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ABSTRACT  

Fuel distribution optimization is essential for reducing costs, minimizing travel distances, and 
improving supply efficiency. In Indonesia, increasing fuel demand and shifting policies necessitate 
an optimized Pertamax distribution strategy. However, existing routing methods remain 
inefficient, leading to higher operational costs. This study addresses this gap by applying a hybrid 
optimization approach, integrating Clarke-Wright Savings (CWS) for route grouping, Nearest 
Neighbour (NN) for delivery sequencing, and Goal Programming (GP) for vehicle allocation, cost, 
and time optimization. The dataset includes 60 Pertashop locations and weekly Pertamax demand, 
with distance matrices derived from Google Maps. MATLAB is used for GP model computation. 
Results show that the optimized routes reduce total travel distance from 1,121.8 km to 981.8 km 
(12.5%), while GP minimizes distribution costs by 59.68% and delivery time by 48.68%. This 
integrated approach enhances fuel supply chain efficiency, outperforming conventional routing 
through structured clustering and optimized delivery sequencing. These findings contribute to 
logistics optimization by integrating heuristic and mathematical programming, offering a scalable 
solution for fuel distribution and broader supply chain networks. 
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INTRODUCTION 

Fuel distribution is a critical component of energy logistics, ensuring a stable 
supply for both economic activities and daily life. An efficient distribution system not only 
ensures a stable energy supply but also helps reduce operational costs and improve the 
effectiveness of the supply chain [1]. In Indonesia, PT Pertamina is responsible for the 
production and distribution of fuel across the country [2]. As the number of motor 
vehicles continues to rise, particularly in high-mobility regions such as East Java, the 
demand for fuel has also increased significantly [3].   

However, this growing fuel consumption presents new challenges, regarding cost 
efficiency and environmental impact [4]. Carbon emissions from motor vehicles continue 
to rise, leading to a decline in air quality in major cities. One of the key contributing factors 
is the use of low-octane fuel, such as Pertalite, which produces higher emissions compared 
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to higher-octane alternatives like Pertamax [5]. To address this issue, the Indonesian 
government has implemented restrictions on Pertalite purchases [6]. This policy aims to 
reduce environmental impact while encouraging consumers, particularly those in the 
middle-to-upper economic class, to transition to Pertamax, which is more 
environmentally friendly. This shift in fuel policy requires an optimized distribution 
strategy to ensure an efficient and cost-effective supply of Pertamax, particularly in high-
demand regions. 

The primary challenge in fuel distribution is determining an optimal route that 
minimizes total travel distance, delivery time, and operational costs while ensuring 
demand fulfillment. One of the key factors influencing this efficiency is the selection of an 
optimal distribution route. This challenge is commonly framed as a Vehicle Routing 
Problem (VRP) [7], where inefficient routes can lead to increased operational costs, 
higher fuel consumption, and delivery delays [8]. Studies have shown that optimizing 
distribution routes can reduce costs by up to 28% [9], making it a crucial aspect of 
improving energy distribution efficiency.   

One of the widely used methods for solving VRP is the Clarke-Wright Savings 
(CWS) algorithm [10], which focuses on reducing travel distances by merging routes with 
potential distance savings [11]. This method has been applied in various sectors, including 
optimizing postal distribution routes in the Czech Republic [12] and steel distribution in 
Thailand [13]. While CWS is effective in reducing travel distance, it does not explicitly 
optimize the sequence of deliveries within a route, which can further improve efficiency. 
To address this, the Nearest Neighbour (NN) algorithm is employed as a complementary 
method to systematically arrange distribution points, not only shortening travel distances 
but also accelerating the delivery process [14]. Further explanations regarding NN can be 
found in [15]. 

Despite these advancements, fuel distribution involves additional complexities 
beyond distance and time, such as vehicle capacity constraints, cost efficiency, and 
delivery schedules. Traditional VRP approaches primarily focus on minimizing distance 
but often overlook multi-objective optimization factors, such as balancing the number of 
vehicles, reducing total costs, and ensuring equitable fuel distribution. A more 
comprehensive approach is required, which integrates multiple objectives into the 
optimization process. One such method is Goal Programming (GP) [16], which enables the 
simultaneous optimization of multiple criteria, making it well-suited for complex 
distribution problems. GP has been successfully applied in various domains, including 
production scheduling [17] and transportation network management [18], yet its 
application in fuel distribution remains underexplored. Further details on GP can be found 
in [19].   

Although previous studies have explored individual applications of CWS, NN, and 
GP in logistics and transportation, their combined implementation in fuel distribution has 
not been thoroughly investigated. Most prior research has primarily focused on either 
minimizing transportation costs or optimizing route selection, without integrating 
delivery sequencing and multi-objective cost efficiency into a single model [20]. To 
address this gap, this study aims to develop a comprehensive approach to fuel distribution 
by integrating CWS algorithm to determine optimal routes grouping, NN algorithm to 
arrange delivery sequences, and GP to enhance efficiency based on multiple strategic 
objectives. Through this approach, the study is expected to enhance the efficiency of 
Pertamax fuel distribution by reducing operational costs, minimizing travel distances, 
accelerating delivery times, and ensuring a more equitable fuel supply for the public, 
while also supporting Indonesia’s carbon emission reduction policies. This research 
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contributes to the advancement of fuel distribution optimization by integrating route 
optimization, delivery sequencing, and multi-objective cost minimization into a unified 
model, providing a practical solution for improving fuel logistics in Indonesia. 

METHODS  

The method used in this study integrates the Clarke-Wright Savings (CWS) algorithm, 
the Nearest Neighbour (NN) algorithm, and the Goal Programming (GP) approach to 
optimize fuel distribution in Malang City. The study specifically focuses on the distribution 
of Pertamax fuel, ensuring efficient routing and scheduling to meet demand at Pertashop 
stations. The combination of these three methods is justified as follows: CWS minimizes 
total travel distance by grouping delivery routes based on the highest savings values, NN 
determines the optimal delivery sequence within each route to further reduce travel 
distance, and GP optimizes the number of vehicles, distribution costs, and total delivery 
time to achieve an efficient distribution strategy. 

The dataset used in this study includes the geographical locations of 60 Pertashop 
stations and one central depot, along with the weekly demand for Pertamax fuel at each 
Pertashop. The vehicle fleet consists of fuel tankers, each with a maximum capacity of 
8,000 liters, dedicated solely to Pertamax distribution. Distance data between all locations 
are obtained from Google Maps and compiled into a distance matrix. 

The CWS algorithm is applied to group routes based on the highest savings values. This 
process includes constructing a distance matrix, calculating the savings matrix, sorting 
savings values in descending order, and forming delivery routes by selecting Pertashop 
combinations with the highest savings values until the vehicle’s capacity is reached. Once 
the routes are established, the NN algorithm is used to determine the optimal delivery 
sequence within each route by sequentially selecting the nearest unvisited Pertashop 
from the depot until all deliveries are completed. 

The results from the CWS and NN algorithms serve as input for the GP method, which 
optimizes the number of vehicles used, distribution costs, and total delivery time. The GP 
model is formulated by defining decision variables, operational constraints, and objective 
functions aligned with the company's efficiency targets. The model is solved using 
MATLAB software. The entire research process is illustrated in Figure 1. This approach 
ensures that fuel distribution is conducted efficiently in terms of distance, time, and cost. 
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Figure 1. Research Flowchart 

RESULTS AND DISCUSSION  

Route Optimization 

A weighted graph is constructed to represent the fuel distribution network, consisting 
of one depot and 60 Pertashop locations. Each location, including the depot and 
Pertashops, is represented as a vertex in the set of vertices 𝑉 = {𝑣0, 𝑣1, 𝑣2, … , 𝑣60} where 
𝑣0 represents the depot, and 𝑣1 to 𝑣60 represent the Pertashop locations. The complete 
set of vertices is presented in Table 1 below. 

 

Table 1. List of vertex 
Vertex Pertashop Vertex Pertashop Vertex Pertashop 

𝒗𝟎 Pagak 𝑣21 Sarangan 𝑣42 Sumberejo 
𝒗𝟏 Depot 𝑣22 Dampit 𝑣43 Buring 
𝒗𝟐 Kalisongo 𝑣23 Blayu 𝑣44 Ngabab 
𝒗𝟑 Purwosekar 𝑣24 Madyopuro 𝑣45 Candirenggo 
𝒗𝟒 Kebobang 𝑣25 Sanankerto 𝑣46 Jeru 
𝒗𝟓 Sumbergesing 𝑣26 Tawangrejeni 𝑣47 Pringu 
𝒗𝟔 Parangargo 𝑣27 Jatimulyo 𝑣48 Kedungsalam 
𝒗𝟕 Sidorenggo 𝑣28 Karangsuko 𝑣49 Srimulyo 
𝒗𝟖 Bululawang 𝑣29 Ngajum 𝑣50 Dinoyo 
𝒗𝟗 Karangnongko 𝑣30 Baturetno 𝑣51 Argosuko 
𝒗𝟏𝟎 Bumirejo 𝑣31 Sumbersuko 𝑣52 Tamanharjo 
𝒗𝟏𝟏 Sukolilo 𝑣32 Karangwidoro 𝑣53 Kedungpedaringan 
𝒗𝟏𝟐 Ngijo 𝑣33 Gampingan 𝑣54 Punten 
𝒗𝟏𝟑 Curungrejo 𝑣34 Wajak 𝑣55 Sumberbrantas 
𝒗𝟏𝟒 Tawangargo 𝑣35 Landungsari 𝑣56 Ngroto 
𝒗𝟏𝟓 Wonokerto 𝑣36 Gadungsari 𝑣57 Gading Kasri 
𝒗𝟏𝟔 Dengkol 𝑣37 Tumpang 𝑣58 Sidorejo 
𝒗𝟏𝟕 Gubukklakah 𝑣38 Ardimulyo 𝑣59 Dadapan 
𝒗𝟏𝟖 Saptorenggo 𝑣39 Kromengan 𝑣60 Karangpandan 
𝒗𝟏𝟗 Ngadirejo 𝑣40 Tlogomas 
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Vertex Pertashop Vertex Pertashop Vertex Pertashop 
𝒗𝟐𝟎 Sitiarjo 𝑣41 Jambangan 

 
To determine the optimal distribution routes, the following sequential steps are carried 
out using the Clarke-Wright Savings and Nearest Neighbour algorithms: 
 

1. Create the Distance Matrix 
The first step involves determining the distance matrix, which provides the 
distances between each pair of vertices. The distance matrix from the depot (𝑣0) to 
each Pertashop (𝑣1 to 𝑣60) is presented in Table 2. 

Table 2. Distance Matrix 
 𝒗𝟎 𝒗𝟏 𝒗𝟐 ⋯ 𝒗𝟓𝟖 𝒗𝟓𝟗 𝒗𝟔𝟎 

𝒗𝟎 0   ⋯    
𝒗𝟏 34 0  ⋯    
𝒗𝟐 8,5 39,5 0 ⋯    
⋮ ⋮ ⋮ ⋮ ⋱    

𝒗𝟓𝟖 33,1 20,4 35,2 ⋯ 0   
𝒗𝟓𝟗 28 37,2 35,5 ⋯ 18,1 0  
𝒗𝟔𝟎 14 23,9 18,2 ⋯ 23,2 27,1 0 

2. Create the Savings Matrix 
The savings matrix is generated by calculating the savings value for each pair of 
Pertashops using the following formula: 

𝑆𝑖𝑗 = 𝐶𝑖0 + 𝐶0𝑗 − 𝐶𝑖𝑗  (1) 

for 𝑖, 𝑗 = 1,2, … , 𝑛 and 𝑖 ≠ 𝑗 . Here, 𝐶𝑖0 represents the distance from Pertashop 𝑖 to 
the depot, 𝐶0𝑗  is the distance from the depot to Pertashop 𝑗, and 𝐶𝑖𝑗 is the direct 

distance between Pertashop 𝑖 and Pertashop 𝑗. The resulting savings matrix, 
computed using equation (1), is presented in Table 3. 

Table 3. Saving Matrix 
 𝒗𝟏 𝒗𝟐 ⋯ 𝒗𝟓𝟖 𝒗𝟓𝟗 𝒗𝟔𝟎 

𝒗𝟏 0  ⋯    
𝒗𝟐 3 0 ⋯    
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

𝒗𝟓𝟖 46,7 6,4 ⋯ 0   
𝒗𝟓𝟗 25 1,2 ⋯ 43 0  
𝒗𝟔𝟎 24,5 4,7 ⋯ 24,3 15,5 0 

3. Sorting the Savings Values 
The savings values from the matrix in Table 3 are sorted in descending order to 
prioritize route combinations that provide the greatest savings. The sorted savings 
values are presented in Table 4. 

Table 4. Descending Order of Saving Values 
No Pair Saving Values 
1 (𝑣5, 𝑣20) 88,2 
2 (𝑣7, 𝑣36) 84,7 
3 (𝑣10, 𝑣36) 81,5 
⋮ ⋮ ⋮ 

3720 (𝑣44, 𝑣47) -8,9 
3721 (𝑣44, 𝑣49) -10,5 

4. Route grouping Using Clarke-Wright Savings algorithm: 
a. The first Pertashop pair is selected based on the highest saving value, 88.2,  
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between 𝑣5 and 𝑣20. These vertices are included in the first route, forming the 
temporary route (𝑣0, 𝑣5, 𝑣20, 𝑣0) with a total demand of 2.000+2.000=4.000 L. 

b. The next Pertashop is selected based on the next highest saving value is 72.7, 
between 𝑣20 and 𝑣7, leading to an updated route (𝑣0, 𝑣5, 𝑣20, 𝑣7, 𝑣0) with a total 
demand of 2.000+2.000+1.000=5.000 L. 

The iteration process of the CWS algorithm is repeated until all Pertashop vertices are 
included in the routes, which meet the vehicle capacity constraint of 8,000 liters. The 
route grouping continues following the same pattern until all vertices have been visited 
once. All route groupings is presented in Table 5 below. 
 

Table 5. Result of CWS Algorithm 
Route Pertashop Demand Total  

Demand 
Route Pertashop Demand Total  

Demand 
1 𝑣20 2000 8000 2 𝑣36 1000 8000 

𝑣5 2000 𝑣10 2000 
𝑣7 1000 𝑣22 3000 
𝑣49 1000 𝑣41 1000 
𝑣42 1000 𝑣58 1000 
𝑣26 1000   

3 𝑣1 2000 8000 4 𝑣56 3000 8000 
𝑣48 2000 𝑣44 2000 
𝑣15 1000 𝑣55 1000 
𝑣33 1000 𝑣54 1000 
𝑣53 1000 𝑣14 1000 
𝑣28 1000   

5 𝑣59 3000 7000 6 𝑣19 2000 8000 
𝑣25 2000 𝑣39 1000 
𝑣23 1000 𝑣4 1000 
𝑣46 1000 𝑣29 1000 
𝑣34 1000 𝑣60 3000 

7 𝑣9 2000 8000 8 𝑣16 2000 8000 
𝑣17 1000  𝑣30 2000 
𝑣37 1000  𝑣45 3000 
𝑣51 1000  𝑣38 1000 
𝑣11 3000    

9 𝑣3 2000 8000 10 𝑣12 2000 7000 
𝑣47 2000  𝑣40 1000 
𝑣8 3000  𝑣35 2000 
𝑣31 1000  𝑣50 2000 

11 𝑣2 2000 7000 12 𝑣24 2000 8000 
𝑣32 1000  𝑣18 2000 
𝑣57 2000  𝑣43 2000 
𝑣6 2000  𝑣27 2000 

13 𝑣13 1000 6000     
𝑣21 3000      
𝑣52 2000      

5. Route sequencing using Nearest Neighbour algorithm 

Once the route groupings are established, the Nearest Neighbour (NN) algorithm is 
applied to optimize the delivery sequence within each route. Route 1 consists of 
𝑣5, 𝑣20, 𝑣7, 𝑣42, 𝑣26and 𝑣49. Next, a distance matrix is created for the selected Pertashop. 

Table 6. Distance Matrix of Route 1 
 𝒗𝟎 𝒗𝟓 𝒗𝟐𝟎 𝒗𝟕 𝒗𝟒𝟐 𝒗𝟐𝟔 𝒗𝟒𝟗 

𝒗𝟎 0       
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𝒗𝟓 46,8 0      
𝒗𝟐𝟎 58,2 16,8 0     
𝒗𝟕 60,7 45,4 46,2 0    
𝒗𝟒𝟐 37,9 10,5 26,7 47,7 0   
𝒗𝟐𝟔 33,3 14,2 25,5 36,8 11,3 0  
𝒗𝟒𝟗 40,1 19,3 27,6 25,4 26,5 15,5 0 

The route formed based on the distance matrix for Route 1, as shown in Table 6 above, 
begins at the depot (𝑣0). From 𝑣0, the closest vertex is 𝑣26, followed by 𝑣42, which is the 
nearest to 𝑣26. Then, from 𝑣42, the closest vertex is 𝑣5. The next nearest vertex from 𝑣5 is 
𝑣20, and after that, the closest vertex to 𝑣20 is 𝑣49. Finally, the remaining point is 𝑣7, 
completing the route as (𝑣0, 𝑣26, 𝑣42, 𝑣5, 𝑣20, 𝑣49, 𝑣7, 𝑣0). The total distance for this route 
is 33.3 + 11.3 + 10.5 + 16.8 + 27.6 + 25.4 + 60.7 km = 185.6 km. The iteration process of 
sorting the vertices on the route using NN algorithm continues repeatedly in a similar 
pattern until route 13 is formed. The resulting routes from the Clarke-Wright Savings 
algorithm, with the sequence determined using the Nearest Neighbour algorithm, are 
presented in Table 7. 

 
Table 7. Optimal Route Using CWS and NN Algorithm 

No. Route Demand Distances (Km) 
1 (𝑣0, 𝑣26, 𝑣42, 𝑣5, 𝑣20, 𝑣49, 𝑣7, 𝑣0) 8.000 185,6 
2 (𝑣0, 𝑣41, 𝑣22, 𝑣10, 𝑣36, 𝑣58, 𝑣0) 8.000 102,3 
3 (𝑣0, 𝑣28, 𝑣53, 𝑣33, 𝑣15, 𝑣1, 𝑣48, 𝑣0) 7.000 119,4 
4 (𝑣0, 𝑣14, 𝑣54, 𝑣55, 𝑣56, 𝑣44, 𝑣0) 8.000 100,1 
5 (𝑣0, 𝑣34, 𝑣59, 𝑣25, 𝑣23, 𝑣46, 𝑣0) 7.000 76,2 
6 (𝑣0, 𝑣60, 𝑣29, 𝑣4, 𝑣19, 𝑣39, 𝑣0) 8.000 71,4 
7 (𝑣0, 𝑣51, 𝑣37, 𝑣9, 𝑣17, 𝑣11, 𝑣0) 8.000 71 
8 (𝑣0, 𝑣45, 𝑣38, 𝑣30, 𝑣16, 𝑣0) 8.000 44,1 
9 (𝑣0, 𝑣8, 𝑣31, 𝑣3, 𝑣47, 𝑣0) 8.000 46,9 

10 (𝑣0, 𝑣50, 𝑣40, 𝑣53, 𝑣12, 𝑣0) 7.000 38,2 
11 (𝑣0, 𝑣57, 𝑣2, 𝑣32, 𝑣6, 𝑣0) 7.000 30,6 
12 (𝑣0, 𝑣43, 𝑣24, 𝑣18, 𝑣27, 𝑣0) 8.000 33,4 
13 (𝑣0, 𝑣21, 𝑣52, 𝑣13, 𝑣0) 6.000 62,6 

TOTAL 98000 981,8 

Comparison with Existing Routes 

The next step is to compare the generated route with the existing route currently in use. 

Table 8. Route Existing Company 
No. Route Demand Distances (Km) 

1 (𝑣0, 𝑣21, 𝑣27, 𝑣50, 𝑣40, 𝑣0) 8.000 24,5 
2 (𝑣0, 𝑣57, 𝑣2, 𝑣32, 𝑣35, 𝑣14, 𝑣0) 8.000 49,6 
3 (𝑣0, 𝑣43, 𝑣24, 𝑣18, 𝑣11, 𝑣51, 𝑣0) 8.000 51,4 
4 (𝑣0, 𝑣6, 𝑣60, 𝑣13, 𝑣53, 𝑣28, 𝑣0) 8.000 53,9 
5 (𝑣0, 𝑣8, 𝑣31, 𝑣3, 𝑣47, 𝑣0) 8.000 46,9 
6 (𝑣0, 𝑣12, 𝑣45, 𝑣38, 𝑣52, 𝑣0) 8.000 46,6 
7 (𝑣0, 𝑣37, 𝑣9, 𝑣34, 𝑣23, 𝑣25, 𝑣0) 8.000 65,6 
8 (𝑣0, 𝑣16, 𝑣30, 𝑣17, 𝑣59, 𝑣0) 8.000 95,2 
9 (𝑣0, 𝑣29, 𝑣4, 𝑣19, 𝑣39, 𝑣33, 𝑣1, 𝑣0) 8.000 101 

10 (𝑣0, 𝑣54, 𝑣55, 𝑣56, 𝑣44, 𝑣41, 𝑣0) 8.000 153,7 
11 (𝑣0, 𝑣46, 𝑣58, 𝑣26, 𝑣42, 𝑣15, 𝑣5, 𝑣49, 𝑣0) 8.000 132,7 
12 (𝑣0, 𝑣22, 𝑣10, 𝑣36, 𝑣7, 𝑣48, 𝑣0) 8.000 184,3 
13 (𝑣0, 𝑣20, 𝑣0) 2.000 116,4 

Total 98000 1.121,8 

 
The calculation results using the Clarke-Wright Savings and Nearest Neighbour 
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algorithms, as shown in Table 7, indicate a total distance of 981.8 km, while the existing 
route in Table 8 results in a total distance of 1,121.8 km. The 140 km reduction, or 
approximately 12.5%, demonstrates that the combination of these two algorithms is 
effective in designing a more optimal distribution route compared to the previously used 
existing route, which employed tree logic with a greedy approach.  

 

 
Figure 2. Visualization of Routes 

 

Visualization of the routes is shown in Figure 2, where the optimized route appears 
more structured with direct connections and well-distributed clusters, reducing 
unnecessary detours and overlapping paths. In contrast, the existing route exhibits more 
scattered and intersecting connections, leading to inefficient travel distances and 
increased operational costs. The improved spatial distribution in the optimized route 
highlights the effectiveness of optimization methods in achieving a more balanced and 
cost-effective fuel distribution network. 

Goal Programming 

In this section, the optimal route results from the Clarke-Wright Savings and Nearest 
Neighbor algorithms are used as constraint functions to determine the value of the 
decision variables in the Goal Programming model. The decision variables used in this 
model are related to the number of vehicles (𝑋) used for each route obtained from the 
CWS-NN algorithms, so that the decision variable 𝑋𝑖 can be written as the number of 
vehicles for route -𝑖. Next, the constraint function for the Goal Programming model will be 
determined. 

a. Cost Analysis 
In this category, the distribution costs for each route are calculated based on fuel 

consumption and the cost per liter of fuel (Dexlite). The shipping cost for each 

route is determined using the following equation: 

 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐿)

5 𝑘𝑚
 × 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 (𝑅𝑝13.600) (2) 

Fuel consumption for each route is divided by 5 because the data provided 
represents every liter of Dexlite fuel used to cover a distance of approximately 5 
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km. The cost calculation for each route, obtained using Equation (2), serves as the 
coefficient for decision variables (𝐶𝑖) in the constraint model for minimizing 
distribution costs. These coefficients represent the cost contribution of each route 
in the total cost function. Since cost efficiency is a key objective in the distribution 
process, the Goal Programming model incorporates a constraint function to ensure 
that total distribution costs remain within the company's budget. This constraint 
function is formulated as follows: 

 (∑ 𝐶𝑖 𝑋𝑖

13

𝑖=1

) + 𝑑𝑖
− − 𝑑𝑖

+ ≤ 6.623.156 (3) 

To achieve the constraint function in Equation (3), the deviation that must be 
minimized is 𝑑𝑖

+. 

b. Time Analysis 
In this category, the distribution time for each route is calculated based on travel 

time and the time spent loading/unloading the fuel. The travel time for each route 

is determined using the following equation: 

 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑚)

𝑆𝑝𝑒𝑒𝑑 (
𝑘𝑚

ℎ
)

+ (
𝐷𝑒𝑚𝑎𝑛𝑑

1.000
× 0.0833) (4) 

The total time for each route is obtained by summing the travel time and the 
loading/unloading time. The travel time is calculated by dividing the distance of 
each route by the vehicle's speed, which is assumed to be 30 km/h. Meanwhile, the 
loading/unloading time is determined based on the demand at each Pertashop, 
where 0.0833 hours represents the time required to load or unload 1,000 liters of 
fuel, assuming a processing rate of 1,000 liters per 5 minutes. Since time efficiency 
is a critical factor in distribution operations, the Goal Programming model 
incorporates a constraint function to ensure that the total distribution time 
remains within the company's operational hours. The total time calculated for each 
route using Equation (4) serves as the coefficient for decision variables (𝑇𝑖) in this 
constraint model, representing the time contribution of each route in the overall 
time function. The constraint function is formulated as follows: 

 (∑ 𝑇𝑖 𝑋𝑖

13

𝑖=1

) + 𝑑𝑖
− − 𝑑𝑖

+ ≤ 84 (5) 

To achieve the constraint function in Equation (5), the deviation that must be 
minimized is 𝑑𝑖

+. 

c. Fleet Analysis 
After analyzing cost and time efficiency, another crucial aspect of the distribution 

process is optimizing fleet utilization. This ensures that each route is fully utilized 

with an optimal number of vehicles. Based on the results of the CWS-NN 

algorithms, each route is assigned one vehicle to maximize operational efficiency. 

The constraint function for this optimization can be formulated as follows: 



Fuel Distribution Optimization in Malang: A Hybrid Routing Approach 

Tharisa Melani 321 

 𝑋𝑖 + 𝑑𝑖
− − 𝑑𝑖

+ = 1 (6) 

To achieve the constraint function in Equation (6), the deviation that must be 
minimized is 𝑑𝑖

− and 𝑑𝑖
+. 

d. Demand Fulfillment Analysis 
In addition to optimizing costs, time, and fleet utilization, ensuring that fuel 

distribution meets consumer demand is a crucial objective. This constraint 

function is designed to guarantee that the total fuel delivered to all Pertashops 

meets the required demand levels. The constraint function for this objective is 

formulated as follows: 

 (∑ 𝐷𝑖 𝑋𝑖

13

𝑖=1

) + 𝑑𝑖
− − 𝑑𝑖

+ ≤ 98.000 (7) 

To achieve the constraint function in Equation (7), the deviation that must be 
minimized is 𝑑𝑖

+. 

Based on the previously defined constraint functions, the objective function of the Goal 
Programming model is formulated to minimize the deviation from each constraint. The 
objective function is formulated as follows: 

        𝑀𝑖𝑛 𝑍 =  𝑑1
− + 𝑑1

+ + 𝑑2
− + 𝑑2

+ + 𝑑3
− + 𝑑3

+ + 𝑑4
− + 𝑑4

+ + 𝑑5
− + 𝑑5

+ + 𝑑6
− + 𝑑6

+ + 𝑑7
− + 𝑑7

+

+ 𝑑8
− + 𝑑8

+ + 𝑑9
− + 𝑑9

+ + 𝑑10
− + 𝑑10

+ + 𝑑11
− + 𝑑11

+ + 𝑑12
− + 𝑑12

+ + 𝑑13
− + 𝑑13

+

+ 𝑑14
+ + 𝑑15

+ + 𝑑16
+  

 
To solve this optimization model, MATLAB software is utilized. The decision variables, 

goal constraints, and objective function are implemented within MATLAB to obtain the 
optimal solution. The following section presents the results of the Goal Programming 
approach. 

Table 9. Optimal Result Of Goal Programming 

Constraint Route Goal 
Result 

Conclusion 
Value 𝒅𝟏

−  𝒅𝟏
+ 

Maximizing the 
utilization of routes 

 

1 1 1 0 0 Achieved 
2 1 1 0 0 Achieved 
3 1 1 0 0 Achieved 
4 1 1 0 0 Achieved 
5 1 1 0 0 Achieved 
6 1 1 0 0 Achieved 
7 1 1 0 0 Achieved 
8 1 1 0 0 Achieved 
9 1 1 0 0 Achieved 

10 1 1 0 0 Achieved 
11 1 1 0 0 Achieved 
12 1 1 0 0 Achieved 
13 1 1 0 0 Achieved 

Minimizing the distribution costs 6.623.156 2.670.496 3.952.660 0 Achieved 
Minimizing the distribution time 84 40,8901 43,1099 0 Achieved 
Maximizing Pertashop demand 98.000 98.000 0 0 Achieved 
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Based on the results presented in Table 9, all the desired goals in this model have been 
successfully achieved. This confirms that the Goal Programming approach effectively 
refines the initial solution obtained from the CWS-NN algorithm, providing a more 
optimal distribution strategy. 

1. Maximizing the Utilization of Routes 
Each route is optimally utilized, as indicated by the fact that all routes (1 to 13) 
meet the target value of 1 without any deviation ( 𝑑1

− and  𝑑1
+ both equal to 0). This 

means that each route is assigned exactly one vehicle, ensuring efficient fleet 
deployment. 

2. Minimizing the Distribution Costs 
The total distribution cost is successfully minimized, achieving a cost of 
Rp6,623,156. The negative deviation 𝑑1

− is Rp3,952,660, while the positive 
deviation 𝑑1

+ is 0, indicating that the total cost remains within the allocated budget 
and does not exceed the constraint limit. Additionally, total distribution costs were 
successfully reduced beyond the set target, with cost savings of 59.68%.  

3. Minimizing the Distribution Time 
The total distribution time is also minimized to 84 hours, with a negative deviation 
 𝑑1

− of 43.1099 hours and a positive deviation  𝑑1
+ of 0. This means the actual 

distribution time is well within the operational limits, contributing to improved 
scheduling efficiency. Furthermore, the distribution time was successfully reduced 
approximately 48.68% beyond the initial target, allowing for faster deliveries and 
improved service reliability. 

4. Maximizing the Pertashop Demand 
The total fuel demand for all Pertashop locations, amounting to 98,000 liters, is 
fully met with no deviation ( 𝑑1

− and  𝑑1
+ both equal to 0). This ensures that the 

supply is sufficient to meet consumer demand without excess or shortage. 
 

Discussion 
This study demonstrates the effectiveness of integrating Clarke-Wright Savings (CWS) 

and Nearest Neighbour (NN) algorithms in optimizing fuel distribution routes. The results 
confirm that route optimization significantly reduces travel distance, leading to lower fuel 
consumption and operational costs while improving delivery efficiency. Compared to 
conventional routing, the optimized routes exhibit better cluster distribution, minimal 
overlaps, and fewer detours, ensuring a more structured and cost-effective delivery 
process. 

Beyond route efficiency, the goal programming model successfully enhances vehicle 
allocation and scheduling, optimizing both cost and time. The substantial reduction in 
distribution expenses and delivery time highlights the model’s practicality in improving 
Pertashop service reliability. If scaled, this approach could contribute to more efficient 
fuel distribution at a national level, supporting cost savings and resource reallocation for 
potential network expansion. 

These findings align with optimization studies in logistics and supply chain 
management, where hybrid approaches combining heuristic algorithms and 
mathematical programming have proven effective. However, this study extends previous 
work by demonstrating how integrating CWS and NN within a goal programming 
framework provides additional benefits, particularly in structured route clustering and 
proportional vehicle allocation. 

Despite its effectiveness, certain limitations remain. The model assumes constant 
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travel speeds and static demand, which may not fully capture real-world traffic conditions 
and fluctuations in fuel consumption. Future research should incorporate dynamic traffic 
data, demand forecasting, and real-time fleet tracking to improve adaptability. 
Additionally, exploring a mixed-fleet approach with varying vehicle capacities could 
further optimize cost efficiency and resource utilization. A hybrid model integrating real-
time scheduling and dynamic demand adjustments would enhance the resilience and 
scalability of fuel distribution networks. 

By addressing these challenges, this research contributes to the development of more 
adaptive and scalable logistics optimization models applicable beyond fuel distribution, 
extending to broader supply chain and transportation sectors. 

CONCLUSIONS 

Based on the results obtained, this study demonstrates that integrating Clarke-
Wright Savings (CWS) and Nearest Neighbour (NN) algorithms effectively optimizes fuel 
distribution routes, reducing total travel distance by 140 km (12.5%) to 981.8 km. This 
reduction confirms that the combined approach enhances route efficiency by minimizing 
detours and improving delivery structuring. Additionally, Goal Programming successfully 
optimizes vehicle allocation, ensuring that each of the 13 routes can be completed with a 
single vehicle. The optimization framework also significantly reduces distribution costs 
by Rp3,952,660 (59.68%) and delivery time by 40.89 hours (48.68%), surpassing initial 
targets. 

These findings advance logistics optimization by demonstrating the effectiveness 
of integrating heuristic methods with mathematical programming for fuel distribution. 
The proposed approach not only improves cost and time efficiency but also ensures 
accurate demand fulfillment for each Pertashop. The methodology can be adapted to 
other industries with similar distribution challenges, such as retail logistics and 
pharmaceutical supply chains. 

Future research should focus on integrating real-time traffic data, dynamic 
demand forecasting, and mixed-fleet vehicle allocation to enhance adaptability and 
further optimize cost efficiency. Expanding this model to larger-scale distribution 
networks could provide broader insights into sustainable and resilient logistics planning. 
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