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ABSTRACT 

In an investment portfolio, investors certainly choose a portfolio according to their preferences 
for return and risk. The problem is the allocation of investment weights in forming a portfolio, if 
the risk is in the form of Entropic-Value-at-Risk (EVaR). The purpose of this study is to determine 
the allocation of investment weights that maximize returns and minimize portfolio risk. The 
method used in this study is through investment portfolio optimization in the form of Mean-EVaR. 
The stages carried out are selecting the ten best stocks in the LQ45 index, estimating and testing 
the suitability of the return distribution, determining expectations, variance, and covariance 
between stock returns, and optimizing the allocation of investment portfolio weights using the 
Mean-EVaR model. This study uses daily return data for the period from August 2, 2021, to July 31, 
2024, with the distribution of returns tested using the Anderson-Darling test. The evaluation of 
the optimal portfolio includes the average return, variance, and standard deviation, while the 
impact of the risk tolerance factor (τ) on portfolio allocation is also considered. Based on the 
results of the analysis, it was obtained that the optimal portfolio weight allocation is 0.01073, 
0.23284, 0.04617, 0.08052, 0.00470, 0.09021, 0.14669, 0.00427, 0.22672, and 0.15715, to be 
allocated successively to the stocks ACES, BBRI, EXCEL, ITMG, PTBA, ADRO, BBTN, GGRM, KLBF, 
and AKRA. In this optimal portfolio, the average portfolio return is obtained at 0.00055 with an 
EVaR risk of 0.01632. These findings highlight the effectiveness of the Mean-EVaR model in 
balancing risk and return, providing practical insights for investors in making informed decisions. 
Future studies could explore broader datasets and alternative risk measures to enhance the 
robustness and applicability of the model. 
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INTRODUCTION 

Optimization models involve constructing representations of systems that reflect 
real-world conditions, which are then converted into mathematical models by isolating 
key elements. Their main purpose is to maximize or minimize an objective function, such 
as profit, revenue, or efficiency, while adhering to specific constraints, which may be 
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physical, financial, or regulatory. These models are essential tools for identifying optimal 
solutions in decision-making by balancing trade-offs among different objectives. Their 
application significantly enhances efficiency, productivity, and decision-making across 
various sectors, including manufacturing, transportation, logistics, and services [1]. In an 
era marked by rapid changes and uncertainty, the ability to quickly develop solutions is 
crucial. Optimization models not only help address immediate challenges but also support 
long-term adaptability and resilience, offering a sustainable approach to future problems. 
By providing a structured framework for solving complex issues, these models play a vital 
role in enabling efficient and informed decision-making [2]. As the complexity of decision-
making processes increases, optimization models continue to evolve, incorporating 
advanced computational techniques and algorithms to address multi-dimensional 
problems effectively [3]. 

An investment portfolio refers to a collection of valuable assets, including stocks, 
foreign currencies, bonds, gold, deposits, cash, properties, land, and more. Research by 
Cheng [4] highlights the high liquidity of the stock market, which explains why many 
individuals prefer stocks as a popular investment choice [5]. Stocks not only offer the 
potential for high returns but also provide flexibility and opportunities for diversification, 
making them a key element in many investment strategies. As financial instruments, 
stocks represent ownership or a stake in a company, and they are often seen as an ideal 
starting point for building a well-balanced portfolio. Hubbard [6] emphasizes that 
incorporating stocks into an investment portfolio is a common approach to increasing 
potential returns. However, changes in market conditions and economic cycles 
necessitate regular portfolio evaluation and optimization to maintain long-term 
investment stability. Therefore, understanding the dynamics of market trends and 
economic cycles is crucial for maintaining a resilient and well-optimized investment 
portfolio. 

In investment portfolio determination, optimization models play a crucial role in 
managing risk effectively and achieving the best possible investment outcomes. According 
to Abuselidze & Slobodianyk [7], investment portfolios may consist of diverse financial 
instruments, including bonds, mutual funds, and real estate. By creating a diversified 
portfolio, investors can capitalize on growth opportunities while securing returns with 
minimal risk. In today’s dynamic and complex financial markets, investors face numerous 
options, each with varying levels of risk and return. Optimization models help investors 
allocate resources efficiently by considering key factors such as investment goals, risk 
tolerance, and existing constraints. Therefore, portfolio optimization models must 
integrate risk management strategies to ensure that portfolios are not only profitable but 
also capable of withstanding market fluctuations. Risk metrics like Value-at-Risk (VaR), 
Conditional Value-at-Risk (CVaR), and Entropic Value-at-Risk (EVaR) are useful for 
assessing the risk levels of portfolios. These metrics serve as foundational tools in modern 
financial analysis, enabling investors to quantify and manage uncertainties effectively. 
However, despite the increasing importance of portfolio optimization, limited research 
has systematically addressed the integration of advanced risk measures, such as EVaR, 
into comprehensive mathematical frameworks. This highlights the need for a deeper 
exploration of how such measures can enhance decision-making in complex investment 
scenarios. 

Investors have access to various methods for measuring risk, with one widely used 
approach being Value-at-Risk (VaR). VaR serves as a tool to identify the underlying causes 
of risk and to establish effective policies for mitigating those risks [7,8]. Additionally, 
Conditional Value-at-Risk (CVaR) has been acknowledged as a coherent risk 
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measurement method, as highlighted by Rockafellar & Uryasev [10] and Rockafellar [11]. 
While CVaR shares similarities with VaR, it offers distinct advantages. According to 
Markowitz, when losses are normally distributed, the optimal portfolios derived from 
CVaR, VaR, and Minimum Variance are essentially equivalent. This study incorporates the 
Entropic Value-at-Risk (EVaR), a more advanced risk measure developed by Ahmadi-Javid 
[12,13]. EVaR not only possesses coherent properties but also exhibits several unique 
characteristics. For example, EVaR is highly monotonic, setting it apart from other 
monotonic risk measures like VaR and CVaR. Through a model-based approach that 
utilizes input data, EVaR facilitates efficient portfolio optimization across a broad 
spectrum of return levels with known distributions [14]. The novelty of EVaR lies in its 
derivation from Chernoff's inequality, offering computational advantages and robustness 
in handling a wide range of stochastic optimization problems. Despite its potential, the 
literature still lacks a comprehensive evaluation of EVaR’s performance in diverse 
financial contexts, particularly when compared to traditional risk measures. 

Notably, in scenarios where return levels are independent and randomly 
distributed, traditional measures like VaR and CVaR are inadequate, as elaborated in 
Section 4 of Ahmadi-Javid [8]. EVaR’s adaptability makes it especially valuable for 
managing risks in dynamic market conditions where conventional models may fall short. 
As a risk measure that serves as the upper bound for both CVaR and VaR, EVaR provides 
a coherent framework for addressing risks. Therefore, in cases involving independent and 
random return distributions, EVaR becomes a crucial tool for risk assessment and 
portfolio management. This study aims to fill this gap by systematically analyzing the 
effectiveness of EVaR in optimizing portfolios under varying market conditions and 
distributional assumptions, providing a robust alternative to traditional measures. 

By employing optimization models that incorporate the EVaR risk measure, 
investors can effectively balance risk and return, which is crucial for achieving long-term 
financial objectives and safeguarding investments from market volatility. Such 
approaches are particularly important in navigating complex investment environments 
and uncertain market conditions. Portfolio weight optimization, for instance, serves as a 
powerful tool for making informed and efficient investment decisions [15,16]. According 
to Bodie et al. [17], the application of optimization models in constructing investment 
portfolios enables investors to efficiently align their portfolios with specific financial goals, 
risk tolerance, and individual preferences, ultimately improving long-term investment 
outcomes. However, the precise mechanisms through which EVaR contributes to 
enhanced portfolio performance remain underexplored, necessitating further 
investigation into its practical applications and theoretical underpinnings. 

Ahmadi-Javid [8] introduced EVaR, a novel coherent risk measure designed as the 
tightest upper bound for Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), 
derived from Chernoff's inequality. In further research, Ahmadi-Javid [2] demonstrated 
that EVaR significantly enhances computational efficiency for solving a broad range of 
stochastic optimization problems, many of which are impractical to address using CVaR. 
Building on this, Ahmed et al. [9] investigated the development and application of EVaR 
as a risk measure that acts as an upper bound for both VaR and CVaR. Their findings 
highlighted the superior computational efficiency of the EVaR-based portfolio 
optimization approach compared to the CVaR-based method, particularly as the sample 
size increases, where EVaR either matches or outperforms CVaR. Additionally, Cajas [18] 
extended the scope of EVaR by introducing Relativistic Value-at-Risk (RL-VaR), a 
generalized risk measure that lies between EVaR and the essential supremum (ess sup). 
Cajas' research [18] provided comprehensive theoretical advancements, mathematical 
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formulations, and numerical implementations for both RL-VaR and EVaR, broadening the 
understanding and application of these risk measures in optimization contexts. While 
these studies underscore the potential of EVaR, they do not address its integration with 
advanced mathematical tools, such as vector and matrix equations, which could further 
refine portfolio optimization strategies. This research seeks to bridge this gap by 
incorporating these sophisticated techniques into the EVaR framework. 

Previous studies have often emphasized minimizing variance, yet they have not 
fully explored optimization through the application of specific formulations involving 
vector and matrix equations. Addressing this limitation, the current research seeks to 
bridge the gap by advancing a portfolio optimization model based on the Mean-EVaR 
approach. To realize this objective, the study develops a comprehensive and detailed 
model that incorporates sophisticated mathematical techniques, particularly vector and 
matrix representations. These representations enhance the precision and robustness of 
the optimization process, offering a more solid and specific foundation for designing 
optimal investment portfolio strategies. Consequently, this research not only addresses 
the gaps identified in earlier studies but also makes a substantial contribution by 
introducing an innovative and mathematically grounded approach to portfolio 
optimization. 

The benefit of this approach is rooted in the thoughtful incorporation of the EVaR 
risk measure into the process of portfolio weight optimization. By integrating these 
methods, a more robust framework for investment portfolio management is established, 
offering investors the flexibility to respond more effectively to market fluctuations. This 
increases the likelihood of meeting long-term financial objectives while reducing the 
potential for unforeseen losses. Additionally, this method allows for a more in-depth 
understanding of the risks involved, giving investors a competitive advantage when it 
comes to making swift adjustments to their portfolios in reaction to market shifts. The 
focus of this study is on investment portfolios, with an emphasis on developing 
optimization models that enhance the efficiency of portfolio management. Through the 
optimization model created in this research, an analysis is conducted to demonstrate how 
the integration of the Mean-EVaR method can improve risk management strategies within 
investment portfolios.  

 

METHODS  

This study involves the optimization of an investment portfolio based on the Mean-EVaR 
model, applied to the ten best-performing stocks from the LQ45 index traded on the 
Indonesian stock market. The objective is to determine the allocation weight composition 
for these ten stocks to achieve an optimal portfolio. It is assumed that the returns of these 
ten stocks are random numbers following a specific distribution pattern. To achieve this 
objective, the steps to be taken are outlined as follows: 

Expected Return, Variance, and Covariance of stocks 

In this step, the calculation of stock returns, expected return, variance, and covariance of 

stocks is analized. Let 𝑃𝐴,𝑡 represent the price of stock (asset) 𝐴 at time 𝑡, and 𝑟𝐴,𝑡 return 
asset 𝐴 at time 𝑡. Return asset 𝑟𝐴,𝑡 can be calculated using equation (1). 

𝑟𝐴,𝑡 = 𝑙𝑛 (
𝑃𝐴,𝑡

𝑃𝐴,𝑡−1
).                                                              (1) 



Optimization of investment portfolio weights using the Mean-Entropic-VaR model on the Top Ten 
Stocks from LQ45 in the Indonesian Capital Market 

Nurnisaa binti Abdullah Suhaimi 228 

Let 𝑅𝐴,𝑡 represent the random variable of 𝑟𝐴,𝑡. The following are formulas for the mean, 

variance, covariance, and correlation coefficient under the probabilistic approach: 
The mean return of a stock A can be defined by equation (2). 

𝜇𝐴 = 𝐸[𝑅𝐴,𝑡 ] = ∫ 𝑟𝐴,𝑡𝑓(𝑟𝐴,𝑡)𝑑𝑟𝐴,𝑡

+∞

−∞

,                                          (2) 

where 𝑟𝑡 = 𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁 , 𝜇𝐴 : is the expected return of stock 𝐴, 𝑅𝐴,𝑡: is the random 
variable of the return of stock A at time 𝑡, 𝑟𝐴,𝑡  is the value of the return of stock 𝐴 at time 
𝑡, and 𝑓(𝑟𝐴,𝑡) is the density function of 𝑅𝑡 [19]. 

The variance of a stock A can be defined by equation (3). 

𝜎𝐴
2 = 𝐸 [(𝑅𝐴,𝑡 − 𝜇𝐴)

2
] = ∫ (𝑟𝐴,𝑡 − 𝜇𝐴)

2
𝑓(𝑟𝐴,𝑡)𝑑𝑟𝐴,𝑡 = 𝐸[𝑅𝐴,𝑡

2 ] − {𝐸[𝑅𝐴,𝑡]}
2
.

+∞

−∞

         (3) 

The covariance between stock 𝐴 and 𝐵 can be defined by equation (4). 

𝜎𝐴𝐵 = 𝐸[(𝑟𝐴,𝑡 − 𝜇𝐴)(𝑟𝐵,𝑡 − 𝜇𝐵)] = ∫ ∫(𝑟𝐴,𝑡 − 𝜇𝐴)(𝑟𝐵,𝑡 − 𝜇𝐵)𝑓(𝑟𝐴,𝑡, 𝑟𝐵,𝑡)𝑑𝑟𝐴,𝑡𝑑𝑟𝐵,𝑡

∞

−∞

.

∞

−∞

     (4) 

The correlation coefficient between the returns of stocks 𝐴  and 𝐵  is defined by 
equation (5) [19]. 

𝜌𝐴𝐵 =
𝜎𝐴𝐵

𝜎𝐴. 𝜎𝐵
 .                                                                (5) 

Distribution for Stock Returns  

In this research, stock returns are assumed to follow a specific distribution, such as the 
log-logistic and Burr (4P) distributions, which are commonly used in risk analysis and 
economics due to their ability to capture heavy tails and asymmetry in empirical data [20]. 
The Burr (4P) distribution, introduced by Irving W. Burr in 1942, is highly flexible and 
can handle distributions with heavy tails and asymmetry [21], making it suitable for 
capturing market phenomena that often exhibit extreme volatility. On the other hand, the 
log-logistic distribution, known for its similarity to the log-normal distribution but with 
longer tails, is frequently used in duration analysis and survival modeling, making it a 
relevant approach for modeling long-term risks in the analyzed stocks. 

However, while these distributions are widely used in the literature related to risk and 
economics, the assumption that stock returns follow these distributions needs to be 
validated through further statistical approaches, such as distribution fitting tests to 
ensure their suitability for the data. In this study, the chosen distributions will be tested 
using relevant distribution fitting methods and evaluated for their accuracy with 
historical stock return data from the top ten LQ45 stocks.  

The Anderson-Darling test will be used to assess the goodness of fit of the chosen 
distributions. The importance of these distribution tests is to ensure that the portfolio 
optimization model, which uses stock return distributions as input, provides valid and 
reliable results. Therefore, selecting the appropriate distribution is crucial for applying 
the Mean-EVaR model to portfolio optimization in a way that is more accurate and aligned 
with the characteristics of the Indonesian capital market data. This will be further 
discussed in the following subsection. 
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Distribution Model Fit Test using Anderson Darling 

In this step, a goodness-of-fit test is conducted to determine whether stock returns can 
be assumed to follow a specific distribution model. The goodness-of-fit test is performed 
using the Anderson-Darling method. Let 𝑓(𝑟𝐴,𝑡)  represent the density function of 𝑅𝑡 

which is assumed to follow a certain distribution model. According to Bello et al. [22], the 
Anderson-Darling method is often used to verify whether sample data comes from a 
population with the expected distribution. Suppose, if there is data 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 whose 
distribution will be tested at the confidence level 𝜃 , then the Anderson-Darling test is 
carried out using the following equation (6). 

𝐴 = −𝑛 − 𝑆 .                                                                  (6) 
 

with 𝑆 given by equation (7). 

𝑆 =
1

𝑛
∑[2𝑖 − 1][ln(𝐹(𝑍𝑖)) + ln(1 − 𝐹(𝑍𝑛+1−𝑖))],

𝑛

𝑖=1

                         (7) 

And determined using equation (8). 

𝑍𝑖 =
𝑥𝑖 − 𝑥̅

𝑠
.                                                                 (8) 

Substitute equation (7) and equation (8) into equation (6) and we get the following 
equation (9). 

𝐴 = −𝑛 −
1

𝑛
∑[2𝑖 − 1][ln(𝐹(𝑍𝑖)) + ln(1 − 𝐹(𝑍𝑛+1−𝑖))]

𝑛

𝑖=1

,                          (9) 

with,  
𝐴      : test statistical value for the Anderson-Darling method, 
𝑥𝑖        : 𝑖-th data that has been sorted, 
𝑍𝑖        : standardized 𝑥𝑖  data, 
𝑥̅     : average data, 
𝑠      : standard deviation of data, 
𝐹(𝑍𝑖) : value of the standard normal cumulative distribution function at 𝑍𝑖 . 
 

a) Hypothesis: Testing using the Anderson-Darling method is carried out by determining 
the hypothesis as follows; 
 𝐻0 ∶ stock returns follow a specified distribution, 
 𝐻1 ∶ stock returns do not follow the specified distribution. 
The test criteria used are reject 𝐻0 if the value of 𝐴𝑐𝑜𝑢𝑛𝑡 > 𝐴𝑡𝑎𝑏𝑙𝑒 or Prob(𝐴𝑐𝑜𝑢𝑛𝑡)< 𝜃. 
In other words, if the test results show that the test statistical value is too large or the 
probability is very small, then the null hypothesis is considered not appropriate to the 
data 

b) Significance Level: 𝜃  
c) Critical Value: The hypothesis regarding the decision is taken based on a comparison 

of the test statistical value A with the critical value at the predetermined significance 
level 𝜃 . If the test statistic value A is smaller than the critical value, then the null 
hypothesis 𝐻0 is accepted, indicating that the data comes from a certain distribution. 
Conversely, if the test statistic value A is greater than the critical value, then 𝐻0  is 
rejected, indicating that the data does not come from a certain distribution. 



Optimization of investment portfolio weights using the Mean-Entropic-VaR model on the Top Ten 
Stocks from LQ45 in the Indonesian Capital Market 

Nurnisaa binti Abdullah Suhaimi 230 

The Anderson-Darling test is used in this study because it provides a more robust 
assessment of the goodness-of-fit, particularly in evaluating the tails of the distribution. 
This is crucial in portfolio optimization, where extreme returns significantly influence risk 
measurement. The significance level (𝜃 =  0.01) is chosen to ensure a strict threshold for 
rejecting the null hypothesis, reducing the likelihood of incorrectly assuming that the data 
follows a specific distribution. This conservative approach aligns with the study's focus 
on accurately modeling financial risks 

Entropic-VaR Model 

This section explains an investment risk measure called Entropic Value-at-Risk (EVaR). 
By incorporating entropy, EVaR provides a more flexible and robust approach to measur-
ing risk in chaotic environments where traditional methods, such as Mean-Variance, fall 
short [23]. EVaR is a new coherent risk measure introduced and studied by Ahmadi-Javid 
[12,13]. EVaR, at the confidence level 1 − 𝛼  (or at-risk level 𝛼), is defined as shown in 
equation (10). 

EVaR1−𝛼 (𝑋) ≔ inf
𝜃>0

{𝜃−1 ln (
𝑀𝑥(𝜃)

𝛼
)} , 𝑋 ∈ 𝐋𝐌, 𝛼 ∈ (0,1] .                       (10) 

EVaR is a risk measure that combines the concept of VaR with entropic information 
theory. Therefore, it can provide a new perspective on portfolio risk by considering 
uncertainty in the asset price distribution. For a normal distribution 𝑋 ~ 𝑁(𝜇, 𝜎2) EVaR is 
given by equation (11). 

EVaR1−𝛼 (𝑋) = 𝜇 + √−2 ln 𝛼 𝜎.                                           (11) 

Based on the normality assumption, it can be concluded that all risk measures, such as 
VaR, CVaR, and EVaR, are functions of the mean and variance 

 

Determine Weight Vector, Mean Vector, Unit Vector, Covariance Matrix and Inverse 
Matrix  

This step explains how to determine the weight vector, mean vector, unit vector, 
covariance matrix, and inverse matrix. In the context of this research, which focuses on 
the selected top N stocks, several basic elements in investment portfolio analysis, such as 
the weight vector, mean vector, unit vector, covariance matrix, and its inverse, can be 
explained as follows.  

The weight vector, denoted as 𝐰, in the context of an investment portfolio, represents 
the proportion of the total capital allocated to each stock within the portfolio. Each 
component of the weight vector corresponds to the specific portion of the total 
investment assigned to a particular stock [24,25]. It is essential for the weight vector to 
satisfy the condition that the sum of all its elements equals 1, ensuring that all available 
funds are fully invested in the portfolio without any remaining capital. Mathematically, 
this condition is expressed as follows (12). 

𝐰𝑇 = [𝑤1 𝑤2 … 𝑤𝑁],                                                (12) 

with 𝐰𝑇  is transpose of the weight vector 𝐰 , 𝑤𝑖  is weight of the 𝑖-th stock, where 𝑖 =
1,2, … ,𝑁. 
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The vector 𝐞 is a vector vector where all elements are equal to 1, with a length equal to the 

number of stocks. In this case, since there are 𝑁 selected stocks, the unit vector e is given 
by equation (13). 

𝐞𝑇 = [1 1 … 1],                                                      (13) 

with 𝐞𝑇 is tranpose of vector 𝐞. [19] 
The weight and unit vectors play a crucial role in determining the return of an 

investment portfolio. The mean vector, denoted as 𝛍, consists of the expected or average 
returns for each stock in the portfolio. This vector represents the anticipated return for 
each stock over the research period. Each component of the mean vector corresponds to 
the expected return for a specific stock. The mean vector is expressed mathematically 
through the equation (14), which provides the foundation for calculating the overall 
return of the portfolio based on the individual stock returns. [19] 

𝛍𝑇 = [𝜇1 𝜇2 …  𝜇𝑁],                                                  (14) 

with 𝛍𝑇 is transpose of the mean vector μ, and 𝜇𝑖 mean return of the 𝑖-th stock, where 𝑖 =
1,2, … ,𝑁. 

The covariance matrix 𝚺 represents the risk within a portfolio by representing the 
covariances between the returns of each pair of stocks. It provides insights into how stock 
returns interact with one another. The covariance matrix is of size N × N, where N is the 
number of stocks in the portfolio, and it computes both the variance of each individual 
stock and the covariance between each pair of stocks. This allows for a comprehensive 
assessment of the overall risk in the portfolio, as the interactions between the different 
stocks are considered. The covariance matrix 𝚺  is mathematically expressed in the 
following equation (15).  

𝚺 =

[
 
 
 
 
𝜎11 𝜎12

𝜎13 … 𝜎1𝑁

𝜎21 𝜎22
𝜎23 … 𝜎2𝑁

𝜎31

⋮
𝜎𝑁1

𝜎32

⋮
𝜎𝑁2

𝜎33

⋮
𝜎𝑁3

…
⋱
…

𝜎3𝑁

⋮
𝜎𝑁𝑁]

 
 
 
 

,                                            (15) 

with 𝚺 is covariance matrix, and 𝜎𝑖𝑗  covariance between the 𝑖-th and 𝑗-th stocks, where 

𝑖, 𝑗 = 1,2,3, … ,𝑁. 
The inverse of the covariance matrix, denoted as 𝚺−𝟏,  is utilized to analyze how 

sensitive the portfolio is to fluctuations in the returns of individual stocks. It can be 
calculated using methods like Gauss-Jordan elimination. In this context, 𝚺−1  is 
represented by equation (16). 

𝚺−𝟏 = [𝚺|𝑰] =

(

 
 

𝜎11 𝜎12
𝜎13 … 𝜎1𝑁

𝜎21 𝜎22
𝜎23 … 𝜎2𝑁

𝜎31

⋮
𝜎𝑁1

𝜎32

⋮
𝜎𝑁2

𝜎33

⋮
𝜎𝑁3

…
⋱
…

𝜎3𝑁

⋮
𝜎𝑁𝑁

|
|

1 0 0 … 0
0 1 0 … 0
0
⋮
0

0
⋮
0

1
⋮
0

…
⋱
…

0
⋮
1)

 
 

,                     (16) 

with 𝑰 is identity matrix. [19] 
The inverse covariance matrix is a critical component in portfolio optimization, 

particularly when calculating the optimal portfolio weights that either minimize risk or 
enhance risk-adjusted returns. This matrix is integral to several optimization techniques, 
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such as the Mean-VaR model [26], and the Mean-EVaR model. Portfolio variance, denoted 
as 𝜎𝑝

2,  can be expressed through a multiplication process as shown in equation (17) 

[27,28]. This formula is used to assess the total risk associated with a portfolio by 
considering the interactions between the assets within the portfolio. 

𝜎𝑝
2 = 𝐰𝑇 𝚺𝐰.                                                         (17) 

Mean-EVaR Investment Portfolio Optimization  

EVaR is considered a more comprehensive risk measure than VaR because it 
incorporates entropic information from the deeper tail of the distribution. Defined in 
Equation (17), EVaR evaluates risk by focusing on the tail distribution, offering more 
robust protection against extreme events when compared to VaR. It is because it accounts 
for extreme tail events and the deeper aspects of the distribution, which is crucial for 
accurately assessing risks in the presence of heavy tails and market volatility. According 
to Equation (17), the EVaR of a portfolio is derived based on this concept. The calculation 
of EVaR involves using the portfolio's mean, as specified in Equation (18), and the 
portfolio's variance, as presented in Equation (19), to determine the portfolio's EVaR 
value. 

𝜇𝑝 = ∑𝑤𝑖𝜇𝑖 =

𝑁

𝑖=1

𝛍𝑇𝐰 = 𝐰𝑇𝛍,                                            (18) 

𝜎𝑝
2 = ∑𝑤𝑖

2𝜎𝑖
2 + ∑ ∑𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

=

𝑁

𝑖=1

𝐰𝑇𝚺𝐰.                              (19) 

Therefore, EVaR in equation (11), in the form of vector and matrix notation, EVaRp can 

be calculated using equation (20). 

EVaRp =−𝑊0 (2𝜏𝛍𝑇𝐰 + (𝛍𝑇𝐰 + √−2 ln 𝛼 (𝐰𝑇𝚺𝐰)
𝟏

𝟐 )),                (20) 

 
𝜏 is the risk tolerance factor, which controls the trade-off between risk and return. A 

higher 𝜏 indicates higher risk tolerance, meaning the investor is willing to accept more 
risk for potentially higher returns. The problem to be addressed in this optimization is 
maximizing the return of the portfolio, while considering the risk, which is quantified 
using EVaR. When the risk is measured through EVaR, the optimization problem that 
needs to be solved is represented by equation (21). 

max{2𝜏𝜇𝑝 − EVaRp},                                                (21) 

 

                        𝑠𝑡.∑𝑤𝑖 = 1

𝑁

𝑖=1

.   

This objective function aims to balance the portfolio's expected return 𝜇𝑝 with its risk 

(as measured by EVaR), weighted by the risk tolerance factor 𝜏. The optimization problem 
is subject to the constraint that the sum of the portfolio weights must equal 1. By utilizing 
the vectors in equation (18), the vector equation in (19), and equation (20), and assuming 
an initial capital of 𝑊0 = 1 unit, the optimization problem presented in equation (21) can 
be restructured and represented as equation (22). 

max {2𝜏𝛍𝑇𝐰 + (𝛍T𝐰 + √−2 𝑙𝑛 𝛼 (𝐰𝑇𝚺𝐰)
𝟏

𝟐)},                           (22) 
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                𝑠𝑡. 𝐞𝑇𝐰 = 1.  

The solution to determine the optimal weight for a Mean-EVaR portfolio optimization 
problem, considering the risk tolerance factors as presented in equation (22), is as 
follows.: 

1) When the risk tolerance factor 𝜏 ≥ 0, the solution to the Mean-EVaR optimization 
problem can be expressed as follows: 

𝐰 =
(2𝜏 + 1)𝚺−1𝛍 + 𝜆𝚺−1𝐞

(2𝜏 + 1)𝐞𝑇𝚺−1𝛍 + 𝜆𝐞𝑇𝚺−1𝐞
,                                    (23) 

2) The Lagrangian multiplier 𝜆  used to enforce the constraint 𝑒𝑇𝑤 = 1,  it can be 
determined using the following formula in equation (24). 

𝜆1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
;    𝜆 > 0,                                   (24) 

where 
𝑎 = 𝐞𝑇𝚺−1𝐞,  

𝑏 = (2𝜏 + 1)(𝐞𝑇𝚺−1𝛍 + 𝛍𝑇𝚺−1𝐞),  

𝑐 = (2𝜏 + 1)2𝛍𝑇𝚺−1𝛍 + √−2 𝑙𝑛 𝛼 ,  

The Mean-EVaR portfolio optimization process incorporates the risk tolerance factor 𝜏 to 

balance risk and return. By determining the optimal portfolio weights through the use of matrix 

equations and Lagrange multipliers, the method provides a more nuanced approach to portfolio 

optimization compared to traditional models. The construction of the efficient frontier helps 

investors choose the best portfolio based on their risk preferences, ensuring that the portfolio is 

both optimized for return and appropriately aligned with the investor's risk tolerance 

These steps are applied to the return data of the ten selected stocks, as described in the 

subsequent sections. By using the Mean-EVaR optimization model, the optimal portfolio 

weights are determined based on the selected stocks' return data, taking into account the risk 

tolerance factor and the covariance structure of the assets. 

RESULTS AND DISCUSSION  

Stock data and Returns 

This section presents the stock price data for the top 10 performing stocks listed in 
Indonesia's LQ45 index, chosen based on their performance during the research period. 
Stock returns are computed using the log return formula, which provides an overview of 
each stock's profit or loss over a specific period. The data analyzed in this study consists 
of stock prices from the 10 best-performing stocks traded on the Indonesia Stock 
Exchange (IDX). This stock price analysis offers valuable insights into notable price 
fluctuations and patterns that serve as the foundation for calculating stock returns. The 
10 selected stocks are part of the LQ45 index, which is evaluated every six months by the 
IDX, with this research period covering February 2024 to July 2024. For this analysis, 
stock data spanning three full years, from August 2, 2021, to August 1, 2024, is included. 
According to the LQ45 index, the top 10 stocks are ACES, BBRI, EXCL, ITMG, PTBA, ADRO, 
BBTN, GGRM, KLBF, and PTMP. However, since PTMP did not meet the three-year data 
requirement, it was replaced with the 11th best-performing stock, AKRA. The closing 
price data for these 10 stocks covers 724 trading days. This data is then used to calculate 
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the stock returns during the research period, which is subsequently applied in the 
portfolio optimization model. Table 1 provides the names and abbreviations of the stocks 
used in this study, representing the top 10 performers selected based on the specified 
criteria. 

 
Table 1. 10 best stocks selected based on the LQ45. 

No. Stocks Best LQ45 Stocks 

1 ACES Aspirasi Hidup Indonesia Tbk PT 

2 BBRI Bank Rakyat Indonesia (Persero) Tbk PT 

3 EXCL XL Axiata Tbk PT 

4 ITMG Indo Tambangraya Megah Tbk PT 

5 PTBA Bukit Asam Tbk PT 

6 ADRO Adaro Energy Indonesia Tbk PT 

7 BBTN Bank Tabungan Negara (Persero) Tbk PT 

8 GGRM Gudang Garam Tbk PT 

9 KLBF Kalbe Farma Tbk PT 

10 AKRA AKR Corporindo Tbk PT 

 
This study also includes charts illustrating the daily stock price movements from 

August 2, 2021, to August 1, 2024. In these charts, the horizontal axis represents the dates 
of trading, while the vertical axis shows the corresponding stock prices. For example, 
Figure 3 presents the daily stock price chart for ACES. 

 

 
Figure 1. Daily Stock Price Movement of ACES. 

 

In Figure 1, it can be observed that ACES stock prices exhibited a downward trend 
from the beginning of the period until the middle, followed by a slight increase and 
concluding with a period of consolidation at a lower level. Stock returns are calculated 
based on the changes in stock prices over time, representing the profit or loss generated 
from investing in these stocks. . This example illustrates the calculation of logarithmic 
returns for ACES stock between the two dates, focusing on a single stock out of the ten 
analyzed in the study. The same calculation method was applied to the subsequent 
periods. Figure 2 presents the return chart for ACES stock, which aids in understanding 
the volatility of ACES stock returns. 
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Figure 2. Daily Stock Returns of ACES. 

 

Returns serve as a measure of investment performance and are a crucial component 
in portfolio analysis. By calculating stock returns, one can assess the potential profits and 
associated risks of each stock. In this study, return data for 10 stocks were calculated 
using equation (1) with the assistance of Microsoft Excel software. An example of the 
manual calculation of daily stock returns is provided using the closing price data of ACES 
stock from August 2, 2021, and August 3, 2021:  

𝑟1 = 𝑙𝑛 (
1325

1305
) . 

Specifically, 1305 is the closing price on August 2, 2021, and 1325 is the closing price 
on August 3, 2021. 

Descriptive statistics offer a numerical overview of the features of stock return data, 
including metrics like the mean return, variance, and standard deviation (which 
represents volatility). By analyzing these descriptive statistics, a better understanding of 
stock return patterns can be gained, which will inform decisions in portfolio optimization. 
The descriptive statistics for the returns are displayed in Table 2. 

 
Table 2. Descriptive Statistics of the Returns of the Top 10 Stocks. 

No. Stocks Mean Return (𝝁) Variance (𝝈𝟐) Standard Deviation (𝝈) 

1 ACES -0.000677 0.000698 0.026423 
2 BBRI 0.000439 0.000257 0.016025 
3 EXCL -0.000276 0.000515 0.022701 
4 ITMG 0.000608 0.000600 0.024496 
5 PTBA 0.000248 0.000532 0.023067 
6 ADRO 0.001182 0.000662 0.025772 
7 BBTN 0.000196 0.000343 0.018511 
8 GGRM -0.001010 0.000395 0.019874 
9 KLBF 0.000273 0.000322 0.017947 

10 AKRA 0.001056 0.001056 0.023729 

 
This descriptive statistic provides a brief overview of the average performance and the 

associated risk for each stock utilized in the portfolio optimization process.  

Estimating and Testing the Distribution Fit for Top 10 Stock Returns  

In estimating and testing the suitability of the return distribution model for the top 10 
stocks, the most fitting statistical distribution is identified to accurately represent stock 
return behavior. This includes determining whether the returns follow a log-logistic, Burr, 
or other types of distribution. For instance, an analysis was conducted on the return 
distribution model of ACES stock. The stock returns for ACES were visually represented 
as a histogram, and after conducting tests using EasyFit software, it was concluded that 
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the histogram in Figure 3 is best described by a log-logistic (3P) distribution. 

 
Figure 3. Histogram of ACES Stock Returns. 

The parameter estimation for ACES stock was carried out using the Maximum 
Likelihood Estimation (MLE) method, as demonstrated by Mai et al. [29]. Once the 
parameter values were obtained, as shown in Table 3, a goodness-of-fit test was 
performed using the Anderson-Darling test at a significance level of 𝜃 =  0.01. This step 
is crucial to verify that the portfolio optimization model is based on a suitable distribution. 

For the distribution model testing on ACES stock, the hypotheses used are as follows: 
H₀: The stock returns follow a Log-Logistic distribution (3P). 
H₁: The stock returns do not follow a Log-Logistic distribution (3P). 
The same testing method was applied to each stock. At the significance level of 𝜃 =

0.01 , the critical value of Anderson-Darling is 𝐴𝑡𝑎𝑏𝑙𝑒
2 = 3.9074 , which serves as a 

benchmark for determining whether the data distribution significantly deviates from the 
theoretical distribution being tested. 

Table 3 reveals that several stocks, including ACES, ITMG, ADRO, GGRM, and KLBF, are 
better represented by the Log-Logistic distribution (3P). This distribution is known for 
effectively capturing more regular data patterns with lighter tails, suggesting that these 
stocks tend to have more stable return characteristics over the long term. In contrast, 
stocks such as BBRI, EXCL, PTBA, BBTN, and AKRA align more closely with the Burr 
distribution. The Burr distribution is capable of capturing patterns of higher volatility and 
heavier tails, indicating that these stocks are more prone to experiencing extreme 
fluctuations or outlier events in their returns. This suggests that risk analysis using the 
Burr distribution would be more appropriate for these stocks, as it can offer more realistic 
risk estimates, particularly in the presence of significant price fluctuations. 

Table 3. Parameter Estimator Values and Fit of Return Distributions for 10 Stocks  

No. Stocks Distribution 

Parameter Value Anderson-Darling  
Goodness-of-Fit Test 

𝛼 𝛽 𝛾 𝑘 𝑨𝒉𝒊𝒕𝒖𝒏𝒈
𝟐  𝑯𝟎 

1 ACES Log-Logistic (3P) 16.21 0.23 -0.23 - 2.6958 Accepted 
2 BBRI Burr (4P) 2.14 × 104 178.49 -178.49 0.88 0.67056 Accepted 
3 EXCL Burr (4P) 610.05 6.30 -6.30 0.71 0.9668 Accepted 
4 ITMG Log-Logistic (3P) 73.55 0.94 -0.94 - 1.6247 Accepted 
5 PTBA Burr (4P) 1.84× 108 2.13 × 106 −2.13 × 106 1.03 2.5731 Accepted 
6 ADRO Log-Logistic (3P) 91.07 1.25 -1.25 - 1.6213 Accepted 
7 BBTN Burr (4P) 298.76 2.29 -2.30 0.63 2.4064 Accepted 
8 GGRM Log-Logistic (3P) 45.41 0.44 -0.44 - 3.345 Accepted 
9 KLBF Log-Logistic (3P) 36.04 0.35 -0.35 - 1.0033 Accepted 

10 AKRA Burr (4P) 8.49 × 107 9.49 × 105 −9.49 × 105 0.76 2.6861 Accepted 

 
Based on the parameter estimator values presented in Table 3, the subsequent step 

involves calculating the mean using equation (2) and the variance using equation (3). The 



Optimization of investment portfolio weights using the Mean-Entropic-VaR model on the Top Ten 
Stocks from LQ45 in the Indonesian Capital Market 

Nurnisaa binti Abdullah Suhaimi 237 

outcomes of these mean and variance calculations are displayed in Table 4. 
Table 4. Mean and Variance Estimator 

No. Stocks Mean Return (𝝁) Variance (𝝈𝟐) Standard Deviation (𝝈) 

1 ACES -0.000783 0.000658 0.025660 
2 BBRI 0.000426 0.000252 0.015870 
3 EXCL -0.000017 0.000469 0.021660 
4 ITMG 0.000675 0.000534 0.023110 
5 PTBA 0.000535 0.000502 0.022410 
6 ADRO 0.001300 0.000620 0.024900 
7 BBTN 0.000350 0.000297 0.017230 
8 GGRM -0.001240 0.000315 0.017740 
9 KLBF 0.000182 0.000316 0.017770 

10 AKRA 0.001260 0.000570 0.023880 

Next, Table 5 presents the covariance between the returns of the stocks analyzed. The 
covariance matrix highlights the relationships between stock returns, indicating whether 
they move in the same or opposite directions. These covariance values have been 
computed using equation (4). 

If the covariance between two stocks is positive, it indicates that the stocks tend to 
move in the same direction. For instance, the positive covariance of 0.000054 between 
ACES and BBRI suggests that when ACES' return increases, BBRI's return also tends to 
rise. On the other hand, a negative covariance, such as the one between ACES and ITMG at 
-0.000015, means that when ACES' return increases, ITMG's return tends to decrease, 
indicating an inverse relationship between the two stocks. The mean and variance 
estimators shown in Table 4, along with the covariance values presented in Table 5, are 
utilized in the portfolio optimization process within the Mean-EVaR model. 

Determining the Mean Vector, Unit Vector, and Covariance Matrix of Returns for the 
10 Best Stocks  

The mean value, derived from Table 4, is rewritten in vector form following the 
structure of Equation (14) and is formulated as presented in Equation (25). 

𝛍𝑇 = [−0.0007830  0.000426 − 0.000017  0.000675  0.000535 
0.001300  0.000350 − 0.001240  0.000182  0.001260]                 (25) 

Since there are 10 stocks being analyzed, and based on equation (13), the unit vector 
is formulated as shown in equation (26). The unit vector is written as below reflecting the 
presence of 10 stocks in the analysis. 

𝐞𝑇  = [1 1 1 1 1 1 1 1 1 1].                                                (26) 

Based on the volatility estimates presented in Table 4 and the covariance values among 
the 10 selected stocks listed in Table 5, as referenced in equation (15), the covariance 
matrix is structured according to equation (27). Following this, the matrix in equation (27) 
is processed by calculating its inverse covariance matrix as outlined in equation (16), with 
the result being shown in equation (28). The calculation of the inverse covariance matrix 
is crucial in the process of investment portfolio optimization, as it typically aims to 
determine asset weights that either minimize risk for a specified level of return or 
maximize return for a given level of risk. In essence, the inverse covariance matrix plays 
a key role in solving the optimization model by incorporating the variability and 
correlation between assets and the investor's risk tolerance, ultimately guiding the 
determination of the optimal portfolio composition in alignment with the investment 
goals. 
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Table 5. Covariance of Returns between 10 Stocks 
Covariance of Returns 

Stocks ACES BBRI EXCL ITMG PTBA ADRO BBTN GGRM KLBF AKRA 

ACES 0.000658 0.000054 0.000080 -0.000015 0.000003 -0.000005 0.000083 0.000058 0.000039 0.000050 

BBRI 0.000054 0.000252 0.000060 0.000031 0.000054 0.000052 0.000115 0.000013 0.000040 0.000030 

EXCL 0.000080 0.000060 0.000469 0.000070 0.000060 0.000101 0.000078 0.000015 0.000050 0.000051 

ITMG -0.000015 0.000031 0.000070 0.000534 0.000303 0.000358 0.000035 0.000059 -0.000003 0.000118 

PTBA 0.000003 0.000054 0.000060 0.000303 0.000502 0.000339 0.000049 0.000051 0.000023 0.000123 

ADRO -0.000005 0.000052 0.000101 0.000358 0.000339 0.000620 0.000049 0.000040 0.000010 0.000147 

BBTN 0.000083 0.000115 0.000078 0.000035 0.000049 0.000049 0.000297 0.000027 0.000025 0.000057 

GGRM 0.000058 0.000013 0.000015 0.000059 0.000051 0.000040 0.000027 0.000315 0.000044 0.000026 

KLBF 0.000039 0.000040 0.000050 -0.000003 0.000023 0.000010 0.000025 0.000044 0.000316 0.000012 

AKRA 0.000050 0.000030 0.000051 0.000118 0.000123 0.000147 0.000057 0.000026 0.000012 0.000570 

 
 
 

No. Stocks Full Name of Best LQ45 Stocks  No. Stocks Full Name of Best LQ45 Stocks 

1 ACES Aspirasi Hidup Indonesia Tbk PT  6 ADRO Adaro Energy Indonesia Tbk PT 
2 BBRI Bank Rakyat Indonesia (Persero) Tbk PT  7 BBTN Bank Tabungan Negara (Persero) Tbk PT 
3 EXCL XL Axiata Tbk PT  8 GGRM Gudang Garam Tbk PT 
4 ITMG Indo Tambangraya Megah Tbk PT  9 KLBF Kalbe Farma Tbk PT 
5 PTBA Bukit Asam Tbk PT  10 AKRA AKR Corporindo Tbk PT 
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0.000658 0.000054 0.000080 -0.000015 0.000003 0.000005 0.000083 0.000058 0.000039 0.000050

0.000054 0.000252 0.000060 0.000031 0.000054 0.000052 0.000115 0.000013 0.000040 0.000030

0.000080 0.000060 0.000469 0.000070 0.00



Σ

0060 0.000101 0.000078 0.000015 0.000050 0.000051

-0.000015 0.000031 0.000070 0.000534 0.000303 0.000358 0.000035 0.000059 0.000003 0.000118

0.000003 0.000054 0.000060 0.000303 0.000502 0.000339 0.000049 0.000051 0.000023 0.



000123

0.000005 0.000052 0.000101 0.000358 0.000339 0.000620 0.000049 0.000040 0.000010 0.000147

0.000083 0.000115 0.000078 0.000035 0.000049 0.000049 0.000297 0.000027 0.000025 0.000057

0.000058 0.000013 0.000015 0.000059 0



.000051 0.000040 0.000027 0.000315 0.000044 0.000026

0.000039 0.000040 0.000050 0.000003 0.000023 0.000010 0.000025 0.000044 0.000316 0.000012

0.000050 0.000030 0.000051 0.000118 0.000123 0.000147 0.000057 0.000026 0.000012



0.000570

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(27) 

 
 
 

 

1

1636.919 139.840 207.916 107.285 13.024 61.787 323.216 268.326 87.780 113.009

139.840 4994.449 226.291 102.115 286.055 155.069 1750.503 81.229 426.806 28.826

207.916 226.291 2367.185 115.374 72.497 295.872



     

     

   

Σ

396.720 60.193 289.884 52.138

107.285 102.115 115.374 3491.007 1149.733 1327.131 4.510 337.390 196.490 123.903

13.024 286.055 72.497 1149.733 3622.755 1236.402 104.599 158.477 174.308 198.256

61.787 155.069 29

  

     

     

  5.872 1327.131 1236.402 3170.436 4.551 70.432 42.120 248.825

323.216 1750.503 396.720 4.510 104.599 4.551 4323.113 180.392 24.192 244.149

268.326 81.229 60.193 337.390 158.477 70.432 180.392 3381.046 438.266 2

   

       

      4.096

87.780 426.806 289.884 196.490 174.308 42.120 24.192 438.266 3349.412 12.638

113.009 28.826 52.138 123.903 198.256 248.825 244.149 24.096 12.638 1924.97

 
 
 
 
 
 
 
 
 
 
 
 
 
    

 
         

 

(28) 
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Table 6. Efficient Portfolio Weight Composition Based on the Mean-EVaR Optimization Model  

𝜏 𝜆  
𝑤 

𝜇𝑝 𝐸𝑉𝑎𝑅𝑝 𝜎 REVaR 
ACES BBRI EXCL ITMG PTBA ADRO BBTN GGRM KLBF AKRA 

0 0.02248 0.05330 0.19277 0.07483 0.07209 0.03129 0.01428 0.11673 0.16882 0.18916 0.08673 0.00010 0.01507 0.00922 0.00652 

0.1 0.02246 0.05243 0.19359 0.07424 0.07226 0.03075 0.01583 0.11734 0.16546 0.18993 0.08817 0.00011 0.01507 0.00923 0.00713 

0.2 0.02245 0.05156 0.19441 0.07366 0.07243 0.03020 0.01739 0.11795 0.16209 0.19069 0.08961 0.00012 0.01507 0.00923 0.00775 

0.3 0.02243 0.05069 0.19523 0.07307 0.07261 0.02966 0.01894 0.11857 0.15872 0.19146 0.09106 0.00013 0.01507 0.00924 0.00836 

0.4 0.02241 0.04982 0.19605 0.07248 0.07278 0.02911 0.02050 0.11918 0.15534 0.19223 0.09250 0.00014 0.01507 0.00925 0.00897 

0.5 0.02238 0.04894 0.19688 0.07189 0.07295 0.02856 0.02206 0.11980 0.15196 0.19301 0.09395 0.00014 0.01507 0.00925 0.00959 

0.6 0.02236 0.04807 0.19770 0.07130 0.07313 0.02802 0.02362 0.12042 0.14857 0.19378 0.09540 0.00015 0.01508 0.00926 0.01020 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

4.1 0.02025 0.01419 0.22959 0.04850 0.07983 0.00686 0.08404 0.14426 0.01763 0.22367 0.15143 0.00051 0.01612 0.01011 0.03181 

4.2 0.02015 0.01305 0.23066 0.04773 0.08006 0.00615 0.08607 0.14506 0.01324 0.22467 0.15331 0.00052 0.01618 0.01016 0.03243 

4.3 0.02004 0.01190 0.23174 0.04696 0.08029 0.00543 0.08812 0.14587 0.00879 0.22569 0.15522 0.00054 0.01625 0.01021 0.03305 

4.4 0.01994 0.01073 0.23284 0.04617 0.08052 0.00470 0.09021 0.14669 0.00427 0.22672 0.15715 0.00055 0.01632 0.01025 0.03367 

4.5 0.01983 0.00955 0.23396 0.04537 0.08075 0.00396 0.09232 0.14753 -0.0003 0.22776 0.15911 0.00056 0.01639 0.01030 0.03429 

 

 

No. Stocks Full Name of Best LQ45 Stocks  No. Stocks Full Name of Best LQ45 Stocks 

1 ACES Aspirasi Hidup Indonesia Tbk PT  6 ADRO Adaro Energy Indonesia Tbk PT 
2 BBRI Bank Rakyat Indonesia (Persero) Tbk PT  7 BBTN Bank Tabungan Negara (Persero) Tbk PT 
3 EXCL XL Axiata Tbk PT  8 GGRM Gudang Garam Tbk PT 
4 ITMG Indo Tambangraya Megah Tbk PT  9 KLBF Kalbe Farma Tbk PT 
5 PTBA Bukit Asam Tbk PT  10 AKRA AKR Corporindo Tbk PT 
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Determining the Proportion of Optimal Investment Portfolio Weights Based on the 
Mean-EVaR Model  

Portfolio optimization using the Mean-EVaR model also aims to determine the efficient 
portfolio composition by maximizing returns and minimizing risk measured using EVaR. 
The Mean-EVaR portfolio optimization process is based on Theorem 1. Using the vector 
𝛍𝑇 in equation (25), the vector 𝐞𝑇 in equation (26), and the matrix 𝚺−1 in equation (28), 
the optimal weights of the investment portfolio are calculated using the equations of 
Theorem 1. Risk tolerance 𝜏, with the condition 𝜏 ≥ 0, is determined through simulation 
with several values satisfying 𝐞𝑇𝐰 = 1  or Σ𝑖=1

10  𝑤𝑖 = 1  for 𝑖 = 1, . . . ,10 . The simulation 
stops when substituting the risk tolerance into Theorem 1 produces weights 𝑤𝑖 (𝑖 =
1, . . . ,10) that are not positive real numbers or do not satisfy Σ𝑖=1

10 = 1. The results of the 
risk tolerance simulation and the calculation of the efficient portfolio weight composition 
based on the Mean-EVaR optimization model are presented in Table 6. 

Based on Table 6, the risk tolerance values taken are in the range 0 ≤ 𝜏 ≤ 4.4 because 
risk tolerance values above 4.4 result in invalid negative weights. For a risk tolerance of 
𝜏 = 0, the portfolio yields an average return 𝜇𝑝 = 0.00010 and 𝐸𝑉𝑎𝑅𝑝  =  0.01507, which 

are the minimum average return [15,17] and minimum EVaR values. Conversely, for a risk 
tolerance of 𝜏 = 4.4, the average portfolio return is 𝜇𝑝 = 0.00055 with an EVaR risk of 

𝐸𝑉𝑎𝑅𝑝 = 0.01632, which are the maximum values.  

An efficient portfolio can be obtained by balancing the average return and EVaR risk, 
where the risk tolerance must be optimally selected to maximize returns without 
producing negative weights. An efficient portfolio is achieved at the point where risk 
tolerance provides an optimal combination of return and risk, as seen at 𝜏 = 4.4, which 
results in the highest average return without exceeding acceptable risk limits. The curve 
connecting pairs of average return and EVaR risk forms the efficient frontier, where each 
point on that line represents an optimal portfolio with a balanced combination of return 
and risk. Figure 4 illustrates how the relationship between average return and EVaR risk 
forms the surface of the efficient portfolio, with the valid range of risk tolerance being 0 ≤
𝜏 ≤ 4.4. 

 
Figure 4. Mean-EVaR Efficient Portfolio Surface of 10 Stocks. 

 
Among the efficient frontiers, there is one optimal portfolio that needs to be identified, 

which is the portfolio that offers the best combination of average return and EVaR risk. 
After obtaining a series of efficient portfolios, the next step is to determine the 
composition of the optimal portfolio. Investors generally desire a portfolio that generates 
high average returns with low risk [30, 31]. If the investor's preference is solely based on 
expected return and risk, the optimal portfolio can be determined from the efficient 
portfolio that has the highest ratio between average return and EVaR risk. The results of 
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this ratio calculation can be seen in Table 6 and visualized in Figure 5. 
 

 
Figure 5. Plot of the Ratio and EVaR Risk of Portfolio Returns for 10 Stocks 

 

Based on Figure 5 and Table 6, the highest ratio between the average portfolio return 
𝜇𝑝 and 𝐸𝑉𝑎𝑅𝑝 is recorded at 0.3367, achieved when the risk tolerance is at a value of 𝜏 =

4.4. This ratio continues to increase throughout the risk tolerance interval of 0 ≤  𝜏 ≤
4.4. According to the results of portfolio optimization using the Mean-EVaR model, the 
optimal portfolio formed consists of the 10 best stocks with the following stock weight 
vector. The stock weights are rewritten from Table 6 and expressed in vector form, as 
stated in equation (12). 

𝐰𝑇 = [0.01073  0.23284  0.04617  0.08052  0.00470   
            0.09021  0.14669  0.00427  0.22672  0.15715]. 

This optimal portfolio is capable of generating an average return of 0.00055 with a risk, 
measured using EVaR, of 0.01632. 

Discussion 

Based on the results of the optimization, the portfolio weights that are considered 
optimal, as determined by the Mean-EVaR model with a risk tolerance of 𝜏 = 4.4, are 
summarized in Table 6. The specific details of these weights can be found in Table 7. The 
distribution of weights shows consistency in the formation of the portfolio across the 
range of risk tolerance applied, highlighting the efficiency of the Mean-EVaR model in 
portfolio optimization. 

 
Table 7. Optimal Portfolio Weight Composition, Average, and Risk 

𝐰𝐓 

Stocks Variance Standard Deviation 
ACES 0.01058 0.01073 

BBRI 0.23299 0.23284 

EXCL 0.04607 0.04617 

ITMG 0.08055 0.08052 

PTBA 0.00460 0.00470 

ADRO 0.09048 0.09021 

BBTN 0.14680 0.14669 

GGRM 0.00367 0.00427 

KLBF 0.22685 0.22672 

AKRA 0.15741 0.15715 

𝜇𝑝 0.00055 

𝐸𝑉𝑎𝑅𝑝 0.01632 

 
In the Mean-EVaR model, at a risk tolerance of 𝜏 = 4.4, the optimal portfolio yields an 

average portfolio return of 𝜇𝑝 = 0.00055  with a slightly lower of 𝐸𝑉𝑎𝑅𝑝 = 0.01632 . 
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These results indicate that the Mean-EVaR model effectively reduces potential extreme 
losses, as EVaR is more sensitive to tail risk. This makes the Mean-EVaR model 
particularly appealing to investors who prioritize tail risk management. 

Furthermore, to evaluate the performance of the optimal portfolio, a modified Sharpe 
Ratio can be used by measuring risk with EVaR. The REVaR values are summarized in 
Table 6 and presented in Table 8. Based on Table 8, the highest Sharpe ratio, or REVaR 
value, in the Mean-EVaR model is 0.3367 at 𝜏 = 4.4. 

 
Table 8. REVaR Values  

No. 𝝉 REVaR 
1 0 0.00652 
2 0.1 0.00713 
3 0.2 0.00775 
4 0.3 0.00836 
5 0.4 0.00897 
6 0.5 0.00959 
7 0.6 0.01020 
8 0.7 0.01081 
9 0.8 0.01143 

10 0.9 0.01204 
11 1.0 0.01266 
12 1.1 0.01327 
13 1.2 0.01389 
14 1.3 0.01450 
15 1.4 0.01512 
16 1.5 0.01573 
17 1.6 0.01635 
18 1.7 0.01696 
19 1.8 0.01758 
20 1.9 0.01820 
21 2.0 0.01881 
22 2.1 0.01943 
23 2.2 0.02005 
24 2.3 0.02066 
25 2.4 0.02128 
26 2.5 0.21898 
27 2.6 0.02252 
28 2.7 0.02313 
29 2.8 0.02375 
30 2.9 0.02437 
31 3.0 0.02499 
32 3.1 0.02561 
33 3.2 0.02623 
34 3.3 0.02685 
35 3.4 0.02746 
36 3.5 0.02808 
37 3.6 0.02870 
38 3.7 0.02932 
39 3.8 0.02994 
40 3.9 0.03057 
41 4.0 0.03119 
42 4.1 0.03181 
No. 𝝉 REVaR 
43 4.2 0.03243 
44 4.3 0.03305 
45 4.4 0.03367 
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The claim that the EVaR method is simpler compared to other approaches is supported 
by the fact that the optimal solution can be calculated more efficiently through vector and 
matrix approaches, reducing computational complexity. Nevertheless, this study 
acknowledges that the approximation approach in EVaR requires adjustments to 
minimize potential errors, as explained in detail in the methodology and results sections. 

In the Mean-EVaR model, diversification is directed at reducing risk measured by EVaR. 
The larger EVaR value offers better protection against extreme loss scenarios, making it 
important to focus on reducing tail risk. An EVaR-optimized portfolio seeks not only to 
reduce average risk but also to address infrequent yet significant loss risks. 

Diversification also plays a key role in enhancing the Sharpe Ratio, which measures 
portfolio efficiency in combining return with risk. By achieving a well-diversified weight 
allocation, the portfolio can reach a higher Sharpe Ratio. This indicates that proper 
diversification can yield optimal average returns with lower risk. 

In forming the efficient portfolio frontier, diversification is evident in how the optimal 
combination between average return and portfolio risk is linked. The efficient portfolio 
frontier formed shows how diversification helps achieve a balance between risk and 
return, allowing investors to choose the optimal portfolio. 

However, it is important to acknowledge some limitations of the study. The findings 
may not be fully generalizable to other markets or asset classes due to the focus on the 
Indonesian capital market and the specific characteristics of the dataset. The impact of 
dataset characteristics, such as market conditions or the selection of stocks, could affect 
the robustness of the results. Additionally, the choice of hyperparameters, particularly the 
risk tolerance factor (𝜏), can significantly influence the results. The influence of these 
choices should be carefully considered in future research. 

Furthermore, potential sources of bias or confounding factors that may have affected 
the model's performance were not fully addressed. For example, market anomalies or 
external shocks could impact the reliability of the optimization process. Future studies 
should incorporate sensitivity analyses or robustness checks to ensure the validity of the 
results under different conditions. 

In terms of interpreting the results, the analysis primarily focuses on optimizing the 
portfolio's risk-return profile through diversification and EVaR optimization. The 
identified portfolio weights, while providing a balanced risk-return trade-off, also 
highlight the importance of managing tail risk and adjusting the portfolio according to 
different risk tolerance levels. The findings of this study contribute to the broader 
literature on portfolio optimization, especially in emerging markets, by demonstrating 
how the Mean-EVaR model can be applied effectively to mitigate extreme risk and 
enhance portfolio efficiency. 

In conclusion, the results of this study show that the Mean-EVaR model, when applied 
with careful diversification and risk tolerance adjustments, can offer a more efficient and 
robust portfolio optimization strategy, particularly in the context of the Indonesian capital 
market. Future research could expand on these findings by considering alternative risk 
measures, additional market conditions, and further refinements to the optimization 
process. 
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CONCLUSIONS 

Based on the results and discussions presented in the previous sections and in reference 
to the research objectives, the conclusions are as follows: (1) A formulation and solution 
for optimizing investment portfolio weights using the Mean-EVaR model with vector and 
matrix equation approaches has been conducted. This study successfully formulates and 
solves the optimization of investment portfolio weights using the Mean-EVaR model with 
vector and matrix equation approaches. The model maximizes portfolio returns while 
accounting for risk through entropic VaR. The optimal portfolio weights are derived by 
considering stock return averages and associated risks, as detailed in the weight 
formulation. The model ensures that the total portfolio weight equals 1, representing full 
allocation of invested funds. Additionally, the portfolio weights obtained maximize the 
objective function while minimizing risk, with a minimum weight indicating the lowest-
risk portfolio distribution. These results serve as a foundation for determining efficient 
asset allocation.  (2) In the Mean-EVaR model, valid risk tolerance falls within the range 
of 0 to 4.4. At the highest risk tolerance of 4.4, the portfolio produces an average return of 
0.00055 with an EVaR risk of 0.01632. If risk tolerance exceeds this limit, the portfolio 
weights become negative. The optimal portfolio is achieved at a risk tolerance of 4.4, 
where the ratio between return and EVaR risk reaches its highest value, thus forming an 
efficient portfolio with an optimal return without exceeding the acceptable risk limit.  (3) 
Diversification in the Mean-EVaR model successfully reduces portfolio risk, ensuring that 
no single stock dominates the allocation. Diversification plays a crucial role in reducing 
rare extreme risks. With optimal diversification, the portfolio not only achieves 
competitive returns but also maintains controlled risk and provides better protection 
against significant loss scenarios. 

Additionally, The findings of this study offer valuable insights for investors and 
portfolio managers, especially in managing extreme risks. The Mean-EVaR model proves 
effective in reducing such risks while maintaining an optimal return-to-risk ratio. Future 
studies could explore multi-period portfolio models or assess the approach in dynamic 
market conditions, providing deeper insights into its effectiveness across various market 
scenarios. Additionally, extending the model to other emerging markets could enhance its 
global relevance and applicability. Besides, this research contributes by integrating 
portfolio weight optimization using the Mean-EVaR model with vector and matrix 
equation approaches, offering more accurate and efficient solutions in asset allocation 
and risk management, particularly in uncertain market conditions. However, the study 
has some limitations, such as being restricted to a single-period analysis and the use of 
data from the Indonesian stock market, which may limit the generalizability of the 
findings. Future research should consider applying the model under dynamic market 
conditions and across multiple periods, as well as exploring its use in other emerging 
markets to assess its broader applicability. 
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