defined in Equation (4). 
Once these elements are defined, the Mean-VaR portfolio optimization model is 

reformulated with the target return constraint. The base optimization model, shown in 
Equation (3), is augmented with the target return constraint (Equation 4), resulting in the 
complete model expressed in Equation (10): 

max(2𝜏𝐰𝑇𝛍 + (𝐰𝑇𝛍 + 𝑧𝛼(𝐰𝑇𝚺𝐰)
1

2)) ,

𝑠. 𝑡.         𝐰𝑇𝐞 = 1, (10)

𝐰𝑇𝛍 = 𝑅,
𝑤𝑖 ≥ 0, 𝑅 ≥ 0,

 

where 𝜏 is the risk tolerance parameter. As the optimization model is quadratic, the 
Lagrange function and Kuhn-Tucker conditions are employed to ensure optimality. By 
adding the Lagrange multipliers (𝜆), the Lagrange function for Equation (10) is: 

𝐿 = (2𝜏 + 1)𝐰T𝛍 + 𝑧𝛼(𝐰T𝚺𝐰)
1

2 + 𝜆1(𝐰
T𝐞 − 1) + 𝜆2(𝐰

T𝛍 − 𝑅). (11) 

Theorem 1 [22]. If 𝑓(𝐗) has an extreme point (maximum or minimum) at  𝐗 = 𝐗∗, and the 
first partial derivatives of 𝑓(𝐗) exist at 𝐗∗, then 

𝜕𝑓

𝜕𝑥𝑖

(𝐗 = 𝐗∗) = 0, 𝑖 = 1,2,3, … , 𝑛. (12) 

Based on Theorem 1, the necessary conditions for optimality are derived as follows: 

𝜕𝐿

𝜕𝐰
= (2𝜏 + 1) 𝛍 +

𝑧𝛼𝚺𝐰

(𝐰𝑇𝚺𝐰)
1

2

+ 𝜆1𝐞 + 𝜆2 𝛍 = 0, (13) 
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𝜕𝐿

𝜕𝜆1
= 𝐰T𝐞 − 1 = 0, (14) 

𝜕𝐿

𝜕𝜆2
= 𝐰T 𝛍 − 𝑅 = 0. (15) 

The optimization process begins by deriving the portfolio weights that satisfy the Mean-

VaR model constraints. From Equation (13), multiplying by 
𝚺−1

𝑧𝛼
, yields the expression for 

normalized portfolio weights as presented in Equation (16): 

𝐰

(𝐰T𝚺𝐰)
1

2

=
−(2𝜏 + 1)𝚺−1𝛍 − 𝜆1𝚺

−1𝐞 − 𝜆2𝚺
−1𝛍

𝑧𝛼
, (16) 

since the total portfolio weights must sum to 1, i.e., 𝐞T𝐰 = 𝐰T𝐞 = 1, the portfolio weights 
vector can then be expressed as show in Equation (17): 

𝐰 =
−(2𝜏 + 1)𝚺−1𝛍 − 𝜆1𝚺

−1𝐞 − 𝜆2𝚺
−1𝛍

−(2𝜏 + 1)𝐞T𝚺−1𝛍 − 𝜆1𝐞T𝚺−1𝐞 − 𝜆2𝐞T𝚺−1𝛍
. (17) 

Equation (17) represents the final expression for the portfolio weights, balancing the 
trade-off between risk and return under the constraints of the Mean-VaR optimization 
model. Here 𝜆1 and 𝜆2 are the Lagrange multipliers corresponding to the constraints on 
total portfolio weights and the target return, respectively. 

The Lagrange multipliers 𝜆1 and 𝜆2 can be determined by solving a system of linear 
Equations derived from the constraints. Using the conditions, the following expressions 
for 𝜆1 and 𝜆2 are obtained, as shown in Equation (18) and (19): 

𝜆1 =
(𝛍T𝚺−1𝛍 − 𝑅𝐞T𝚺−1𝛍)𝜆2 + (2𝜏 + 1)(−𝑅𝐞T𝚺−1𝛍 + 𝛍T𝚺−1𝛍)

(𝑅𝐞T𝚺−1𝐞 −  𝛍T𝚺−1𝐞)
, (18) 

𝜆2 =
(2𝜏 + 1) (−𝑅 + 𝐞T𝚺−1𝛍 +

(−𝑅𝐞T𝚺−1𝛍+𝛍T𝚺−1𝛍)(1−𝐞T𝚺−1𝐞)

(𝑅𝐞T𝚺−1𝐞−𝛍T𝚺−1𝐞)
)

(𝑅 − 𝐞T𝚺−1𝛍 +
(𝛍T𝚺−1𝛍−𝑅𝐞T𝚺−1𝛍)(1−𝐞T𝚺−1𝐞)

(𝑅𝐞T𝚺−1𝐞−𝛍T𝚺−1𝐞)
)

. (19) 

The optimal portfolio weights 𝑤, along with the Lagrange multipliers 𝜆1 and 𝜆2, has 
been successfully derived to address the constraints of target return and risk within the 
Mean-VaR portfolio optimization model. These solutions serve as the foundation for 
determining optimal investment strategies based on an investor's risk tolerance and 
return objectives. By providing a systematic approach to balancing risk and return, this 
model offers practical insights for informed decision-making in portfolio management. 
Future implementations of this model can further refine its application across diverse 
investment scenarios, enhancing its utility in real-world financial markets. 

Numerical Simulations 

This section explains the data processing and application of the Mean-VaR with target 
return model to optimize the investment portfolio of infrastructure stocks. The ARIMA-
GARCH approach was utilized to determine the mean and variance of stock returns. 
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Descriptive Statistics 

The stock data from the infrastructure sector, six stocks were selected based on 
specific criteria outlined in the research methodology. These criteria were designed to 
ensure that the chosen stocks reflect a diverse representation of the sector while 
maintaining data quality and consistency. The selected stocks are presented in Table 1. 

 
Table 1. Selected Infrastructure Stocks 

No. Code Company Names 

1 ISAT Indosat Ooredoo Hutchison Tbk. 

2 SSIA Surya Semesta Internusa Tbk. 

3 JSMR Jasa Marga (Persero) Tbk. 

4 CASS Cardig Aero Services Tbk. 

5 AKRA AKR Corporindo Tbk. 

6 TBIG Tower Bersama Infrastructure Tbk. 

 
The daily stock returns were calculated from the closing price data using Equation (5), 
which defines return as the percentage change in prices between consecutive trading 
days. The variability in daily returns across the six selected stocks is visualized in Figure 
1, providing an initial insight into their fluctuation patterns. 

 
Figure 1. Daily Returns of Selected Stocks 

To better understand the characteristics of the data, descriptive statistics were 
calculated using R software version 4.3.2. These statistics, including the mean, minimum, 
maximum, skewness, kurtosis, and standard deviation, provide a summary of the 
distribution and variability of daily stock returns. The results are presented in Table 2. 

 
Table 2. Descriptive Statistics of Stock Returns 

 ISAT SSIA JSMR CASS AKRA TBIG 
Min -0.1456 -0.1348 -0.1421 -0.1791 -0.0963 -0.1413 
Mean 0.0013 0.0006 0.0001 0.0005 0.0004 0.0006 
Max 0.2213 0.2231 0.1361 0.2935 0.1537 0.2062 
Skewness 1.3791 1.3765 0.2876 1.5332 0.5365 0.9171 
Kurtosis 10.020 11.657 6.4617 14.527 6.1814 10.070 
Std Dev 0.0339 0.0315 0.0231 0.0342 0.0257 0.0259 

 
From Table 2, all stocks exhibit positive average returns, suggesting their potential 
profitability over the analyzed period. However, the standard deviations are noticeably 
higher than the mean values, indicating significant variability and risk associated with 
these stocks. Stocks with high kurtosis (e.g., CASS and TBIG) indicate a greater likelihood 
of extreme returns, both positive and negative, compared to stocks with lower kurtosis. 
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To validate the suitability of the data for further modeling, stationarity tests were 
conducted using the Augmented Dickey-Fuller (ADF) test and the Box-Cox 
transformation. These tests examine the stationarity of stock returns in terms of their 
mean and variance. The results are summarized in Table 3. 

 
Table 3. Stationary Test Results 

Stocks 
ADF Test Box-Cox Transformation 

𝒕 𝒕(𝟎.𝟎𝟓,𝟏𝟒𝟎𝟔) p-value 
Stationary 

(Mean) 
𝝀 

Stationary 
(Variance) 

ISAT -36.8 

-1.65 

0.01 

Yes 

1 

Yes 

SSIA -36.3 0.01 1 
JSMR -35.1 0.01 1 
CASS -39.7 0.01 1 
AKRA -37.2 0.01 0.98 ≈ 1 
TBIG -39.8 0.01 0.99 ≈ 1 

 
The ADF test results confirm that the stock return data is stationary in terms of mean, as 
the test statistics exceed the critical values (|𝑡| > |𝑡(0,05,1406)|) and p-values are below 

0.05. Furthermore, the Box-Cox transformation results, with rounded 𝜆 values close to 1, 
indicate that the data is also stationary in terms of variance. These findings validate the 
appropriateness of using the ARIMA-GARCH model for modeling and forecasting stock 
return volatility.  

ARIMA-GARCH Model Identification 

As previously explained, the identification of the ARIMA model requires examining the 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to 
determine the appropriate orders of autoregressive (AR), differencing (I), and moving 
average (MA) components for each stock. The ACF and PACF plots for the six selected 
infrastructure stocks are presented in Figure 2. These visual tools provide insights into 
the dependencies and lag structures within the time series data. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. ACF and PACF Plots for the Selected Stocks: 
ISAT (a), SSIA (b), JSMR (c), CASS (d), AKRA (e), TBIG (f). 

 
Based on the patterns observed in the ACF and PACF plots, the optimal ARIMA model for 
each stock was identified. The ARIMA orders for each stock were selected based on 
patterns in the ACF and PACF plots (Figure 2), ensuring stationarity and minimal residual 
errors. Table 4 summarizes best ARIMA models and their corresponding equations. 
 

Table 4. Best ARIMA Models for Each Stock  
Stocks ARIMA Orde ARIMA Model 

ISAT ARIMA (5,0,3) 

𝑟̂𝑡 = 0.0014 + 0.6136𝑟𝑡−1 + 0.2065𝑟𝑡−2 − 0.7410𝑟𝑡−3 
−0.0382𝑟𝑡−4 + 0.0321𝑟𝑡−5 − 0.6028𝑒𝑡−1 + 0.2166𝑒𝑡−2 

+0.8173𝑒𝑡−3 

SSIA ARIMA (0,0,3) 𝑟̂𝑡 = 0.0006 + 0.0357𝑒𝑡−1 − 0.0350𝑒𝑡−2 + 0.1097𝑒𝑡−3 
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Stocks ARIMA Orde ARIMA Model 

JSMR ARIMA (0,0,1) 𝑟̂𝑡 = 0.0001 + 0.0688𝑒𝑡−1 

CASS ARIMA (5,0,0) 
𝑟̂𝑡 = 0.0005 − 0.0589𝑟𝑡−1 + 0.0006𝑟𝑡−2 − 0.0231𝑟𝑡−3 + 0.0465𝑟𝑡−4

+ 0.0644𝑟𝑡−5 

AKRA ARIMA (0,0,2) 𝑟̂𝑡 = 0.0004 + 0.0132𝑒𝑡−1 − 0.0800𝑒𝑡−2 

TBIG ARIMA (2,0,2) 𝑟̂𝑡 = 0.0006 + 0.0563𝑟𝑡−1 − 0.6637𝑟𝑡−2 − 0.1196𝑒𝑡−1 + 0.6160𝑒𝑡−2 

 
Based on Table 4, stock returns can be modeled using ARIMA with varying orders, 

influenced by constants, stock returns, and return residuals. After determining the best 
ARIMA model for each stock, the next step involved assessing the presence of conditional 
heteroscedasticity in the residuals of the fitted ARIMA models. This was achieved using 
the ARCH-LM test, which detects volatility clustering, a common phenomenon in financial 
time series data. The ARCH-LM test results are presented in Table 5. 

 
Table 5. ARCH-LM Test Results for Conditional Heteroscedasticity 

Stocks ARIMA Orde p-value 

ISAT ARIMA (5,0,3) < 2.2 × 10−16 

SSIA ARIMA (0,0,3) < 2.2 × 10−16 

JSMR ARIMA (0,0,1) < 2.2 × 10−16 

CASS ARIMA (5,0,0) 9.46 × 10−6 

AKRA ARIMA (0,0,2) < 2.2 × 10−16 

TBIG ARIMA (2,0,2) < 2.2 × 10−16 

 
The significantly low p-values for all stocks indicate the presence of conditional 
heteroscedasticity in the residuals of the ARIMA models. The ARCH-LM test confirmed the 
presence of conditional heteroscedasticity for all stocks, necessitating the incorporation 
of GARCH components to account for volatility clustering. To determine the appropriate 
GARCH order, the ACF and PACF plots of the squared residuals from the ARIMA models 
were analyzed (Figure 3). 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. ACF and PACF Plots of the squared residuals for the Selected Stocks: 
ISAT (a), SSIA (b), JSMR (c), CASS (d), AKRA (e), TBIG (f). 

 
Based on Figure 3, the ACF and PACF plots generally show intersections at lags 1, 2, 

and 3. Therefore, this study restricts the GARCH model to low orders, specifically 𝑚, 𝑠 ≤
2. Using these plots, the optimal GARCH model parameters were selected for each stock. 
Table 6 summarized combined ARIMA-GARCH models and their equations. 
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Table 6. Best ARIMA-GARCH Models 

Stocks 
ARIMA-GARCH 

Orde 
ARIMA-GARCH Model 

ISAT 
ARIMA (5,0,3) – 

GARCH (1,1) 

𝑟̂𝑡 = 0.0010 − 0.3240𝑟𝑡−1 + 0.6638𝑟𝑡−2 + 0.5436𝑟𝑡−3 

+0.0448𝑟𝑡−4 + 0.0598𝑟𝑡−5 + 0.2777𝑒𝑡−1 − 0.7093𝑒𝑡−2 

−0.5809𝑒𝑡−3 

𝜎̂𝑡
2 = 0.00002 + 0.1126𝑒𝑡−1

2 + 0.8601𝜎𝑡−1
2  

SSIA 
ARIMA (0,0,3) – 

GARCH (1,1) 

𝑟̂𝑡 = −0.0001 − 0.0626𝑒𝑡−1 − 0.0019𝑒𝑡−2 − 0.0970𝑒𝑡−3 

𝜎̂𝑡
2 = 0.0001 + 0.2303𝑒𝑡−1

2 + 0.6431𝜎𝑡−1
2  

JSMR 
ARIMA (0,0,1) – 

GARCH (1,1) 

𝑟̂𝑡 = 0.000002 − 0.0782𝑒𝑡−1 

𝜎̂𝑡
2 = 0.00006 + 0.1582𝑒𝑡−1

2 + 0.7070𝜎𝑡−1
2  

CASS 
ARIMA (5,0,0) – 

GARCH (1,1) 

𝑟̂𝑡 = 0.0001 + 0.0087𝑟𝑡−1 − 0.0113𝑟𝑡−2 − 0.0011𝑟𝑡−3 

−0.0881𝑟𝑡−4 − 0.0225𝑟𝑡−5 

𝜎̂𝑡
2 = 0.0004 + 0.3921𝑒𝑡−1

2 + 0.2517𝜎𝑡−1
2  

AKRA 
ARIMA (0,0,2) – 

GARCH (1,2) 

𝑟̂𝑡 = 0.00007 − 0.0061𝑟𝑡−1 − 0.0053𝑟𝑡−2 

𝜎̂𝑡
2 = 0.00002 + 0.0624𝑒𝑡−1

2 + 0.2819𝜎𝑡−1
2 + 0.6209𝜎𝑡−2

2  

TBIG 
ARIMA (2,0,2) – 

GARCH (1,2) 

𝑟̂𝑡 = −0.0002 + 1.4900𝑟𝑡−1 − 0.5255𝑟𝑡−2 − 1.5274𝑒𝑡−1 + 0.5558𝑒𝑡−2 

𝜎̂𝑡
2 = 0.00003 + 0.1183𝑒𝑡−1

2 + 0.3791𝜎𝑡−1
2 + 0.4533𝜎𝑡−2

2  

 
Table 6 summarizes the best ARIMA-GARCH models for each stock, selected based on ACF 
and PACF patterns of squared residuals and validated using the ARCH-LM test, which 
confirmed conditional heteroscedasticity (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05). These models were further 
optimized by minimizing the Akaike Information Criterion (AIC) and ensuring residuals 
resembled white noise. The inclusion of GARCH components effectively captured 
volatility clustering, enhancing variance prediction. For example, the ARIMA (5,0,3) – 
GARCH (1,1) model for ISAT show that future volatility (𝜎̂𝑡

2) is influenced by past volatility 
(𝜎̂𝑡−1

2 ) and lagged shocks (𝜎̂𝑡−1
2 ), demonstrating the persistence of volatility over time. 

Similarly, the GARCH components in models for other stocks accurately reflect the unique 
volatility patterns of their return series. 

These models provide the foundation for forecasting the mean and variance of stock 
returns, as shown in Table 7. The forecasts will serve as inputs for portfolio optimization, 
enhancing the accuracy of risk-return estimations. 

 
Table 7. Forecasting Results of Mean and Variance of Stock Return 

Stocks Mean Variance 

ISAT 0.0014 0.00214 

SSIA 0.0019 0.03532 

JSMR 1.271 × 10−5 0.01610 

CASS 2.898 × 10−3 0.02765 

AKRA 5.564 × 10−6 0.01916 

TBIG 1.295 × 10−4 0.01537 

 
The forecasting results reveal significant variations in the mean and variance of stock 

returns across the six selected infrastructure stocks. SSIA exhibits the highest mean 
return (0.0019) but also the largest variance (0.03532), indicating a high-risk, high-
reward profile. In contrast, ISAT shows a relatively high mean return (0.0014) with the 
lowest variance (0.00214), suggesting a more stable risk-return trade-off. Stocks such as 
JSMR and AKRA report low mean returns with moderate variances, while CASS and TBIG 
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demonstrate a balanced risk-return profile. These findings highlight the diverse risk and 
return characteristics among the stocks, offering insights for strategic portfolio allocation 
and risk management. 

Portfolio Optimization Results 

Following the application of the ARIMA-GARCH model, the mean and variance for each 
stock were calculated to be used in the portfolio optimization process. The results are 
summarized in Table 7. The mean values were arranged into an expected return vector, 
as formulated in Equation (8). The resulting vector is as follows: 

𝛍 =

[
 
 
 
 
 
1.40E − 03
1.91E − 03
1.27E − 05
2.90E − 03
5.56E − 06
1.30E − 04]

 
 
 
 
 

. (20) 

The variance values were further utilized to compute the covariance values, which were 
subsequently arranged into a covariance matrix as formulated in Equation (9). The 
resulting matrix is as follows: 

𝚺 =

[
 
 
 
 
2.14E − 02 0.005087 0.004637 −0.000078 0.003429 0.003030

0.005087 3.53E − 02 0.005531 −0.000048 0.004939 0.003689
0.004637

−0.000078
0.003429

0.003030

0.005531 1.61E − 02

−0.000048 0.000795
0.004939 0.005018

0.003689 0.003490

 0.000795   0.005018 0.003490

2.77E − 02 0.001147 0.000522
0.001147 1.92E − 02 0.002721

0.000522 0.002721 1.54E − 02]
 
 
 
 

. (21) 

The portfolio optimization process was then conducted to determine the optimal 
weights for the portfolio composition as formulated in Equation (17). The primary 
objective was to achieve maximum return while satisfying the specified target return 
levels. The target return was initialized based on the expected return vector obtained 
from Equation (4). Specifically, the following values were used as benchmarks in this 
study. The value of 5 × 10−6 represents the lowest expected return among the individual 
stocks in the portfolio. The value of 0.001 corresponds to the average expected return 
across all stocks in the portfolio. Additionally, the value of 0.0019 indicates the maximum 
target return. Tables 8, 9, and 10 summarize the optimization results for portfolios with 
different target returns, highlighting changes in asset weights, portfolio risks, and 
efficiency measures across varying levels of the parameter 𝜏. The results provide insights 
into the relationship between target return levels, portfolio risk management, and 
performance efficiency. 

 
Table 8. Portfolio Optimization for Target Return 5 × 10−6 

𝜏 𝜆1 𝜆2 
𝐰T 

𝜇𝑝 𝜎𝑝 𝑉𝑎𝑅𝑝 Ratio 
ISAT SSIA JSMR CASS AKRA TBIG 

0 8.91E-03 -1.8561 0.1299 0.0375 0.2125 0.1455 0.1913 0.2833 0.0007 0.0766 0.1253 0.0057 

0.05 8.02E-03 -1.6705 0.1366 0.0449 0.2021 0.1583 0.1832 0.2748 0.0008 0.0762 0.1246 0.0062 

0.1 7.13E-03 -1.4849 0.1446 0.0536 0.1899 0.1735 0.1736 0.2647 0.0008 0.0759 0.1239 0.0068 

0.15 6.24E-03 -1.2992 0.1543 0.0641 0.1753 0.1916 0.1622 0.2526 0.0009 0.0758 0.1237 0.0075 

0.2 5.35E-03 -1.1136 0.1660 0.0768 0.1573 0.2139 0.1481 0.2378 0.0010 0.0759 0.1239 0.0083 
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0.25 4.46E-03 -0.9280 0.1807 0.0928 0.1349 0.2417 0.1306 0.2193 0.0012 0.0768 0.1251 0.0093 

0.3 3.56E-03 -0.7424 0.1996 0.1134 0.1060 0.2774 0.1080 0.1955 0.0013 0.0787 0.1281 0.0104 

0.35 2.67E-03 -0.7053 0.2249 0.1408 0.0675 0.3252 0.0779 0.1637 0.0015 0.0826 0.1344 0.0115 

0.37 2.32E-03 -0.6682 0.2375 0.1546 0.0482 0.3491 0.0628 0.1478 0.0017 0.0852 0.1384 0.0119 

0.4 1.78E-03 -0.3712 0.2603 0.1793 0.0134 0.3921 0.0357 0.1191 0.0019 0.0905 0.1470 0.0126 

 
As shown in Table 8, the portfolio composition adjusts dynamically with increasing 𝜏 
(ranging from 0 to 0.4). At 𝜏 = 0, the portfolio favors high-risk stocks, such as TBIG and 
AKRA, with allocations of 28.33% and 19.13%, respectively. This allocation suggests that 
achieving lower target returns often relies on leveraging high-risk assets. However, as 𝜏 
increase, the portfolio gradually shifts towards more stable assets, such as JSMR and ISAT. 
This shift reflects a strategy aimed at balancing risk and return as target return increase. 
The portfolio risk (𝜎𝑝) remains within a controlled range of 0.0766 to 0.0905, 

demonstrating effective risk management throughout the optimization process. 
Furthermore, the return-to-risk ratio improves significantly, rising from 0.0057 at 𝜏 = 0 
to 0.0126 at 𝜏 = 0.4, indicating increased portfolio efficiency. Notably, the optimization 

process achieves a maximum expected return portfolio (𝜇𝑝) of 0.0019 when 𝜏 = 0.4, 

highlighting the portfolio’s capability to meet higher return objectives under controlled 
risk conditions. 
 

Table 9. Portfolio Optimization for Target Return 0.001 

𝜏 𝜆1 𝜆2 
𝐰T 

𝜇𝑝 𝜎𝑝 𝑉𝑎𝑅𝑝 Ratio 
ISAT SSIA JSMR CASS AKRA TBIG 

0.521 2.28E-03 0.0393 0.2684 0.1881 0.0011 0.4074 0.0260 0.1089 0.0019 0.0926 0.1504 0.0128 

0.525 2.71E-03 0.0468 0.2582 0.1770 0.0167 0.3881 0.0382 0.1218 0.0018 0.0899 0.1462 0.0126 

0.53 3.25E-03 0.0561 0.2479 0.1658 0.0324 0.3687 0.0505 0.1347 0.0017 0.0875 0.1421 0.0123 

0.535 3.79E-03 0.0655 0.2396 0.1568 0.0450 0.3529 0.0604 0.1452 0.0017 0.0856 0.1391 0.0121 

0.537 4.01E-03 0.0692 0.2367 0.1537 0.0494 0.3475 0.0638 0.1488 0.0016 0.0849 0.1381 0.0119 

0.54 4.33E-03 0.0749 0.2328 0.1494 0.0555 0.3401 0.0685 0.1538 0.0016 0.0842 0.1368 0.0118 

0.545 4.88E-03 0.0842 0.2270 0.1432 0.0642 0.3292 0.0753 0.1609 0.0016 0.0830 0.1350 0.0116 

0.547 5.09E-03 0.0879 0.2249 0.1409 0.0673 0.3254 0.0778 0.1636 0.0015 0.0826 0.1344 0.0115 

0.55 5.42E-03 0.0936 0.2222 0.1379 0.0716 0.3200 0.0811 0.1671 0.0015 0.0821 0.1336 0.0114 

0.555 5.96E-03 0.1029 0.2179 0.1333 0.0780 0.3121 0.0861 0.1724 0.0015 0.0814 0.1324 0.0112 

 
Table 9 presents the optimization results for a higher target return of 0.001, with 𝜏 

ranging from 0.521 to 0.555. Despite the higher target return, the portfolio demonstrates 

stable weight allocations and controlled risk levels. At 𝜏 = 0.521, the portfolio return (𝜇𝑝) 

reaches its highest value of 0.0019, marking the optimal performance compared to other 
𝜏 values. This is supported by a balanced weight allocation, where CASS (40.74%) and 
ISAT (26.84%) dominate, followed by SSIA (18.81%) and smaller contributions from 
AKRA (2.6%) and JSMR (0.11%). The risk level, reflected portfolio risk (𝜎𝑝 = 0.00926) 

and 𝑉𝑎𝑅𝑝 = 0.1504, remains well-managed despite the ambitious target return.  

As 𝜏 increase beyond 0.521, the the portfolio gradually shifts towards a more 
diversified composition. For instance, at 𝜏 = 0.555, 𝜇𝑝 decreases to 0.0015, with portfolio 

weights shifting more toward high-risk stocks such as CASS (31.21%) and TBIG (17.24%). 
Although the risk level (𝜎𝑝 = 0.0814) and 𝑉𝑎𝑅𝑝 = 0.1324, decrease at higher 𝜏 values, 

the trade-off between risk and return becomes apparent. The decision to highlight 𝜏 =
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0.521 as the optimal point is supported by its competitive return-to-risk ratio (0.0128), 
achieved alongside the maximum portfolio return. This demonstrates the portfolio's 
ability to balance return and risk effectively, making 𝜏 = 0.521 the most desirable choice 
for performance optimization under the given conditions. 

Table 10. Portfolio Optimization for Target Return 0.0019 

𝜏 𝜆1 𝜆2 
𝐰T 

𝜇𝑝 𝜎𝑝 𝑉𝑎𝑅𝑝 Ratio 
ISAT SSIA JSMR CASS AKRA TBIG 

13 3.22E-02 2.8112 0.2691 0.1889 0.00003 0.4088 0.0252 0.1080 0.00194 0.09282 0.15074 0.01285 

13.5 3.35E-02 2.9236 0.2689 0.1887 0.0003 0.4085 0.0254 0.1082 0.00194 0.09278 0.15067 0.01285 

14 3.48E-02 3.0361 0.2688 0.1885 0.0005 0.4082 0.0255 0.1084 0.00193 0.09274 0.15061 0.01285 

14.5 3.61E-02 3.1485 0.2686 0.1884 0.0007 0.4079 0.0257 0.1086 0.00193 0.09270 0.15055 0.01284 

15 3.74E-02 3.2609 0.2685 0.1883 0.0009 0.4077 0.0259 0.1088 0.00193 0.09267 0.15049 0.01284 

15.5 3.87E-02 3.3734 0.2684 0.1881 0.0011 0.4075 0.0260 0.1089 0.00193 0.09263 0.15044 0.01284 

16 4.00E-02 3.4859 0.2683 0.1880 0.0013 0.4072 0.0261 0.1091 0.00193 0.09260 0.15039 0.01284 

16.5 4.12E-02 3.5983 0.2682 0.1879 0.0014 0.4070 0.0263 0.1092 0.00193 0.09258 0.15034 0.01283 

17 4.25E-02 3.7108 0.2681 0.1878 0.0016 0.4068 0.0264 0.1093 0.00193 0.09255 0.15030 0.01283 

 
Table 10 explores the optimization process for the highest target return of 0.0019 

reveals that the portfolio achieves its maximum return (𝜇𝑝 = 0.00194) when 𝜏 = 13. This 

value is the optimal performance in terms of return compared to other 𝜏 values. At this 
point, the weight allocation is as follows: ISAT holds 26.91%, CASS contributes 40.88%, 
TBIG holds 10.80%, and SSIA makes up 18.89%. The portfolio demonstrates a well-
managed risk profile with a portfolio risk (𝜎𝑝 = 0.09282) and 𝑉𝑎𝑅𝑝 = 0.15074 remaining 

within acceptable levels despite the higher target return. The return-to-risk ratio at 𝜏 =
13 is 0.01285, which is stable across the 𝜏 values ranging from 13 to 17, further confirming 
the portfolio's efficiency in balancing return and risk. 

In comparison, as the 𝜏 values increase (e.g., 𝜏 = 13.5, 𝜏 = 14, etc.), the portfolio return 
slightly decreases, with 𝜇𝑝 reducing to 0.00193. Despite this, the portfolio maintains its 

stability with small variations in the weight allocations and risk metrics. Notably, the 
return-to-risk ratio stabilizes between 0.01283 and 0.01285, indicating that the portfolio 
continues to perform efficiently under these higher return constraints. Thus, 𝜏 = 13 
represents the point of highest return and an optimal trade-off between risk and return, 
making it the most desirable value for portfolio performance optimization under these 
conditions. 

The results across Tables 8-10 illustrate a clear trend: as target returns increase, the 
portfolio transitions from favoring high-risk assets to incorporating a greater proportion 
of stable stocks. This dynamic adjustment underscores the importance of diversification 
for investors, especially those seeking to mitigate risk while pursuing higher returns. The 
analysis highlights that portfolio efficiency can be maintained even as return targets 
become more demanding, provided that appropriate weight adjustments are made. 

Efficient Frontier Analysis 

The following visualizations illustrate the efficient frontiers corresponding to the 
optimization results under different target return scenarios. These efficient frontiers 
represent the set of portfolios that achieve the lowest risk (measured as Value at Risk, 
VaR) for a given level of return. Each curve highlights the trade-off between risk and 
return, providing insights into the impact of target return constraints on portfolio 
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composition and performance metrics. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Efficient Frontier Portfolio Chart for Each Target Return: 
5 × 10−6 (a), 0.001 (b), 0.0019 (c)  

  

From the efficient frontier graphs (Figure 4), it is evident that higher target returns 
generally shift the frontier upward. This indicates that achieving higher returns requires 
investors to accept a greater level of risk, as measured by VaR. This relationship reflects 
the fundamental principle in finance that higher returns often come with increased 
volatility and potential losses. The use of VaR on the x-axis provides practical insights by 
directly linking portfolio outcomes to the likelihood of extreme losses, offering a risk-
focused perspective for decision-making. Efficient frontiers provide a visual 
representation of the trade-off between risk and expected return. For instance, moving 
from a target return of 5 × 10−6 to 0.001 results in approximately a 20% increase in 
portfolio reisk, as measured by VaR. Similarly, increasing the target return further to 
0.0019 pushes the frontier to even higher risk levels. These insights allow investors to 
better align their portfolio strategies with their risk tolerance and return objectives, 
enabling more informed decision-making. 

These visualizations emphasize the dynamics of portfolio diversification and the 
trade-offs faced when optimizing for specific return objectives. They highlight the critical 



Optimization Modeling of Investment Portfolios Using The Mean-VaR Method with Target Return 
and ARIMA-GARCH 

Arla Aglia Yasmin 163 

role of target returns in shaping portfolio strategies, providing a framework for 
understanding how varying risk levels can impact portfolio performance and investor 
preferences. 

CONCLUSIONS 

This study developed and applied the Mean-VaR portfolio optimization model with a 
target return constraint, offering a systematic approach to balancing risk and return using 
financial metrics like expected return, covariance matrix, and VaR. By integrating ARIMA-
GARCH for volatility modeling, the model enabled precise return predictions and reliable 
risk estimates. The optimization results demonstrated that the Mean-VaR model 
effectively adjusts portfolio weights to meet target return objectives. At lower return 
levels (5 × 10−6), high-risk stocks dominated allocations, while diversification improved 
as target returns rose to 0.001 and 0.0019. Efficient frontiers visually highlighted these 
trade-offs, providing a robust framework for aligning strategies with investor risk 
tolerance and financial goals. 

The findings have practical implications, offering investors a tool to manage portfolio 
risk dynamically while pursuing tailored return objectives. For instance, raising the target 
return from 0.001 to 0,0019 increased portfolio risk by 20%, demonstrating the 
proportional trade-off. Limitations of this study include its focus on infrastructure stocks 
in Indonesia, which may limit its generalizability. Future research could validate the 
model in broader markets, incorporate real-world constraints such as transaction costs 
and liquidity, and extend to multi-asset portfolios. Exploring the model’s performance 
under varying economic conditions and risk measures could further enhance its 
applicability. 
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