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ABSTRACT  

The purpose of this research is to evaluate the performance of ZIP regression analysis using 
Bayesian and MLE. The research data is secondary data obtained from the Health Office and the 
Indonesian Bureau of Statistics (BPS) in East Java with a total of 38 data samples and simulation 
data. Simulation studies in this study were conducted to see how the performance of ZIP 
regression analysis using MLE and Bayesian methods. The scenario aspects used are the sample 
sizes and the proportion of zero values. The results show that the development of ZIP Bayesian 
regression produces a model that is in accordance with the data conditions, that is excess zero and 
can handle overdispersion due to excess zero. Bayesian ZIP regression analysis is better than MLE 
at small sample sizes because it produces relatively stable parameter estimates in each simulation 
scenario and has the smallest RMSE value compared to MLE ZIP regression analysis. Based on DIC, 
the ZIP model works better on data with a higher proportion of zeros so that this model is more 
effectively used on data that has high zero-inflation.  
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INTRODUCTION 

The Poisson model is commonly employed for analyzing count data [1]. The Poisson 
distribution is a probability distribution for the number of events that occur in a given 
time or space interval, when the events occur with a fixed success rate, and the events are 
mutually independent [2]. The Poisson distribution assumes that the mean is equal to the 
variance [3]. However, in its application it is often found that the variance is greater than 
the mean or what is called overdispersion and the variance is smaller than the mean 
which is called underdispersion [4]. One of the causes of this overdispersion is the 
presence of excess zeros in the data [5]. 

In the health sector, especially in measles deaths, zero-valued data are often found. 
Therefore, it is difficult for the Poisson or Negative Binomial models to accurately 
represent measles death data due to excessive dispersion due to the number of zeros in 
the data exceeding expectations based on these models. To consider the excess zeros in 
order to obtain unbiased estimation results, the Hurdle model and Zero Inflated model 
were developed. In research conducted by [6], first introduced the Zero Inflated Poisson 
model using a mixed model approach, by separating into two components, namely zero 
state and Poisson state. In the study conducted by [7], with the title A comparison of zero-
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inflated and hurdle models for modeling zero-inflated count data explains the 
performance of the Zero Inflated and Hurdle models in modeling data on the Poisson and 
Negative Binomial distributions. While research conducted by [8], with the title A test of 
inflated zeros for Poisson regression models explains the testing of the existence of excess 
zeros by comparing with the Vuong Test, the results of research on simulation studies 
show that the hypothesis test used is better than the Vuong test. Furthermore, research 
conducted by [9], with the title Estimation of Poisson Regression Parameters with 
Maximum Likelihood explains that the Maximum Likelihood Estimation (MLE) process is 
completed using the Fisher Scoring algorithm, an iterative approach that is utilized to 
update parameters repeatedly to approach the maximum likelihood value. This research 
was applied to the number of accident data on Minnesota state highways, and the 
obtained Poisson Regression model is represented. 

A commonly used parameter estimation method in ZIP regression is Maximum 
Likelihood Estimation (MLE) [10]. MLE is an efficient technique in many cases, allowing 
for optimal parameter estimation based on the available data. However, although MLE is 
very reliable in the context of large sample sizes, it faces challenges when applied to small 
sample sizes. According to research conducted by [11], parameter estimation using MLE 
on small samples tends to be less stable and may result in biased estimation. This 
instability is due to the inability of MLE to fully capture the variations and patterns 
present in a limited sample, which in turn can lead to model misinterpretation [12]. 
Bayesian methods have proven effective in dealing with overdispersion, there are still 
some challenges in their implementation. Determining the appropriate prior distribution 
is often a problem, especially when initial information is limited. Besides, research on the 
performance of the ZIP model using the Bayesian approach on data with various sample 
sizes and varying proportions of zeros is still limited, especially in the context of health 
data such as measles cases in Indonesia. 

Based on the background described above, the purpose of this study is to evaluate 
the performance of the Zero Inflated Poisson (ZIP) model using the Bayesian and MLE 
approaches in estimating the parameters of count data with a high proportion of zeros. 
This research is expected to contribute in developing a more accurate parameter 
estimation method for count data with excess of zero, especially in the field of public 
health. 

 

METHODS  

Data 

The data used in this study is secondary and simulation study. The secondary data 
used is the number of measles cases in East Java in 2022. There are 38 cities/districts with 
four predictor variables, population size (𝑋1), percentage of vaccination (𝑋2), percentage 
of poor people (𝑋3), and percentage of proper sanitation (𝑋4) with the response variable 
being the number of measles cases in East Java. 

Overdispersion and Excess Zero 

The overdispersion is a condition that occurs in data that has a variance value 
greater than the average[13]. Overdispersion occurs when there is a positive correlation 
between responses or excess variation between probabilities or number of responses and 
there is a violation of assumptions in the data for example when previous events affect 
the existence of current events [14]. To see whether the data is overdispersed or not, you 
can use the Chi-Square value, if the Chi-square value divided by the degree of freedom is 
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greater than 1, it is said that the model has overdispersion [15]. Mathematically written 
in Equation (1). 

𝜒2 =
∑ (𝑦𝑖 − 𝜇̂𝑖)

2𝑛
𝑖=1

𝜇̂𝑖
~𝜒(𝑛−𝑚)

2  
(1) 

where, 𝜇̂𝑖 = exp(𝛽̂0 + ∑ 𝑥𝑖𝑗𝛽̂𝑗)𝑘
𝑗=1 , 𝑛 is number of observation, 𝑚 is number of parameters 

(𝑘 + 1), 𝑥𝑖𝑗  the value of the 𝑗𝑡ℎ predictor variable on the 𝑖𝑡ℎ observation. If 𝜒2/ (𝑛 − 𝑝) >

1 then it can be concluded that observations contain overdispersion. 
Excess zero is a condition of many zero values in the response variable [16]. The 

zero value here has a meaning that cannot be eliminated and must be included in the 
analysis because they often carry significant information about the underlying data-
generating process, particularly in count data scenarios. These zeros can represent two 
distinct phenomena: structural zeros, which indicate an inherent impossibility of an event 
occurring, and sampling zeros, which result from the randomness of the process. 
Neglecting zero values can lead to biased parameter estimates and misinterpretations of 
the data, especially when zero inflation is present. By incorporating zero values through 
appropriate statistical models, such as Zero Inflated Poisson or Hurdle models, 
researchers can better capture the dual processes generating the zeros, leading to more 
accurate and robust inferences. Excess zero occurs when the proportion of zero values in 
the response variable is more than 50% [17]. This can cause overdispersion in the 
regression model. 
 

Zero Inflated Poisson Regression 

According to [18], ZIP distribution function as follows. 
 

𝑃(𝑌 = 𝑦𝑖) = {

𝜔𝑖 + (1 − 𝜔𝑖)𝑒−𝜇𝑖 , 𝑦𝑖 = 0

(1 − 𝜔𝑖)𝑒𝑖
−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 > 0

 

 
(2) 

 
where 𝜔𝑖 is parameter of zero inflation 0 < 𝜔𝑖 < 1 and 𝜇𝑖 is mean value 𝜇𝑖 > 0 

According to Lambert in [7], with 𝑌𝑖~𝑍𝐼𝑃(𝜇, 𝜔) to model generally uses a logit 
model, i.e. :  

𝜔𝑖 =
exp 𝑥𝑖

𝑇𝛾

1+exp(𝑥𝑖
𝑇𝛾)

           𝜇𝑖 = exp 𝑥𝑖
𝑇𝛽 (3) 

where 𝑥𝑖 is matrix for i-th explanatory variable and 𝛾 are additional parameter. The model 
of the relation between 𝜇 and 𝜔 is as follows [6]: 

log(𝜇𝑖) = 𝑋𝑖
𝑇𝛽 

𝜇𝑖 = exp 𝑋𝑖
𝑇𝛽  

𝑙𝑜𝑔𝑖𝑡 (𝜔𝑖) = ln (
𝜔𝑖

1 − 𝜔𝑖
) = 𝑋𝑖

𝑇𝛾 

 
(4) 
(5) 

Bayesian Zero Inflated Poisson Regression 

The ZIP Likelihood function is : 
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𝐿(𝜷, 𝜸|𝑦𝑖) = ∏ [
exp (𝒙𝒊

𝑻𝜸)

1+exp(𝒙𝒊
𝑻𝜸)

+ (
𝑒− exp(𝒙𝒊

𝑻𝜷)

1+exp(𝒙𝒊
𝑻𝜸)

)]𝑖:𝑦𝑖=0 +

∏ [(
𝑒−(exp (𝒙𝒊

𝑻𝜷) exp(𝒙𝒊
𝑻𝜷)

𝑦𝑖

𝑦𝑖!(1+exp(𝒙𝒊
𝑻𝜸))

)]𝑖:𝑦𝑖>0           

(6) 
 

 
The normal distribution for 𝜷 while the beta distribution for the prior 𝜸. Suppose a 

random variable 𝜷 with normal distribution with mean 𝜇 nd variance 𝜎2 is chosen, it can 
be expressed as follows: 

𝜋(𝛽) =
1

√2𝜋𝜎2
exp (−

(𝛽 − 𝜇2)

2𝜎2
) 

(7) 
 

 
Meanwhile 𝜸  the hyper parameters are and can be expressed as follows: 

𝜋(𝛾) =
Γ(𝛿0 + 𝜂0)

Γ(𝛿0)Γ(𝜂0)
(

exp(𝒙𝒊
𝑻𝜸)

1 + exp(𝒙𝒊
𝑻𝜸)

)

(𝛿0−1)

(
1

1 + exp(𝒙𝒊
𝑻𝜸)

)

(𝜂0−1)

 
(8) 

 

 
Therefore, the product of the likelihood function with the prior distribution can be 
written as follows: 
 

𝜋(𝛽|𝑦) =
1

√2𝜋𝜎2
exp (−

(𝛽−𝜇2)

2𝜎2 ) × ∏ [
exp (𝒙𝒊

𝑻𝜸)

1+exp(𝒙𝒊
𝑻𝜸)

+ (
𝑒− exp(𝒙𝒊

𝑻𝜷)

1+exp(𝒙𝒊
𝑻𝜸)

)]𝑖:𝑦𝑖=0 +

                   ∏ [(
𝑒−(exp (𝒙𝒊

𝑻𝜷) exp(𝒙𝒊
𝑻𝜷)

𝑦𝑖

𝑦𝑖!(1+exp(𝒙𝒊
𝑻𝜸))

)]𝑖:𝑦𝑖>0   

𝜋(𝛾|𝑦)   =
Γ(𝛿0+𝜂0)

Γ(𝛿0)Γ(𝜂0)
(

(exp(𝒙𝒊
𝑻𝜸))(𝛿0−1)

(1+exp(𝒙𝒊
𝑻𝜸))(𝛿0+𝜂0−2)) × ∏ [

exp (𝒙𝒊
𝑻𝜸)

1+exp(𝒙𝒊
𝑻𝜸)

+ (
𝑒− exp(𝒙𝒊

𝑻𝜷)

1+exp(𝒙𝒊
𝑻𝜸)

)]𝑖:𝑦𝑖=0 +

                    ∏ [(
𝑒−(exp (𝒙𝒊

𝑻𝜷) exp(𝒙𝒊
𝑻𝜷)

𝑦𝑖

𝑦𝑖!(1+exp(𝒙𝒊
𝑻𝜸))

)]𝑖:𝑦𝑖>0   

 

 
 
 
 

 
 
(9) 

 

Bayesian Model Convergence Test 

In the Bayes method there are several ways to see the convergence of model 
parameters, namely Trace plot, Autocorrelation plot, Quantiles plot, Density plot and 
Monte Carlo Error (MC Error) value [19]. The trace plot is a plot of iterations against the 
generated value. Convergence is achieved when the trace plot shows a horizontal pattern. 
The MC Error can be calculated using the following formula [18]. 
 

𝑀𝐶𝐸[𝐺(𝜃)] = √
1

𝐾(𝐾 − 1)
∑ (𝐺̅(𝜃)𝑏 − 𝐺(𝜃))

2𝐾

𝑏=1
 

(11) 
 

where, 𝐺̅(𝜃)𝑏 is the sample mean of each batch, 𝐺(𝜃) is the general sample mean, 𝐾 
is the number of batches. 

Best Selection Model 

The criterion used to measure the goodness of the model after obtaining a model is 
the Root Mean Square Error (RMSE). RMSE is used based on the estimation error. The 
error shows how much the secondary data estimation results differ from the simulated 
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data estimation values. This value is used to determine which model is the best. The RMSE 
formula is as follows. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜃̂𝑖 − 𝜃𝑖

(0)
)

2
𝑛

𝑖=1

 

 (12) 

where, 𝑛 is the number of simulations or observations, 𝜃𝑖  is Estimation of 

parameters in the i-th simulation, and 𝜃𝑖
(0)

 is the true value of the parameter in the i-th 

simulation. 

Simulation Study 

This simulation data refers to processed data obtained from secondary data 
obtained from the 2022 Health Office profile. Data generation using R software carried out 
on this simulation data consists of various sample sizes, namely 38, 100, and 300 and the 
proportion of zero values, namely 0.6, 0.7, and 0.8. Simulations in various sample sizes 
variations are used to determine the performance of Zero Inflated Poisson Bayesian 
regression in handling data with overdispersion properties at various sample sizes and 
zero value proportion levels. 

RESULTS AND DISCUSSION  

Overdispersion and Excess Zero 

Based on the results of the overdipersion test obtained that  𝜒2/ (𝑛 − 𝑝) > 1  is 5.08 >
 1 therefore it can be said that the data has overdispersion. While the percentage of zero 
values in the response variable is 60.2%  > 50% then it  concluded that the data has excess 
zero. because the data experiences overdispersion and excess zero so that the Poisson 
regression model is not suitable for use in modeling, so the ZIP regression model can be 
used to overcome these problems.   

Zero Inflation Poisson Regression with MLE 

The results of the parameter estimates from the analysis of the data number of 
measles used MLE are as the following: 

𝜇𝑖̂ = exp(−7,331 + 1,584𝑋1𝑖) (13) 
 

From Equations (12), it can be seen if every 1 person increase in population in East 
Java will increase the average number of measles cases in Est Java by exp(1,584) =
4.874 ≈ 5 people.  

Zero Inflated Poisson Regression with Bayesian 

The results of the parameter estimates from the analysis of the dta number of 
measles used Bayesian are as the following: 

𝜇𝑖̂ = exp(2,168𝑋1𝑖 − 0,092𝑋2𝑖 + 0,191𝑋3𝑖)  

 

(14) 

𝜔𝑖̂ =
exp(0,5006𝑋2𝑖)

1 + exp(0,5006𝑋2𝑖)
 

(15) 
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From Equation (13), it can be seen if every 1 person increase in population in East 
Java will increase the average number of measles cases in Est Java by exp(2.168) =
8.746 ≈ 9 people, for each 1% increase in percentage of vaccination will decrease the 
average number of measles cases in East Java by exp(−0,159) = 0,912 ≈ 1 people, and if 
every 1% increase in percentage of poor people will increase the average number of 
measles case in Est Java by exp(0,191) = 1,211 ≈ 1 people. While in Equation (14), it can 
be seen if the vaccination percentage increases by 1%, the log odds of zero inflation 
probability will increase by 0.5006. This means that every 1% increase in the percentage 
of poor people will increase the probability of zero inflation by (Odds Ratio-
1)×100%=65%. This shows that when the percentage of vaccination increases, it will 
reduce the probability of measles cases in East Java because measles vaccination can 
prevent measles from occurring [20]. 

Simulation Results of Zero Inflated Poisson with MLE 

The simulated data is generated based on the original data Zero Inflated Poisson 
MLE regression parameters. The estimation results of the 𝛽̂𝑗  and 𝛾𝑗  parameter can be 

seen in Figure 1. 
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(e) (f) 

 
Figure 1. Plot of 𝛽̂𝑗  Parameters Estimation at Various Sample and Proportion of Zero Value (a) p=0.6 (b) 

p=0.7 (c) p=0.8 and 𝛾𝑗  Parameters Estimation at Various Sample and Proportion of Zero Value (d) p=0.6 

(e) p=0.7 (f) p=0.8 

From Figure 1 it can be seen if the estimation results of the parameters 𝛽̂1, 𝛽̂2, 𝛽̂3, and 

𝛽̂4 are relatively more stable at 𝑛 = 100 and 300. The parameter 𝛽̂1 shows large fluctuations when 

the sample sizes is small, namely 𝛽̂1 = 0.537 for 𝑝 = 0.6 while at large sample size, the parameter 

𝛽̂1 tends to stabilize near the initial value of the parameter. This is due to data imbalance in certain 
scenarios. Parameter estimates at large sample sizes (n=300) become much more stable with 
consistent coefficients across different scenarios p. This is consistent with statistical theory, 
where large sample sizes result in more precise parameter estimates. The effect of Proportion 
zero (p) on parameter estimation when p=0.6 has a relationship that tends to be still clearly visible 
between predictor variables and responses. However, for p=0.8 it can be seen that the effect of 
zero inflation is more common compared to the Poisson distribution, as the effect between the 
predictor and the response is more difficult to detect. 

The estimation results of the parameters 𝛾1, 𝛾2, 𝛾3 and 𝛾4 shows that sample sizes (n) 
and proportion of zeros (p) have a significant influence on the probability of zero inflation 
and the stability of the parameter estimates. At small sample sizes (n=38), the parameter 
estimates show higher fluctuations with the probability of zero inflation varying 
depending on p. Furthermore, the proportion of zero-inflation (p) also matters, especially 
at small sample sizes, where higher p (0.7 and 0.8) magnifies the effect of zero-inflation 
on parameter estimates. However, this effect decreases at larger sample sizes, suggesting 
that the effect of zero-inflation can be captured more moderately in large sample data 
such as n=300. Overall, these results suggest that the MLE method requires a sufficiently 
large sample size to produce stable and precise parameter estimates in the ZIP model.  

   

Simulation Results Zero Inflated Poisson with Bayesian 

The simulated data is generated based on the original data Zero Inflated Poisson 
Bayesian regression parameters. The estimation results of the 𝛽̂𝑗  and 𝛾𝑗  parameter can be 

seen in Figure 2. 
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(a) (b) 

  
(c) (d) 

 

  
(e) (f) 

Figure 2. Plot of 𝛽̂𝑗  Parameters Estimation at Various Sample and Proportion of Zero Value (a) p=0.6 (b) 

p=0.7 (c) p=0.8 and 𝛾𝑗  Parameters Estimation at Various Sample and Proportion of Zero Value (d) p=0.6 

(e) p=0.7 (f) p=0.8 
 

From Figure 2, It can be seen that at small sample sizes (n=38) the parameter values 
𝛽̂1, 𝛽̂2, 𝛽̂3, and 𝛽̂4 tend to fluctuate more. For example, at p=0.7, the value of 𝛽̂1=1.427 is 
lower than p=0.6 and p=0.8. This reflects the instability of the estimate in small samples. 
While at the medium sample sizes (n=100) and large sample sizes (n=300) the 
parameters become more consistent. The effect of a low proportion of zero (p=0.6) tends 
to be more stable on each parameter by showing small variations. At a zero proportion of 
p=0.7 there is an increase in the value of parameters such as 𝛽̂1 as well as the variability 
of parameters 𝛽̂3 and 𝛽̂4 for example at n=300, 𝛽̂1=3.915 it shows that there is a significant 
increase. 
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The parameter values 𝛾1, 𝛾2, 𝛾3 and 𝛾4 shows consistent stability close to 0.5 in all 
combinations of zero proportion and sample size. For small sample sizes (n=38), the value 
of 𝛾𝑗  has a very small variance as shown in Figures 2d, 2e, and 2f, indicating that the 

estimation for the zero-inflation component is relatively accurate even though the sample 
size is small. In the medium sample size (n=100), the value of 𝛾𝑗  becomes more stable and 

in the large sample size (n=300) the stability of the parameter is getting more visible. This 
shows that increasing the sample size will increase the precision of the estimation. 
Moreover, at low proportion of zeros (p=0.6), the parameter value shows consistency 
close to 0.5 across all sample sizes. This indicates that the model can detect low 
proportion of zeros well, while at medium proportion of zeros (p=0.7) and high 
proportion of zeros (p=0.8) the parameter value γ̂ remains stable which indicates that the 
model can accommodate data sparsity with high proportion of zeros. 

Best Selection Models 

To determine the goodness between one method and another, Root Mean Square 
Error (RMSE) is used. The method that has the smallest RMSE is the best method. The 
following is the RMSE of each method. 
 

Table 1. RMSE Results of Each Model 

𝒏 Proporsi Nol 
RMSE 

MLE Bayesian 

38 

0,6 111,90 0,54 

0,7 191,22 0,79 

0,8 188,96 0,74 

100 

0,6 0,91 0,83 

0,7 5,91 0,68 

0,8 24,70 0,85 

300 

0,6 0,53 0,79 

0,7 0,49 0,65 

0,8 0,56 0,73 

 
Based on Table 1, it can be seen that at small and medium sample sizes the Bayesian 

method has a small RMSE value than the MLE, while at large sample sizes the MLE method 
has a small RMSE value (0.49 to 0.56) than the Bayesian method. this indicates that the 
MLE method becomes more accurate with increasing sample size and the Bayesian 
method still produces small RMSE values (0.65 to 0.79) which indicates that this method 
maintains its performance even though the sample sizes increases. 

 

CONCLUSIONS 

Based on the research results, it can be concluded that the performance of the Zero 
Inflated Poisson (ZIP) regression estimation analysis shows that the Bayesian method has 
the advantage of producing more accurate parameter estimates on small sample sizes and 
data conditions with a high proportion of zero values. While the MLE method tends to be 
sensitive to sample size and its performance increases significantly at large sample sizes. 
Therefore, for ZIP analysis on data with a small sample sizes or a high proportion of zeros, 
the Bayesian method is more recommended due to its better consistency.  
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