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Abstract

Weibull and Pareto distributions are widely used in several areas, including lifetime data
modelling and reliability analysis. In real-life practice, these distributions may not capture
the various distributional properties of certain datasets. The use of finite mixture models
enhances the performance of these distributions in terms of adaptability and accuracy. This
study focuses on the Mixture Weibull–Pareto (IV) distribution proposed by [1], which has
been used in modelling insurance claims and has shown superior performance compared to
other distributions. The current study applies this distribution to health and environmental
datasets. The results show that the Mixture Weibull–Pareto (IV) distribution performs
better than several competing distributions based on the Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), and Kolmogorov–Smirnov (KS) goodness-of-fit test.
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1 Introduction
Modelling lifetime and reliability data often requires probability distributions that are flexible
enough to accommodate a wide range of hazard rate shapes and tail behaviours. Among such
models, the Weibull distribution (WD) has become a standard tool in reliability engineering,
survival analysis, and related fields because of its intuitive parameters and ease of interpretation
[2]. Nevertheless, the classical WD is restricted to monotone hazard rate functions and therefore
may provide an inadequate fit for datasets exhibiting non–monotone, bathtub-shaped, or unimodal
hazard structures [3]. This limitation has motivated extensive research on generalizations of the
WD and on mixture formulations that enhance its flexibility.

A large number of Weibull-based extensions have been proposed in the literature. Examples
include the flexible Weibull extension [4] and the exponentiated Weibull distribution [5], both of
which enrich the range of possible hazard shapes. Marshall and Olkin introduced an extended
Weibull model to generate more complex failure-rate patterns, while [6] developed a modified
Weibull extension specifically designed to capture bathtub-shaped hazard functions. Further fam-
ilies have been constructed by embedding the Weibull distribution in broader generator schemes,
such as the Alpha Power Transformed Weibull–G family [7], the Beta–Weibull distribution [8],
the Kumaraswamy–Weibull distribution [9], the Beta–modified Weibull distribution [10], the
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additive modified Weibull model [11], the Marshall–Olkin Weibull–Burr XII distribution [12],
and the Topp–Leone modified Weibull model [13]. These constructions demonstrate the central
role of the WD as a building block for more sophisticated lifetime models.

In parallel, mixture models have been widely used to capture heterogeneity and multimodality
in lifetime data. Mixtures of Weibull components, in particular, provide additional flexibility
through the superposition of different hazard shapes. Illustrative examples include two–component
Weibull mixtures [14], mixture Weibull distributions for failure-time data [15], the log–logistic
Weibull distribution [16], the half–logistic generalized Weibull distribution [17], the Weibull
log–logistic (exponential) model [18], the Weibull–Lindley distribution [19], and the three-
parameter Weibull inverse Rayleigh distribution [20]. Such models are particularly appealing when
the underlying population consists of latent sub-populations with different failure mechanisms.

The Pareto distribution (PD), originally proposed by Vilfredo Pareto in the context of income
and wealth modelling, is another fundamental model, especially suited for heavy–tailed data
and extreme events. Its ability to accommodate large outliers and strong right–tail behaviour
has led to numerous generalizations. Among these are the Beta–Pareto distribution [21], the
Weibull–Pareto distribution [22], the Beta–exponentiated Pareto distribution [23], the extended
odd Weibull–Pareto distribution [24], and a generalized version of the new Weibull–Pareto
distribution [25]. These models have proven effective in fields where heavy-tail behaviour is
prominent, such as finance, insurance, hydrology, and telecommunications.

Both the Weibull and Pareto families have therefore established themselves as workhorses
for modelling skewed and heavy-tailed phenomena. Combining their strengths within a single
framework is a natural way to increase modelling flexibility. In this direction, [1] introduced the
Mixture Weibull–Pareto (IV) distribution, hereafter abbreviated as MWP(IV)D. This model
blends a Weibull component with a Pareto (IV) component through a finite mixture structure,
allowing it to accommodate a rich variety of shapes and tail behaviours. In the original study,
the MWP(IV)D demonstrated competitive performance in modelling insurance claim data,
outperforming several existing alternatives in terms of standard goodness-of-fit criteria.

The present paper extends the investigation of the MWP(IV)D by examining its usefulness
in two applied contexts: health and environmental data. Specifically, we consider a dataset of
breast cancer survival times and a dataset of flood exceedances from the Wheaton River. In both
cases, the MWP(IV)D is compared with classical and generalized models based on the Weibull
and Weibull–Pareto distributions.

The remainder of the article is organized as follows. Section 2 presents the theoretical
formulation of the MWP(IV) distribution, including its density, cumulative distribution, survival,
and hazard functions, as well as key shape characteristics and maximum likelihood estimation.
Section 3 reports a simulation study and two real-data applications to assess the empirical
performance of the model. Section 4 discusses the main findings and outlines directions for future
research.

2 The MWP(IV) Distribution

In this section, we present the Mixture Weibull–Pareto (IV) distribution, denoted by MWP(IV)D.
Following [1], consider a finite mixture of two continuous distributions with density

f(x) = pf1(x) + (1 − p)f2(x), (1)

where 0 < p < 1 is the mixing proportion, and f1(x) and f2(x) are probability density functions
(pdfs) of the component distributions. In the present case, f1(x) corresponds to a Weibull
distribution and f2(x) corresponds to a Pareto (IV) distribution.

We denote the parameter vector of the mixture model by (µ, σ, k, p), where µ is the location
parameter, σ > 0 is a scale parameter, k > 0 is a shape parameter, and p is the mixing weight.
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Then the pdf of the MWP(IV)D can be written as

f(x | µ, σ, k) = p f1(x | µ, σ, k) + (1 − p) f2(x | µ, σ, k). (2)

A functional representation for f(x | µ, σ, k) proposed in [1] is

f(x | µ, σ, k) = p

[
1 − exp

{
−

(
x − µ

σ

)k
}]

+ (1 − p) 1
σ

[
1 + k

(
x − µ

σ

)−1− 1
k

]
, (3)

for x > µ, σ > 0, k > 0, and 0 < p < 1.

2.1 Cumulative Distribution Function

The cumulative distribution function (CDF) associated with (3) is given by

FMWP(IV)D(x) = P (X ≤ x) =
∫ x

−∞
f(t | µ, σ, k) dt. (4)

Using the mixture form in (2), we can equivalently write

FMWP(IV)D(x | µ, σ, k) = p F1(x | µ, σ, k) + (1 − p) F2(x | µ, σ, k), (5)

where F1 and F2 denote the CDFs of the Weibull and Pareto (IV) components, respectively.

2.2 Survival Function

The survival function is defined as the complement of the CDF,

S(x) = 1 − F (x). (6)

For the MWP(IV)D, using (5), we obtain

SMWP(IV)D(x | µ, σ, k) = p S1(x | µ, σ, k) + (1 − p) S2(x | µ, σ, k), (7)

where S1 and S2 are the survival functions of the Weibull and Pareto (IV) components, respec-
tively.

A closed-form expression for the survival function proposed in [1] can be written in the form

SMWP(IV)D(x | µ, σ, k) = p exp
{

−
(

x − µ

σ

)k−1
}

+ (1 − p)
(

x − µ

σ

)−2− 2
k

, x > µ. (8)

2.3 Hazard Function

The hazard function (HF) of a continuous distribution is defined as the ratio of the pdf to the
survival function,

h(x) = f(x)
S(x) = f(x)

1 − F (x) . (9)

For the MWP(IV)D, combining (3) and (8), we obtain

hMWP(IV)D(x | µ, σ, k) = f(x | µ, σ, k)
SMWP(IV)D(x | µ, σ, k) , x > µ. (10)
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2.4 Skewness and Kurtosis

Skewness and kurtosis are important measures that characterize the shape and tail behaviour of
a distribution. Let µ = E(X) and σ2 = Var(X) = E(X2) − µ2. The (standardized) skewness
and kurtosis can be defined, respectively, as

θ1 =
E

[
(X − µ)3]

σ3 , (11)

θ2 =
E

[
(X − µ)4]

σ4 . (12)

These moments can be obtained from the pdf in (3) once closed-form expressions or numerical
approximations for E(Xr), r = 1, 2, 3, 4, are available.

2.5 Maximum Likelihood Estimation

Following [1], let X1, . . . , Xn be a random sample from the MWP(IV)D with pdf (3). Let θ1
and θ2 denote the parameter vectors associated with the Weibull and Pareto (IV) components,
respectively, and write

θ1 = (α, δ, σ)′, θ2 = (β, γ)′, θ = (θ1, θ2, p)′.

Denote the component densities by f1(x | θ1) and f2(x | θ2).
The likelihood function based on the observed sample x = (x1, . . . , xn)′ is

L(θ) =
n∏

i=1
[pf1(xi | θ1) + (1 − p)f2(xi | θ2)] . (13)

In the context of the EM-type representation discussed in [1], latent indicators µi ∈ {0, 1} can
be introduced and the complete-data likelihood can be written as

Lc(θ) =
n∏

i=1

[
f1(xi | θ1)µif2(xi | θ2)1−µipµi(1 − p)1−µi

]
. (14)

Maximization of the (observed) log-likelihood ℓ(θ) = log L(θ) can be carried out numerically to
obtain the maximum likelihood estimates (MLEs) of the parameters.

2.6 Model Selection Measures

To assess the goodness of fit and compare competing models, we employ the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), and the Kolmogorov–Smirnov (KS)
statistic.

Let θ̂ denote the MLE of θ, and ℓ(θ̂) the maximized log-likelihood. If p denotes the total
number of free parameters in the model and n the sample size, then

AIC = −2ℓ(θ̂) + 2p, (15)

BIC = −2ℓ(θ̂) + p log(n). (16)

The one-sample KS statistic is defined as

Dn = sup
x

∣∣∣∣Fn(x) − F (x; θ̂)
∣∣∣∣, (17)

where Fn(x) is the empirical distribution function and F (x; θ̂) is the fitted CDF of the model,
such as the MWP(IV)D given in (5).
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3 Model Application
In this section, we first present a simulation study to assess the estimation performance and
goodness-of-fit of the Mixture Weibull–Pareto (IV) distribution (MWP(IV)D). We then illustrate
the practical usefulness of the model by applying it to real datasets.

3.1 Simulation Study

Following the estimation procedure in [1], let X1, X2, . . . , Xn be a random sample of size n
drawn from the density in (3). Let θ1 = (α, δ, σ)′ and θ2 = (β, γ)′ denote the parameter vectors
associated with the component densities f1(x) and f2(x), respectively. The maximum likelihood
estimators (MLEs) of the model parameters are obtained by maximizing the log-likelihood
function with respect to all unknown parameters.

In the parametrization adopted in [1], if the support of the distribution is such that xi ≥ θ
for all i, the MLE of the location parameter θ is the sample minimum,

θ̂ = min
i

xi.

The performance of the MLEs was investigated via a simulation study for several sample sizes,
namely n = 50, 100, 200, 500, and 1000, and for different parameter sets (α, δ, σ, θ).

Table 1 summarizes the estimated parameters and the corresponding Akaike Information
Criterion (AIC) values for three competing models: the Weibull–Weibull distribution (WWD),
the Weibull–Pareto distribution (WPD), and the proposed MWP(IV) distribution. For each
sample size, the MWP(IV) model attains the smallest AIC value, indicating a better fit among
the considered alternatives.

Figure 1 illustrates the shapes of the MWP(IV)D pdf for various parameter combinations,
with the mixing proportion fixed at p = 0.4, 0.5, 0.6, and 0.7.

3.2 Application of MWP(IV) to Real Datasets

In this subsection, the MWP(IV) distribution is applied to two real datasets in order to evaluate its
empirical performance and to compare it with two competing models: (i) the Weibull distribution
(WD), and (ii) the Weibull–Pareto distribution (WPD).

For each dataset, model parameters are estimated via maximum likelihood, and goodness-of-fit
is assessed using the Akaike Information Criterion (AIC), the Bayesian Information Criterion
(BIC), and the Kolmogorov–Smirnov (KS) statistic (with associated p-values).

Breast Cancer Survival Times
The first dataset consists of survival times (in months) of breast cancer patients, originally
reported by Lee (1992) and reproduced in [26]. The sample contains n = 100 uncensored
observations, with survival times ranging from 0.3 to 78.0 months. The ordered survival times
are reported in (Table 2).

Table 3 reports the maximum likelihood estimates (MLEs) of the model parameters together
with the AIC, BIC, and KS statistics for the WD, WPD, and MWP(IV)D models.

Figure 2 displays the fitted densities for the three models together with the empirical
distribution of the breast cancer survival times, while Figure 3 presents the total time on test
(TTT) plot, which provides additional insight into the underlying hazard behaviour.
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Table 1: Simulation results: parameter estimates and AIC values for WWD, WPD, and MWP(IV)
models under different sample sizes.

Sample size Parameter WWD WPD MWP(IV)

n = 50

â 0.405 5.101 0.721
b̂ 2.672 1.478 0.156
α̂ 5.313 5.602 0.086
β̂ 27.653 1.525 0.981
µ̂ -4.374 -0.230 -0.034

AIC 4082.258 4035.758 3997.092

n = 100

â 0.996 7.356 0.987
b̂ 3.595 1.159 0.242
α̂ 2.310 9.122 0.028
β̂ 40.191 2.742 1.367
µ̂ -11.879 -0.198 -0.240

AIC 9533.286 9426.776 9387.932

n = 200

â 1.769 11.958 0.886
b̂ 1.650 0.917 0.205
α̂ 1.2921 11.378 0.016
β̂ 94.3416 11.6811 9.653
µ̂ -22.965 -2.341 -0.087

AIC 21818.960 21626.260 21507.140

n = 500

â 0.748 2.054 0.763
b̂ 0.415 12.307 0.170
α̂ 3.046 2.3610 0.008
β̂ 461.985 2.545 1.079
µ̂ -56.255 -0.852 -0.034

AIC 63677.740 63537.080 62847.640

n = 1000

â 0.933 4.662 0.813
b̂ 0.795 1.707 0.175
α̂ 2.440 6.063 0.004
β̂ 759.899 17.966 13.727
µ̂ -111.914 -1.197 -2.850

AIC 141195.100 140246.600 139632.300

Figure 2: Fitted models for the breast cancer survival times data with corresponding AIC values.
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(a) p = 0.4 (b) p = 0.5

(c) p = 0.6 (d) p = 0.7
Figure 1: Probability density functions of the MWP(IV) distribution for different values of the mixing
proportion p and shape parameter α (with σ = 0.2, δ = 0.5, β = 9, Y = 5).

Figure 3: TTT plot for the breast cancer survival times data.

Exceedances of Wheaton River Flood Data

The second dataset consists of exceedances of daily mean flow from the Wheaton River, originally
reported in [21]. The data exhibit strong right skewness and a pronounced heavy tail, making
them a suitable benchmark for extreme–value and flood–risk modelling. The sample contains
n = 72 positive observations, with exceedance values ranging from 0.1 to 64.0 (in appropriate
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Table 2: Ordered survival times (in months) for the breast cancer dataset.

0.3 0.3 4.0 5.0 5.6 6.2 6.3 6.6 6.8 7.4
7.5 8.4 8.4 10.3 11.0 11.8 12.2 12.3 13.5 14.4

14.4 14.8 15.5 15.7 16.2 16.3 16.5 16.8 17.2 17.3
17.5 17.9 19.8 20.4 20.9 21.0 21.0 21.1 23.0 23.4
23.6 24.0 24.0 27.9 28.2 29.1 30.0 31.0 31.0 32.0
35.0 35.0 37.0 37.0 37.0 38.0 38.0 38.0 39.0 39.0
40.0 40.0 40.0 41.0 41.0 41.0 42.0 43.0 43.0 43.0
44.0 45.0 45.0 46.0 46.0 47.0 48.0 49.0 51.0 51.0
51.0 52.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 60.0
60.0 61.0 62.0 65.0 65.0 67.0 67.0 68.0 69.0 78.0

Table 3: MLEs, AIC, BIC, and KS statistics for the breast cancer survival times data [26].

Parameter / Criterion WWD WPD MWP(IV)D

â 1.0341 7.4227 1.0185
b̂ 0.8641 0.8995 0.3640
α̂ 1.9155 4.4893 0.0325
β̂ 45.9588 15.5317563 –
µ̂ -4.7113 -4.6347 -0.5900

AIC 877.4268 874.5950 868.5098
BIC 890.4527 887.6208 878.8902
KS (p-value) 0.0970 (0.3034) 0.0912 (0.3769) 0.0696 (0.7177)

flow units). For completeness, the ordered exceedances are reported in Table 4.

Table 4: Ordered exceedances of Wheaton River flood levels.

0.1 0.3 0.4 0.4 0.6 0.6 0.6 0.7 1.0 1.1
1.1 1.4 1.5 1.7 1.7 1.7 1.7 1.9 2.2 2.2
2.5 2.5 2.5 2.7 2.8 3.4 3.6 4.2 5.3 5.3
5.6 7.0 7.3 8.5 9.0 9.3 9.7 9.7 10.4 10.7

11.0 11.6 11.9 12.0 13.0 13.3 14.1 14.1 14.4 14.4
15.0 16.8 18.7 20.1 20.2 20.6 21.5 22.1 22.9 25.5
25.5 27.0 27.1 27.4 27.5 27.6 30.0 30.8 36.4 37.6
39.0 64.0

The parameter estimates and fit measures for the three competing models (WWD, WPD,
and MWP(IV)D) are summarized in Table 4.

Figure 4 shows the fitted densities superimposed on the empirical distribution of the flood
exceedances together with the AIC values, while Figure 5 provides the corresponding TTT plot.

4 Discussion

As the sample size n increases, the estimates β̂ tend to decrease. According to [22], overestimation
of β may occur when the minimum observation in a sample is substantially larger than the true
population minimum, especially when the sample size is small.

The mixing parameter p plays a crucial role in characterizing the balance between central
behaviour and tail behaviour in the MWP(IV)D. To investigate this effect, we conducted a
simulation study for several values of p. In each case, the sample size was n = 1000, and the
simulation was repeated 100 times. For illustration, the remaining parameters were fixed at
α = 1.5, δ = 1, σ = 0.5, and θ = 1.5, and we generated data from the MWP(IV)D using these
values.
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Table 5: MLEs, AIC, BIC, and KS statistics for the Wheaton River flood exceedances data [21].

Parameter / Criterion WWD WPD MWP(IV)D

â 0.7351 2.8756 0.7422
b̂ 0.7129 0.9693 2.6981
α̂ 1.1456 4.3277 0.0190
β̂ 15.5925 3.6271 0.0491
µ̂ 0.0266 -0.1205 –

AIC 512.5343 511.5384 508.0321
BIC 523.9180 522.8518 517.0829
KS (p-value) 0.0883 (0.6280) 0.0716 (0.8545) 0.0826 (0.7100)

Figure 4: Fitted models for the Wheaton River flood exceedances data with corresponding AIC values.

Figure 1 displays the simulated probability density functions (pdfs) of the Mixture Weibull–
Pareto (IV) distribution for different choices of the mixing proportion p. The plots highlight the
remarkable flexibility of the MWP(IV)D in capturing a variety of shapes simply by changing p.
When p = 0.4, the distribution exhibits a monotonically decreasing shape with a pronounced
right tail, making it suitable for modelling highly skewed data or heavy-tailed phenomena such
as extreme-value datasets. As p increases to 0.5, 0.6, and 0.7, the shape gradually shifts from
heavy-tailed to lighter-tailed, with a more prominent peak and less dominant tail behaviour.

These plots clearly demonstrate that p primarily controls the trade-off between peak and
tail: lower values of p emphasize the tail, which is important in reliability, risk analysis, and
other applications where extreme outcomes are of interest; higher values of p reduce skewness
and yield a more centrally concentrated distribution, making the model suitable for datasets
with a more balanced spread. In addition, the other parameters influence the rate of decay and
overall shape, enabling the MWP(IV)D to mimic unimodal, near-symmetric, and highly skewed
patterns, and, for appropriate parameter choices, even more complex shapes.

The simulation results strongly suggest that the MWP(IV)D is capable of reproducing a
wide range of data behaviours, from heavy-tailed to more moderate distributions. This flexibility
underscores its potential as a powerful modelling tool for real-world datasets with complex
patterns, skewness, or large tails.

After the simulation study, the MWP(IV)D was applied to two real datasets: (i) survival
times of patients with breast cancer, and (ii) exceedances of flood levels from the Wheaton River.
In each case, the proposed model was compared with two alternatives: the Weibull–Weibull
distribution (WWD) and the Weibull–Pareto distribution (WPD).

For the breast cancer survival data, Table 3 presents the parameter estimates along with
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Figure 5: TTT plot for the Wheaton River flood exceedances data.

the AIC, BIC, and KS statistics. The AIC values are 877.4268 (WWD), 874.5950 (WPD), and
868.5098 (MWP(IV)D), while the corresponding BIC values are 890.4527, 887.6208, and 878.8902,
respectively. The KS statistics and p-values are 0.0970 (0.3034) for WWD, 0.0912 (0.3769) for
WPD, and 0.0696 (0.7177) for MWP(IV)D. Hence, the MWP(IV)D achieves the lowest AIC and
BIC values and the largest KS p-value, indicating the best overall fit among the three models
according to these criteria.

Figure 2 illustrates the fitted densities overlaid on the empirical distribution of the cancer
survival data. The WWD curve fits well at very early survival times but then decays too rapidly,
underestimating the density for survival times above approximately 10 and remaining close to
zero across most of the histogram range. The WPD captures the early high density somewhat
better but still drops off too quickly and fails to follow the distribution over the full range. The
MWP(IV)D provides a more flexible fit, capturing a portion of the initial density while also
offering improved behaviour in the right tail; nevertheless, it still does not perfectly match the
empirical histogram across the entire range. Thus, although the AIC and BIC values favour the
MWP(IV)D, some discrepancy between the fitted model and the empirical distribution remains,
particularly in the mid-to-upper range of survival times.

The total time on test (TTT) plot in Figure 3 exhibits a non-linear, non-monotonic pattern,
revealing variability in the underlying hazard rate over time. The initial convexity of the TTT
curve suggests a decreasing hazard rate at early times, implying a lower failure risk initially. As
the curve becomes concave, the hazard rate increases at longer survival times, a pattern consistent
with many clinical settings, where the risk of adverse events often rises as time progresses. This
behaviour indicates that a flexible model capable of accommodating non-monotone hazard rates,
such as the MWP(IV)D, is particularly appropriate for this dataset.

For the Wheaton River flood exceedances data, Table 5 summarizes the fit results. The AIC
values are 512.5343 (WWD), 511.5384 (WPD), and 508.0321 (MWP(IV)D); the corresponding BIC
values are 523.9180, 522.8518, and 517.0829. The KS statistics and p-values are 0.0883 (0.6280)
for WWD, 0.0716 (0.8545) for WPD, and 0.0826 (0.7100) for MWP(IV)D. Based on AIC and
BIC, the MWP(IV)D provides the best fit to the flood exceedances, with the WPD as a close
alternative and the WWD performing comparatively worse.

Figure 4 shows that the MWP(IV)D captures the distribution of exceedances well, particularly
in the upper tail region, where accurate modelling of extreme events is crucial for risk assessment.
The WPD also offers a reasonable approximation but tends to be less precise in the most extreme
values. The WWD, with higher AIC and BIC and less agreement in the tail, appears less suitable
for this dataset.

The TTT plot for the Wheaton River data (Figure 5) reveals important features of the
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extreme-value behaviour. The initial steep portion of the curve indicates a relatively high rate of
exceedances at moderate levels, corresponding to frequent but less severe flood events. As the
curve flattens, it reflects the presence of a heavier tail and rarer but more extreme exceedances.
The MWP(IV)D, which can flexibly account for such changing hazard behaviour, is therefore a
natural candidate for modelling flood exceedances, capturing both moderate and extreme events
within a unified framework.

Overall, the empirical analyses demonstrate that the MWP(IV)D is not only competitive but
often superior to the WWD and WPD in terms of AIC, BIC, and KS statistics, particularly in
applications where tail behaviour and non-monotonic hazard rates are important.

5 Conclusion
In this work, we have studied a Pareto-type family of distributions constructed from the Weibull
distribution, referred to as the Mixture Weibull–Pareto (IV) distribution (MWP(IV)D). The
model combines the flexibility of the Weibull distribution with the heavy-tailed nature of the
Pareto (IV) distribution through a mixing mechanism. The parameters of the MWP(IV)D were
estimated using the maximum likelihood approach, following the methodology in [1].

A simulation study highlighted the flexibility of the MWP(IV)D in generating a wide variety
of shapes and tail behaviours by appropriate choices of the mixing proportion and component
parameters. The model was then applied to oncology (breast cancer survival times) and
environmental (Wheaton River flood exceedances) datasets. In both cases, the MWP(IV)D
provided an excellent fit relative to competing models, as indicated by AIC, BIC, and KS
statistics, and it proved particularly useful in capturing non-monotone hazard rates and heavy-
tail behaviour.

Future research may focus on enhancing the robustness and flexibility of the MWP(IV)D, for
example by introducing additional shape parameters, exploring alternative estimation techniques
(such as Bayesian or robust inference), or extending the model to regression and multivariate
frameworks. Such developments would further broaden the scope of applications, as envisaged in
[1].
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