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ABSTRACT 

The robust Mixed-Integer Linear Programming (MILP) model addresses uncertainties in linear 
optimization problems involving integer and continuous variables and can be solved using the 
Benders Decomposition method. One significant application area is facility location problems, 
which frequently encounter uncertainties on demand, costs, and capacities. This study fills a gap 
by conducting a systematic literature review (SLR) on solving robust MILP models using the 
Benders Decomposition method, focusing on their application to facility location problems. It aims 
to examine the state-of-the-art, identify commonly addressed issues, and analyze frequently used 
uncertainty sets. Using the Preferred Reporting Items for Systematic Review and Meta-Analysis 
(PRISMA) method, the SLR review publications from the last five years in Scopus, Science Direct, 
and Dimensions databases, with bibliometric analysis using VOSviewer and RStudio. Our findings 
reveal a gap in the research on robust MILP models for facility location with ellipsoidal uncertainty 
sets using Benders Decomposition. The method is widely applied to robust MILP problems in 
energy, logistics, supply chains, and scheduling, with interval uncertainty sets being the most 
common. This area offers significant potential for further exploration. 

Keywords: SLR, Robust Optimization, Uncertainty Sets, Mixed-Integer Linear Programming, 
Benders Decomposition, Facility Location Problem, Optimization in Logistics. 
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INTRODUCTION 

Optimization is an effort to achieve the best results in a given situation [1]. The 
optimization model expresses optimization problems by determining the decision 
variables, objective functions, and constraint functions [2]. One such model is mixed-
integer linear programming (MILP), where some variables must take integer values [1].  

In real-world problems, MILP often involves uncertain parameters, known as 
uncertainty. Robust optimization is a key method for addressing such uncertainty [3], 
where uncertain parameters are assumed to lie within specific uncertainty sets, such as 
box/interval, ellipsoidal, or polyhedral sets [4]. Robust MILP models have been widely 
applied to solve practical problems, including inventory routing [5], stock portfolio 
optimization [6], and notably, facility location problems[7].  

Facility location problems are critical due to their strategic importance, influencing 
industry operational decisions [8]. These problems often involve uncertain parameters, 
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such as customer demand, facility capacities, and other factors [9]. To effectively manage 
such uncertainties, robust MILP models offer a systematic approach to ensure feasible and 
reliable decisions. 

Given their combinatorial nature and uncertain parameters, solving robust MILP 
models for facility location problems is computationally demanding. One promising 
method for tackling this complexity is Benders Decomposition. This approach divides the 
original problem into smaller, more manageable subproblems: a continuous subproblem 
to handle real-valued variables and an integer subproblem to address discrete decision 
variables. By iteratively solving these subproblems, Benders Decomposition significantly 
enhances computational efficiency and scalability, especially for large-scale problems. 

Despite its potential, systematic literature review (SLR) focusing on robust MILP 
models solved using Benders Decomposition, particularly in facility location problems, 
remains limited. Table 1 summarizes existing review articles relevant to this study to 
establish the context and identify gaps.  

 
Table 1. Previous Review Article 

Paper Robust 
Optimization 

MILP Benders 
Decomposition 

Facility 
location 

[10] ✓ - - - 

[11] ✓ - - - 

[12] ✓ - - ✓ 
[13] - ✓ ✓ - 

[14] - - - ✓ 
[15] - - - ✓ 

This paper ✓ ✓ ✓ ✓ 

 
The review reveals that while articles review [10] and [11] discuss robust 

optimization applications, they do not address MILP or Benders Decomposition. 
References [12] examines facility location models considering uncertainty, focusing on 
stochastic and robust optimization approaches. Article [13]  highlights MILP solution 
techniques, including Benders Decomposition, but does not apply these to facility location 
problems. Meanwhile, articles [14]  and [15] review facility location models but overlook 
robust MILP and decomposition methods.  

From this analysis, no existing articles provide an SLR specifically addressing 
robust MILP models solved using Benders Decomposition for facility location problems. 
This study aims to fill that gap and contribute to the field by providing a focused review. 
The objectives of this research are to identify the state of the art in solving robust MILP 
models using the Benders decomposition method in facility location problems, analyze 
research trends in this area, examine the most commonly used uncertainty sets, and 
explore the types of problems that have been modeled as robust optimization problems 
and solved using Benders Decomposition. 

 

METHODS  

This systematic literature review (SLR) involves two main steps: conducting a 
systematic search using the Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA) method to address RQ.1 through 4 and performing bibliometric 
analysis to answer RQ.2. 
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PRISMA Methods 

A systematic search followed the steps outlined in the PRISMA method, which 
provides a structured guideline for conducting SLR  [16]. The PRISMA method has been 
proven to enhance the quality of SLR [17] in terms of methodology and outcomes. 
comprises four stages: identification, screening, eligibility, and inclusion.  

In the identification stage, literature was searched using relevant keywords, as shown 
in Table 2, by combining at least two. The search was conducted on Scopus, Science Direct, 
and Dimensions databases with the following limitations: publication year between 2020 
and 2024, document type as either articles or conference papers, English language, and 
sources from journals or conference proceedings. This process resulted in 486 articles, 
with details presented in Table 3. 

 
Table 2. Keyword Used 

Code Keyword 
A “optimization model” AND "integer" AND "linear" 
B “robust counterpart” OR “robust optimization” 
C “benders decomposition” 
D "facility location" 

 
Table 3. Search Results on the databases 

Type Code Scopus Science Direct Dimensions 
I A 1703 731 1336 
II B 6458 2155 5057 
III C 1213 485 1114 
IV D 2263 650 1961 
V A AND C 22 14 15 
VI B AND C 130 63 90 
VII D AND C 53 29 46 
VIII A AND B AND C 9 8 7 
IX A AND B AND C AND D 0 0 0 

Total types V to IX 214 114 158 

 
In the second stage (Screening), duplicate articles were identified and removed using 

Mendeley reference management software. This process resulted in the exclusion of 280 
duplicate articles, leaving 206 articles for further evaluation. 

The third stage is eligibility, where articles are selected based on their titles, abstracts, 
and full texts. During the selection based on titles and abstracts, 71 articles were excluded 
for not addressing robust optimization and Benders decomposition simultaneously, 
leaving 135 articles. From these, 39 articles that employed robust optimization and 
classical Benders decomposition were selected, while 96 articles focusing on either robust 
optimization or advanced forms of Benders decomposition were excluded. In the full-text 
evaluation, six articles were removed due to lack of access, and 19 articles were excluded 
for being irrelevant to the topic. This process resulted in 14 articles being included in the 
final stage.  

As detailed in the steps outlined earlier, the search process based on the PRISMA 
methodology is summarized in Figure 1, which illustrates the flow of articles through the 
stages of identification, screening, eligibility, and inclusion. This figure provides a clear 
overview of how articles were processed and selected at each stage. 
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Figure 1. PRISMA Flow Diagram for Literature Search 

 

Bibliometric Analysis 

Bibliometric analysis often provides a bibliographic overview of high-citation 
scientific publications [18]. This study employs VOSviewer and RStudio for bibliometric 
analysis, each offering distinct advantages. VOSviewer excels in network visualization  
with superior graphical representation [18], RStudio enables more in-depth data 
exploration due to its wide range of statistical and graphical analysis options. 

Data from 14 articles identified through the PRISMA method in the previous process 
were utilized to generate bibliometric mapping. The bibliometric mapping process 
follows three main steps as outlined in [11], [19], [20] : mining bibliometric data, 
analyzing bibliometric data, and mapping the results. These steps are implemented as 
illustrated in Figure 2. 

In the first step, bibliometric data were mined from academic databases such as 
Scopus, ScienceDirect, and Dimensions to ensure the inclusion of relevant publications on 
robust MILP models using Benders decomposition in facility location problems. The 
extracted metadata, including titles, authors, abstracts, keywords, citations, and 
publication years, were carefully reviewed, cleaned, and prepared for analysis. 

In the next stage, bibliometric data were analyzed using descriptive and statistical 
methods. Descriptive statistics, such as the total number of articles published per year, 
citation counts, and average citations per publication, were calculated to identify trends 
in scientific productivity and the influence of key works. Keyword frequency analysis was 
performed to uncover prominent research themes, while co-occurrence matrices of 
author keywords were generated to examine relationships between recurring terms. 
Citation analysis was conducted to determine the most influential authors, articles, and 
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journals in the field by analyzing total citation counts and identifying high-impact 
publications. 

The final step involved mapping the results through visualization and thematic 
analysis. VOSviewer was employed to construct co-occurrence networks of keywords, 
revealing clusters of interconnected research topics through graph-based clustering 
techniques, such as modularity optimization. RStudio was used to analyze thematic trends 
over time by applying time-series analysis and linear regression, enabling the 
identification of emerging research directions and the evolution of key themes within the 
field. 

This integrated approach, combining statistical analysis and visualization tools, 
provides a comprehensive understanding of the intellectual structure, influential 
contributors, and evolving trends in research on robust MILP models with Benders 
decomposition for facility location problems. 

 
Figure 2. Bibliometric Mapping Process 

 

RESULTS AND DISCUSSION  

The State of the Art in Solving Robust Optimization Models for MILP Problems using 
Benders Decomposition and its Application to Facility Location Problems 

Robust Optimization and Benders Decomposition have emerged as powerful tools for 
tackling mixed-integer linear programming (MILP) problems involving uncertainty. While 
Robust Optimization focuses on generating solutions resilient to variations within an 
uncertainty set, Benders Decomposition excels in handling MILP models with a 
combination of discrete and continuous decision variables by partitioning the problem 
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into simpler subproblems. 
The MILP model involves optimizing a linear objective function subject to linear 

constraints, with at least one decision variable required to be an integer [21]. The general 
form of a MILP model can be expressed as follows [22]:  

min
𝐱,𝐲

 𝑓(𝐱, 𝐯)                                                         

𝑠. 𝑡   𝐚𝒊
𝑇𝐱 + 𝐛𝑖

𝑇𝐲 ≤ 𝑓𝑖    (𝑖 = 1,2,3, … , 𝑚) (1) 

 𝐱 ∈ ℝ𝑛𝑥 , 𝐲 ∈ ℤ𝑛𝑦                             

where 𝑛𝑥 and 𝑛𝑦 represent the number of continuous and integer variables, respectively. 

The vector 𝐱 ∈ ℝ𝑛𝑥  represents continuous decision variables, and 𝐲 ∈ ℤ𝑛𝑦  represents 

integer decision variables. The inequality  𝐚𝒊
𝑇𝐱 + 𝐛𝑖

𝑇𝐲 ≤ 𝑓𝑖 for 𝑖 = 1,2,3, … , 𝑚 represents 
the 𝑖-th constraint, where 𝐚𝑖 ∈ ℝ𝑛𝑥 , 𝐛𝑖 ∈ ℝ𝑛𝑦  are the technology coefficient vectors, and 
𝑓𝑖 ∈ ℝ  is the right-hand side value of the constraint function. If the coefficients 𝐚𝒊 and 𝐛𝒊 
are assumed to be uncertain, the problem's uncertainty can be addressed using robust 
optimization by considering the uncertainty within box/interval, ellipsoidal, or 
polyhedral sets [23]. 

Benders  [24] introduced the Benders Decomposition method to solve MILP problems. 
The method involves decomposing the problem into two subproblems: one involving the 
continuous variables and the other involving the discrete variables. By temporarily 
treating some variables as constants, these problems become easier to solve [25]. 
Consider the following minimization problem with the initial problem 𝑃(𝐱, 𝐲) [26]: 

min
𝐱,𝐲

   𝐜T𝐱 + 𝑓(𝐲)         

𝑠. 𝑡   𝐴𝐱 + 𝐹(𝐲) = 𝐛 (2) 

                                  𝐱 ≥ 𝟎  

                                  𝐲 ∈ 𝑌  

where 𝐴 ∈ ℝ𝑚×𝑛, 𝐱 and 𝐜 ∈ ℝ𝑛, 𝐛 ∈ ℝ𝑚, and 𝐲 ∈ 𝑌 ⊂ ℝ𝑝. Here, 𝑓(𝐲) and 𝐹(𝐲) may be 
nonlinear and 𝑌 either discrete or continuous. For a fixed value of 𝐲 ∈ 𝑌, this problem 
becomes a linear programming problem in 𝐱, represented mathematically as 𝑃(𝐱|𝐲). 
Assume that 𝑃(𝐱|𝐲) has a bounded optimal solution 𝐱, for each 𝐲 ∈ 𝑌. The model (6) can 
be formulated as:  

min
𝐲∈𝑌

{𝑓(𝐲) + min
𝐱

{𝐜𝑇𝐱|𝐴𝐱 = 𝐛 − 𝐹(𝐲), 𝐱 ≥ 𝟎} } . (3) 

The inner optimization problem of equation (3) is: 
min

𝐱
{𝐜𝑇𝐱|𝐴𝐱 = 𝐛 − 𝐹(𝐲), 𝐱 ≥ 𝟎}. (4) 

The dual formulation of this inner problem is: 
max

𝐮
{[𝐛 − 𝐹(𝑦)]𝑇𝐮|𝐴𝑇𝐮 ≤ 𝐜}. (5) 

Substituting equation (5) into equation (3) yields: 

min
𝐲∈𝑌

{𝑓(𝐲) + max
𝐮

{[𝐛 − 𝐹(𝐲)]𝑇𝐮|𝐴𝑇𝐮 ≤ 𝐜} } . (6) 

This formulation simplifies the inner problem constraints, as they no longer depend on 𝐲. 
The optimal solution of the inner problem is bounded because 𝑃(𝐱|𝐲) has a bounded 
optimal solution for each 𝐲 ∈ 𝑌. The solution will always lie on the extreme point 𝑢 ∈ 𝑈, 
so equation (6) can be expressed as:  

min
𝐲∈𝑌

{𝑓(𝐲) + max
𝑢∈𝑈

{[𝐛 − 𝐹(𝐲)]𝑇𝐮} } . (7) 
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The original model (2) can then be simplified into the Full Master Problem:  

min  𝑓(𝐲) + 𝑚                   

𝑠. 𝑡   [𝐛 − 𝐹(𝐲)]T𝐮 ≤ 𝑚 (8) 

                                  𝐲 ∈ 𝑌  

                                  𝐮 ∈ 𝑈  

The Relaxed Master Problem 𝑀(𝐲, 𝑚) is defined as: 

                     min   𝑓(𝐲) + 𝑚                                        

                    𝑠. 𝑡   [𝐛 − 𝐹(𝐲)]𝑇𝐮 ≤ 𝑚, 𝐮 ∈ 𝐵 (9) 

                            𝐲 ∈ 𝑌  

where 𝐵 is the empty set, and 𝑚 is initially set to 0. The Subroblem 𝑆(𝐮|𝐲) is: 
max [𝐛 − 𝐹(𝐲)]𝑇𝐮  

(10) 
𝑠. 𝑡 𝐴T𝐮 ≤ 𝐜   

with 𝐮 ∈ ℝ𝑚,  𝑆(𝐮|𝐲) has a bounded optimal solution, assuming that P(x|y) has a bounded 
optimal solution for each 𝐲 ∈ 𝑌. 
 The iterative process of this method involves solving the subproblem to find 𝐮, 
given a 𝐲 ∈ 𝑌 from the 𝑀𝑎𝑠𝑡𝑒𝑟 𝑃𝑟𝑜𝑏𝑙𝑒𝑚.  The method then checks if a constraint involving  
𝐮 needs to be added to the Master Problem. If necessary, the Master Problem is resolved 
to generate a new 𝐲 to be used as input for the subproblem, and the process continues 
until an optimal solution is reached with a specified tolerance. Further details of the 
Benders Decomposition algorithm are shown in Figure 3.  

 
Figure 3. Benders Decomposition Algorithm 
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As discussed earlier, robust MILP models can be solved using the Benders 
Decomposition. Table 4 presents an overview of recent advancements in solving robust 
MILP problems using Benders Decomposition, particularly in the context of facility 
location problems. This information is derived from 14 articles identified through the 
PRISMA methodology. These articles, published in the past five years, explore the 
application of Benders Decomposition to robust optimization models for MILP problems 
involving various uncertainty sets. 

 
Table 4. State of the art on solving robust optimization models for MILP problems using Benders 

Decomposition in facility location problems 

Paper MILP 
Uncertainty 

Benders Decomposition 
Method 

Facility 
Location 
Problem 

Robust 
Optimization 

Uncertainty 
set 

[27] ✓ ✓ Multi-band ✓ - 

[28] ✓ ✓ Polyhedral Combined with cutting plane ✓ 

[29] ✓ ✓ Interval ✓ - 

[30] ✓ ✓ Polyhedral ✓ - 

[31] ✓ ✓ Polyhedral ✓ - 

[32] ✓ ✓ Interval ✓ - 

[33] ✓ ✓ Interval ✓ - 

[34] ✓ ✓ Interval ✓ ✓ 

[35] ✓ ✓ Interval ✓ - 

[36] ✓ ✓ 
Interval, 

polyhedral 
Enhanced Benders’ 

Decomposition (EBD) 
- 

[37] ✓ ✓ 
Interval, 

polyhedral 
✓ - 

[38] ✓ ✓ Interval 
robustness based benders 

decomposition (RBBD) 
- 

[39] ✓ ✓ 
Interval, 

polyhedral 
Enhanced Benders’ 

Decomposition (EBD) 
- 

[40] ✓ ✓ Interval ✓ - 

 
Table 4 shows that over the past five years, no studies have addressed solving robust 

optimization models for MILP with ellipsoidal uncertainty sets using the Benders 
Decomposition Method. Robust optimization models with ellipsoidal uncertainty can be 
applied to various real-world problems, such as scheduling operating rooms in hospitals  
[41], stock portfolio optimization [6], facility location problems [7], and others.  

This gap highlights further research and innovation opportunities, particularly in 
applying Benders Decomposition to solve robust optimization models for MILP problems 
with ellipsoidal uncertainty sets, specifically focusing on facility location problems. The 
analysis suggests that there is a need for new approaches and methodologies to address 
this challenge, offering a clear avenue for novelty in this area of study. 
 

Research Trends on Solving Robust MILP Models using the Benders Decomposition 
Method 

Bibliometric analysis was conducted using a dataset of 14 articles filtered through the 
full-text selection stage to identify trends and developments in research related to this 
topic. VOSViewer software was used to visualize keyword occurrences and the 
relationships between them. The dataset includes 39 keywords, with 36 retained after 
synonym filtering. The bibliometric map for co-occurrence of keywords is shown in Figure 
4.  
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Figure 4. Co-Occurrence Bibliometric Map 

 

The map in Figure 4 shows that the dataset's keywords are grouped into ten clusters, 
distinguished by different colors. The most frequent keywords are "Benders 
decomposition" (10 occurrences), "robust optimization" (8 occurrences), and 
"uncertainty" (2 occurrences), with others appearing once each. The keyword most 
frequently associated with others is "Benders decomposition," highlighting its 
widespread use in solving robust optimization problems. 

 
Figure 5. Thematic Map 

 

Figure 5 displays the thematic map generated using RStudio. The vertical axis 
represents the density of publications on the topic, while the horizontal axis represents 
the centrality or impact of the study on the field. There are two main clusters in the top 
right and top left quadrants. Cluster I (top right) includes "robust optimization," "Benders 
decomposition," and "stochastic programming," which fall under the category of motor 
themes. This category is well-established, with numerous publications and significant 
influence. Cluster II (top left), with keywords like "Benders decomposition," 
"computational experiment," and "integer programming," falls under Niche Themes. 
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These topics are often studied but remain isolated in specific areas, offering potential for 
further exploration. 

 

 
Figure 6. Relevant Keyword 

 

Figure 6 shows the ten most common words, with "Benders decomposition" appearing 
the most (10 occurrences), followed by "robust optimization" (5 occurrences) and 
"stochastic programming" (4 occurrences). This distribution suggests that the research 
community focuses primarily on Benders Decomposition and robust optimization, 
indicating their centrality to the field. The prominence of "stochastic programming" also 
reflects the interest in addressing uncertainty in optimization models, which is often 
associated with Benders Decomposition. 

 

 
Figure 7. Word Frequency Over Time 

 

Figure 7 depicts the frequency of the keyword "integer programming" between 2020 
and 2024. The keyword appeared three times, with a steady but low frequency of 
occurrences. This suggests that while integer programming remains relevant, it is 
somewhat overshadowed by the more specialized focus on Benders Decomposition and 
robust optimization in recent years. Meanwhile, "robust optimization" has shown an 
increasing frequency of usage annually, reaching five occurrences in 2024. This trend 
reflects the growing importance of robust optimization as a critical method for handling 
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uncertainty in optimization models. "Benders decomposition" showed consistent 
appearances from 2020 to 2022, then stabilized at six occurrences from 2023 to 2024. 
This stabilization could indicate that the foundational research on Benders 
Decomposition has plateaued, and the focus is shifting toward more specialized 
applications or variations of the method. 

 

 
Figure 8. Most-Cited Article 

 

Figure 8 lists the most-cited articles. The top citation goes to [30]. This article discusses 
robust MILP models for solving scheduling problems using the Benders Decomposition 
method. The high citation count signifies its influential role in shaping the field, 
highlighting its relevance and importance in advancing the application of Benders 
Decomposition to real-world problems. 

 

 
Figure 9. Number of Related Articles Published per Year 

 

Figure 9 illustrates the trend in the number of articles published from 2020 to 2024. 
The data shows a decrease in publications in 2022 and 2023, followed by an increase in 
2021 and 2024. This fluctuation in the publication count may indicate a temporary dip in 
research output or shifts in research focus during these years. However, the increase in 
2024 suggests a resurgence of interest in the topic, possibly due to new advancements in 
methodology or the growing application of Benders Decomposition in robust 
optimization models. 
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Figure 10. Average Citations per Year 

 

Figure 10 presents the average number of citations per article per year. In 2021, 
articles received the highest average of five citations each. This suggests that publications 
in 2021 garnered significant attention from the academic community, likely due to the 
novelty or relevance of the research at that time. In the subsequent years, the average 
citation count per article declined, which could be attributed to an increase in the volume 
of publications, resulting in a wider distribution of citations across more articles. This 
decline might also suggest a shift in research priorities or the maturation of the field. 

The bibliometric analysis shows that Benders Decomposition has become a widely 
applied method for solving robust MILP optimization problems. The observed trends in 
keyword frequency, publication numbers, and citation data indicate that this topic 
continues to be influential, with potential for further exploration and development, 
especially in the context of solving complex optimization problems under uncertainty. 

The Most Commonly Used Uncertainty Sets in Solving Robust Optimization Models 
for MILP Problems Using Benders Decomposition  

Mulvey et al. [42] first introduced robust optimization as an approach to handling 
parameter uncertainty in optimization processes. It aims to find optimal solutions despite 
variations or uncertainties in the input parameters, and generate "robust" solutions that 
perform well across various uncertainty scenarios. The general formulation for uncertain 
linear programming problems is as follows [20]: 

min
𝐱

   𝐜T𝐱         

𝑠. 𝑡   𝐴𝐱 ≤ 𝐟 (11) 

                                                   (𝐜, 𝐴, 𝐟) ∈ 𝒰  

where 𝐜 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝐟 ∈ ℝ𝑚 represent uncertain coefficients, 𝒰 denotes the 
uncertainty set, and 𝐱 ∈ ℝ𝑛 is the decision variable vector.  
 Based on the assumptions in robust optimization on [4], if 𝐜 ∈ ℝ𝑛 and 𝐟 ∈ ℝ𝑚  are 
deterministic, the robust reformulation of (11), known as the robust counterpart, is given 
by: 
 

min
𝐱

 𝐜T𝐱  
(12) 

𝑠. 𝑡 𝐴(𝐰)𝐱 ≤ 𝐟 ∀𝐰 ∈ 𝒵 
where 𝒵 ⊆ ℝ𝐿  is the uncertainty set used. The matrix 𝐴(𝐰) represents the technology 
coefficient matrix expressed as a parameter 𝐰 ∈ 𝒵. A solution 𝐱 ∈ ℝ𝑛 is said to be robust 
and feasible if it satisfies the uncertainty constraint [𝐴(𝐰)𝐱 ≤ 𝐟] for all possible 𝐰 ∈ 𝒵. A 
constraint derived from (12) can be modeled as: 
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(𝐚 + 𝑃𝐰)𝑇𝐱 ≤ 𝑓       ∀𝐰 ∈ 𝒵 (13) 

when 𝐚 ∈ ℝ𝑛 represents the nominal value of the parameter and 𝑃 ∈ ℝ𝑛×𝐿 represents the 
disturbance. The uncertainty set 𝒰 is defined as:  

𝒰 = {𝐚: 𝐚 = 𝐚 + 𝑃𝐰, 𝐰 ∈ 𝒵} (14) 

Note that (12) involves multiple constraints due to the universal quantifier (∀) 
imposed by the worst-case formulation, which appears intractable in its current form. 
This means the solution to the problem cannot be computed practically [43]. One way to 
handle this is by applying robust reformulation techniques to eliminate the universal 
quantifier (∀). The tractability of the robust counterpart reformulation depends on the 
uncertainty set used. Tractability for box/interval, ellipsoidal, and polyhedral uncertainty 
sets is presented in Table 5. 

 
Table 5. Tractable Reformulations for Various Uncertainty Sets [4] 

Uncertainty Set 𝒵 Robust Counterpart Tractibility 

Box ||𝐰||
∞

 𝐚T𝐱 + ||PT𝐱||
1

≤ 𝑓 Linear Programming 

Ellipsoidal ||𝐰||
2

 𝐚T𝐱 + ||PT𝐱||
2

≤ 𝑓 
Conic quadratic 
programming 

Polyhedral D𝐰 + 𝐪 ≥ 𝟎 {
𝐚T𝐱 + 𝐪T𝐰 ≤ 𝑓

DT𝐱 = −𝐏T𝐱
𝐰 ≥ 𝟎

 
Semidefinit 

Programming 

 
The methodologies of all 14 articles were reviewed to identify the types of uncertainty 

sets employed. Table 4 summarizes these findings, showing that the interval uncertainty 
set is used 10 times, the polyhedral set 6 times, the multi-band set once, and the ellipsoidal 
set not at all. The frequency of uncertainty set usage is visualized in Figure 11. 
 

 
Figure 11. Frequency of Uncertainty Set Usage 

 

The interval uncertainty set is the most frequently used, indicating a preference for 
interval-based approaches to handle uncertainty in optimization models. The polyhedral 
uncertainty set is also used frequently, suggesting its relevance, though it is less popular 
than the interval set. In contrast, the multi-band uncertainty set is less common in the 
reviewed literature. 

MILP Problems Modeled in Robust Optimization and Solved Using Benders 
Decomposition 

From the 14 articles previously obtained, we examined the MILP problems modeled in 
robust optimization and solved using Benders Decomposition. The results of this 
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examination are presented in Table 6. 
 

Table 6. MILP Problems Modeled 
Paper Problem 

[27] Power plant operation scheduling 
[28] Facility location and network design 
[29] Transmission switching 
[30] Project scheduling 
[31] Distribution network design 
[32] Inventory routing 
[33] Transmission expansion planning 
[34] Distribution center location 
[35] Robust optimization with interval uncertainty sets 
[36] Multi-project scheduling 
[37] Penjadwalan multi proyek 
[38] E-commerce distribution 
[39] Network protection 
[40] Truck and drone routing 

 
Table 6 shows various MILP problems modeled in robust optimization and solved 

using Benders Decomposition. These articles cover a wide range of practical applications 
in energy, logistics, and supply chain, as well as planning and scheduling. This information 
highlights the extensive use of robust optimization in solving various MILP problems with 
Benders Decomposition. Facility location problems have also been formulated in robust 
optimization and solved using the Benders decomposition method in [28] and [34]. 

The facility location problem is crucial to logistics and supply chain management. 
It aims to determine the optimal facility locations to minimize costs and maximize 
distribution efficiency  [15]. The facility location problem modeled in [34] exhibits a 
structure similar to the one described in [26]. The objective of the discussed model is to 
select 𝑝 hubs and allocate traffic flows to minimize transportation costs, subject to several 
constraints, as follows: 

 

min ∑ ∑ ∑ 𝑤𝑖𝑗𝑐𝑖𝑗𝑘𝑚𝑥𝑖𝑗𝑘𝑚

 

𝑚∈𝐻𝑘∈𝐻

 

𝑖,𝑗∈𝐴

              (15) 

s. t   ∑ 𝑧𝑘 

𝑘∈𝐻

= 𝑝                                          (16) 

           ∑ 𝑥𝑖𝑗𝑘𝑚 

𝑚∈𝐻

= 1        ∀(𝑖, 𝑗) ∈ 𝐴            (17) 

                                                    ∑ 𝑥𝑖𝑗𝑘𝑚 

𝑚∈𝐻

+ ∑ 𝑥𝑖𝑗𝑚𝑘  

𝑚∈𝐻,𝑚≠𝑘

≤ 𝑧𝑘    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐻 (18) 

                          𝑧𝑘 ∈ {0,1}         ∀𝑘 ∈ 𝐻                                         (19) 

                  𝑥𝑖𝑗𝑚𝑘 ≥ 0                                                         (20) 

where 𝐻 r epresents the set of candidate nodes for hub facilities, with 𝑝 nodes to be 
selected as hubs. 𝐴  is the set of origin-destination (O/D) pairs, 𝑤𝑖𝑗 denotes the traffic 

volume from node 𝑖to node 𝑗, and 𝑐𝑖𝑗𝑘𝑚 is the transportation cost from node 𝑖 to node 𝑗 via 

hubs 𝑘 and 𝑚. The decision variables include 𝑧𝑘 , a binary variable that equals 1 if node 𝑘 
is selected as a hub and 0 otherwise, and 𝑥𝑖𝑗𝑚𝑘 , a continuous variable representing the 
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fraction of flow 𝑤𝑖𝑗 routed from node 𝑖 to 𝑗 through the link between hubs 𝑘 and 𝑚. This 

model is a mixed-integer linear programming (MILP) problem due to the combination of 
binary and continuous variables. 

 In the robust approach, it is assumed that traffic flows 𝑤𝑖𝑗 dmay vary within a 

specific interval, (𝑤𝑖𝑗 − 𝑤̄𝑖𝑗) and (𝑤𝑖𝑗 + 𝑤̄𝑖𝑗), where 𝑤̄𝑖𝑗 represents the uncertainty radius. 

The interval uncertainty set used, as shown in Table 2, is formulated as: 

𝑈 = {𝑤̃ ∈ ℝ+
|𝐴|

: 𝑤𝑖𝑗 − 𝑤̄𝑖𝑗 ≤ 𝑤̃𝑖𝑗 ≤  (𝑤𝑖𝑗 + 𝑤̄𝑖𝑗) ∈ 𝐴} (21) 

The Benders Decomposition method is employed to solve the robust counterpart 
of the problem. This approach divides the problem into a master problem, which contains 
only the location variables 𝑧𝑘 and a subproblem, which includes the remaining variables. 
Experimental results demonstrate that the Benders Decomposition method can solve 
large-scale instances of the problem efficiently, achieving very short computational times. 

As a future direction, this research could serve as a foundation for developing more 
complex facility location models that incorporate various sources of uncertainty or 
alternative forms of uncertainty sets. Moreover, the potential of Benders Decomposition 
to tackle large-scale optimization problems with complex structures opens up 
opportunities for applying this approach to a wide range of optimization challenges, 
including facility location problems. 

Discussion 

Bender decomposition has been widely applied to various optimization problems, 
showcasing its versatility. It has been extended to solve more complex models, such as 
mixed-integer nonlinear programming (MINLP) [44]–[47], and mixed-integer 
programming with conic constraints [22], demonstrating its potential across diverse 
fields. However, a key research gap exists in applying Benders Decomposition to robust 
Mixed-Integer Linear Programming (MILP) models, particularly for facility location 
problems. While robust optimization using interval and polyhedral uncertainty sets has 
been well-explored, the integration of ellipsoidal uncertainty sets with Benders 
Decomposition remains underexplored in this context. This study addresses this gap by 
identifying directions for future research. 

Previous studies have demonstrated the effectiveness of Benders Decomposition 
in solving large-scale MILP problems across various fields, including energy, logistics, and 
supply chain management. These studies, however, predominantly rely on interval or 
polyhedral uncertainty sets. For instance, in the energy sector, research by [29] and [33] 

focuses on interval uncertainty sets to model uncertainties in power injections and wind 
power output. Similarly, studies in network design optimization, such as those [28] and 
[31], have extensively used interval uncertainty sets to model factors such as construction 
and operational costs, supply or demand requirements, and arc capacities. Although these 
models have proven beneficial, they are limited by the assumptions made about the 
uncertainty structure, which may not fully capture the complexity of real-world 
uncertainties. 

In contrast, this study emphasizes the potential of ellipsoidal uncertainty sets, 
which offer greater flexibility in representing uncertainties, especially when dealing with 
correlated or multi-dimensional uncertainties. The use of ellipsoidal sets allows for a 
more accurate approximation of the uncertainty structure, leading to more robust and 
efficient optimization solutions. By integrating this advanced uncertainty modeling 
technique with Benders Decomposition, we could significantly improve both the 
robustness and computational efficiency of optimization models, particularly in complex 
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facility location problems where multiple uncertainties are present, such as fluctuating 
demand and uncertain transportation costs. 

Despite the growing interest in robust optimization, the application of ellipsoidal 
uncertainty sets with Benders Decomposition in facility location problems remains sparse 
in recent literature. A few works have explored this integration, but none in the past five 
years have specifically focused on the combination of ellipsoidal uncertainty sets with 
Benders Decomposition for MILP models in facility location. This gap represents a 
promising avenue for future research, where the unique strengths of ellipsoidal 
uncertainty sets could be leveraged to overcome current limitations in optimization 
models. However, challenges in terms of increased computational complexity and the 
need for efficient algorithmic approaches may arise when integrating these sets. 

CONCLUSIONS 

Based on the current state of the art, a significant gap exists in the literature concerning 
the solution of robust MILP models for facility location problems using Benders 
Decomposition. While robust optimization models with interval and polyhedral 
uncertainty sets have been widely applied, no studies in the last five years have explored 
integrating ellipsoidal uncertainty sets with Benders Decomposition for such problems. 
Addressing this gap could lead to substantial advancements in optimization methods, 
particularly by exploring the integration of ellipsoidal uncertainty sets with Benders 
Decomposition in facility location problems, offering improved robustness and 
computational efficiency. 

The bibliometric analysis highlights the growing significance of Benders 
Decomposition in solving robust MILP problems across various domains, such as energy, 
logistics, supply chain management, and scheduling. However, the predominance of 
interval uncertainty sets indicates an opportunity to expand the application of alternative 
sets, such as ellipsoidal, to enhance the flexibility and applicability of optimization models. 

This study contributes by systematically identifying the research gap and providing a 
comprehensive overview of existing methodologies. Future research should prioritize 
developing and testing frameworks integrating ellipsoidal uncertainty sets with Benders 
Decomposition in facility location problems. Such advancements are expected to bridge 
the identified gap and expand the practical relevance of robust optimization techniques 
in addressing real-world challenges. 
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