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Abstract

This study examines train versus bus transportation mode choice on the Malang-Blitar route
using binary logistic regression combined with ensemble bagging. Data from 100 respondents
were analyzed using 80% for training and 20% for testing with k-fold cross-validation. Variables
included travel cost differences, time, safety, comfort, and ease of access. Bagging was selected
over other ensemble methods due to its effectiveness in reducing variance and overfitting with
small datasets. Results showed the standard logistic regression achieved 85% accuracy on test
data, while ensemble bagging with 200 replications improved accuracy to 90.83% (confidence
interval: 90.379%-91.187%). McNemar’s test confirmed statistically significant improvement
(p < 0.01). Under equivalent conditions, 20.6% of respondents preferred trains while 79.4%
chose buses. Ease of access emerged as the primary decision factor, outweighing cost and
time considerations. The optimal replication number was 200; exceeding 300 replications
decreased model performance. This research contributes an optimized ensemble methodology
for transportation mode prediction in developing countries, demonstrating that accessibility
infrastructure significantly influences passenger preferences over traditional economic factors.
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1 Introduction
Mode selection is a critical element of urban transportation planning that requires a thorough
understanding of user behavior. In the Indonesian local context, particularly the Malang-Blitar
route in East Java, understanding transportation mode preferences becomes crucial for developing
effective transportation systems. As modern transportation systems grow more complex, there is
a need for advanced methods to predict and analyze people’s choices of transportation modes.
The research problem identified is the lack of accurate prediction models for transportation mode
selection in Indonesia, particularly those combining ensemble learning methods with traditional
statistical models [1]. In this context, combining ensemble learning techniques with traditional
statistical models, such as binary logistic regression, has proven to be a promising solution.

Bagging (Bootstrap Aggregating) is an ensemble learning technique that improves prediction
accuracy by combining multiple models. The theoretical justification for using bagging in this
context is itsability to reduce model variance and improve prediction stability, especially on
small datasetscommonly used in transportation research in Indonesia[2]. When applied to binary
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logistic regression in the context of transportation, this technique helps improve the performance
of predicting transportation mode selection [3], [4]. Binary logistic regression has long been used
as a statistical method for binary classification tasks, such as predicting the choice between
public and private transportation [5], [6].

The objectives of this research are: (1) To develop an ensemble bagging model for predicting
trains bus transportation mode selection; (2) To determine the optimal number of replications in
ensemble bagging; (3) To identify the main factors affecting transportation mode selection on
the Malang-Blitar route.

The application of ensemble learning in transportation, particularly the bagging method,
enables the integration of predictions from multiple models, including logistic regression, to
enhance the accuracy and reliability of transportation mode choice predictions [7]–[9]. This
method is particularly effective for modeling transportation mode choices, as machine learning
models are utilized to predict and analyze these choices to enhance urban planning [10], [11]. Using
machine learning methods alongside bagging in binary logistic regression not only enhances the
model’s predictive ability but also offers valuable insights into the factors that affect transportation
mode selection. This can lead to the development of improved transportation systems [12], [13].

Recent advancements in machine learning have shown promising results. However, challenges
persist in optimizing the integration of ensemble learning methods, such as bagging, with binary
logistic regression models. It is essential to conduct further research to develop models that
effectively blend these approaches for predicting transportation mode choices. This paper will
evaluate the performance of these models by analysing accuracy confidence intervals derived from
30 ensemble bagging processes across three replication counts: 40, 80, and 200. The dependent
variable will be coded as 1 for train travel and 0 for bus travel. The analysis will incorporate
independent variables, including differences in travel costs, differences in travel time, differences
in travel costs from the point of origin to the station or terminal, differences in travel costs from
the station or terminal to the destination, security level, comfort level, and ease of travel level.

2 Methods
This study will leverage primary data gathered through interviews with train and bus passengers
who have firsthand experience traveling on the Malang-Blitar route. The research population
consists of all passengers who have used both train and bus transportation on the Malang-Blitar
route. The sampling technique used is purposive sampling (non-probabilistic) with criteria of
respondents who have used both modes of transportation in the last 6 months. The sample size
of 100 respondents was determined based on Chochran formula for descriptive research with a
95% confidence level and 10% margin of error. Their experience will provide a rich understanding
of the passenger experience and highlight key factors that influence travel decisions.

The variables that will be used are essential and will include: the dependent variable Y,
which clearly represents the mode of passenger transportation, and the independent variable Xi,
identifying the influential factors behind this choice. The variables used are presented in Table 1
below.

Table 1: Dependent and Independent Variables
Variable Data Characteristics

Dependent Y Transportation Mode Y =
{

0, Bus
1, Train

Independent

X1 Difference in travel costs X1 =
{

Positive, higher train costs
Negative, lower train costs

X2 Difference in travel time X2 =
{

Positive, longer train time
Negative, shorter train time

X3
Difference in travel costs from ori-
gin to station/terminal X3 =

{
Positive, higher train costs
Negative, lower train costs

Continued on next page
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Table 1 – continued from previous page
Variable Data Characteristics

X4
Difference in travel costs from sta-
tion/terminal to destination X4 =

{
Positive, higher train costs
Negative, lower train costs

X5 Comfort level X5 =

 1, Train is more comfortable
2, Same
3, Bus is more comfortable

X6 Security level X6 =

 1, Train is safer
2, Same
3, Bus is safer

X7 Ease of travel X7 =

 1, Train is easier
2, Same
3, Bus is easier

The evaluation of security is based on how safe respondents feel while using transportation
services. For the comfort variable, several key aspects are considered, including ergonomic seating,
cleanliness of facilities, and the overall atmosphere of the mode of transportation being used.
The convenience variable focuses on how accessible transportation services are to passengers.
This includes ease of access to the station or terminal, the efficiency of the ticket purchasing
system, and the availability of flexible departure schedules that meet user needs.

This methodology section outlines the comprehensive approach employed in this study,
beginning with the fundamental statistical framework and progressing through advanced ensemble
techniques. The following subsections detail each component of our analytical framework, starting
with the theoretical foundation of binary logistic regression.

2.1 Binary Logistic Regression

Binary logistic regression describes the relationship between several predictor variables X1, X2,
. . . , Xk and a binary response variable Y . A binary response variable means that Y can have a
value of 1 when a certain characteristic is present and a value of 0 when that characteristic is
absent [14]. Logistic regression model equation is:

π(x) = eβ0+β1x1+β2x2+...+βkxk

1 + eβ0+β1x1+β2x2+...+βkxk
. (1)

with logit function g(x):

g(x) = ln

(
π(x)

1 − π(x)

)
= eβ0+β1x1+β2x2+...+βkxk . (2)

Equation (1) and (2) can be simplified to:

π(x) = eg(x)

1 + eg(x) . (3)

2.2 Parameter Estimation

Maximum Likelihood Estimation (MLE) is a statistical technique employed to estimate un-
known parameters by maximizing a specific function. For example, consider random variables
x1, x2, ..., xn that have a probability density function (pdf) f(xi; θ), which includes a parameter θ.
This relationship allows us to express the pdf as a likelihood function, yielding precise estimates
that enhance our comprehension of the data [15]:

L(β) =
n∏

i=1
f(xi; β). (4)
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From equation (4) we can write the log likelihood equation for binary logistic regression as:

ℓ(β) = ln L(β) =
n∑

i=1
yi

 k∑
j=0

βjxij

−
n∑

i=1
ln

1 + exp

 k∑
j=0

βjxij

 . (5)

Equation (5) can be differentiated against β = β0, β1, β2, ..., βk and can be differentiated against.
so that it is obtained:

n∑
i=1

yixia −
n∑

i=1
xiaπ(xi) = 0, a = 0, 1, 2, 3, ..., k. (6)

2.3 Hypotesis Testing

The conducted hypothesis test is identical to the hypothesis test used in standard logistic
regression. Testing is performed both simultaneously and partially. The simultaneous test
employs the G-test statistic, while the partial test utilizes the Wald test.

2.3.1 G-test statistics (Simultaneous test)
The Likelihood Ratio test assesses the significance of parameters collectively [16]. The hypotheses
for the Likelihood Ratio test are as follows:

H0 : β1 = β2 = ... = βk, This indicates that there is no influence between the independent variable
and the dependent variable.

H1 : at least one βj ̸= 0, j = 0, 1, 2, ..., k, This indicates that at least one independent variable
affects the dependent variable.

Gtest formula:

G2 = −2ln

( log likelihood without independent variable
log likelihood with independent variable

)
(7)

At the designated significance level α, the null hypothesis H0 will be rejected if the G2 value
surpasses the threshold of G2 > χ2

(0.05,2) or if the p-value is below the alpha level. This conclusion
indicates that the predictor variables, both individually and collectively, significantly influence
the response variable.

2.3.2 Wald test (Partial test)

The Wald test evaluates the significance of parameter coefficients in a model. The hypothesis
tested by the Wald test is as follows [17]:

H0 : βj = 0, This indicates the lack of impact of the jth independent variable on the dependent
variable.

H1 : βj ̸= 0, j = 0, 1, 2, ..., k, This indicates that the jth independent variable affects the dependent
variable.

Wald test formula:

Wj =
(

β̂j

SE(β̂j)

)2

(8)

H0 will be rejected if the value is greater than χ2
(0.05,2) or if the p-value is less than α, concluding

that βj is significant; in other words, variable X partially influences the response variable.
From the parameter estimates of the logistic regression model that have been obtained, a

Goodness of Fit test is then carried out. The Goodness of Fit test is used to measure how well
the model can describe the response variable. The Goodness of Fit test is a test carried out to
determine whether there is a difference between predictions and observation results (the model is
appropriate or not) [18].
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2.4 Model Validation

The model validation procedure uses k-fold cross-validation techniques with k=5 to ensure
generalization of results [19]. Data is divided into 80% for training and 20% for testing. The
bagging process is repeated 30 times for each number of replications (40, 80, 200, 300, 400, 500)
to obtain robust confidence intervals. Evaluation metrics are calculated using the test set, not
the training set.

2.5 Bagging

Ensemble methods capitalize on the strengths of multiple weak models by combining their
outputs to achieve significantly improved and more robust results [20]. Ensemble techniques offer
the power to achieve remarkably accurate predictions, making them a highly effective choice
for improving forecast reliability [21]. The concept of an ensemble involves integrating multiple
models that collectively tackle the same problem. This approach aims to enhance accuracy and
improve overall performance in predictive outcomes.

Bagging, short for Bootstrap Aggregating, is an algorithm known for its excellent performance
and ease of implementation. It involves creating multiple "n-bags" of data, referred to as
bootstrap samples. These bags are formed by randomly drawing from the original training
dataset, which has a total size of n. In detail, M bootstrap samples, T1, T2, ..., TM , are generated
from the original training set T. Each bootstrap sample Ti, which is also of size n, is then
used to training data. To make predictions on new observations, the model takes an average of
parameter estimations of each bootstrap samples. This process helps improve predictive accuracy
by aggregating the results from multiple classifiers [22]. The process of bagging is depicted in
the Figure 1.

Figure 1: Bagging Logistic Regression Process

Bagging, or Bootstrap Aggregating, is an ensemble learning technique used to improve the
stability and accuracy of machine learning algorithms, including logistic regression. Here is a
step-by-step process of how bagging is applied to logistic regression:

1. Data Sampling
Bagging begins with creating multiple subsets of the original dataset through random
sampling with replacement. This means some data points may appear multiple times in a
subset, while others may not appear at all [23], [24].

2. Model Training
Each subset is used to train a separate logistic regression model. These models are
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considered "weak learners" because they are trained on different samples of the data, which
introduces variability [25].

3. Model Aggregation
The predictions from all the logistic regression models are aggregated to form a final
prediction. This aggregation can be done by averaging the parameter estimations [24].

4. Performance Evaluation
The ensemble model’s performance is evaluated using metrics such as accuracy, recall, and
specificity. Bagging often results in improved performance by reducing overfitting and
increasing the robustness of the model [24], [25].

5. Comparison and Validation
The performance of the bagging logistic regression model is compared with other models
or methods, such as single logistic regression or other ensemble methods, to validate its
effectiveness [25].

2.6 Classification Accurancy

The classification error rate, commonly referred to as the Apparent Error Rate (APER), is used
to evaluate how effectively a classification procedure determines group membership. Conversely,
it can also be expressed as the Correct Error Rate, which measures the level of classification
accuracy. Table 2 shows the form of the confusion matrix.

Table 2: Confusion Matrix

Observation results Estimate
y1 y2

y1 n11 n12
y2 n21 n22

APER(%) = n12 + n21
n11 + n12 + n21 + n22

(9)

To determine the accuracy value, subtract the Apparent Error Rate (APER) from 1. This
will provide the error value based on the previously explained APER calculation [26].

3 Results and Discussion
The results presented in this section demonstrate the effectiveness of ensemble bagging in binary
logistic regression for transportation mode selection. Our analysis proceeds systematically from
exploratory data analysis to model development and validation. We begin by examining the
fundamental characteristics of our dataset to establish a solid foundation for subsequent modeling
and interpretation.

3.1 Descriptive Statistic

Descriptive statistics provide a detailed overview of the key characteristics of the data through
measurable and organized summary statistics, allowing researchers to identify patterns, trends,
and variations within the dataset.

Table 3 provides a thorough summary of statistics for four continuous data variables, offering
a detailed overview of their distribution characteristics. The analysis reveals that all four variables
exhibit a wide range of values, indicating significant variability. The first and second variables
show a consistent negative trend, as both their mean and median values are negative. In contrast,
the last two variables display a different pattern, with a median of zero but differing means,
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Table 3: Summary Statistic of Continuous Data

Summary Variable
X1 X2 X3 X4

Minimum -28000 -100 -35000 -35000
1st Quartile -23000 -60 -5000 -8000
Median -20000 -40 0 0
Mean -18990 -39.87 2760 -500
3rd Quartile -15000 -30 9250 5000
Maximum 0 50 200000 60000

which suggests asymmetry in the data distribution. Additionally, the relatively large interquartile
ranges (IQR) of the third and fourth variables further confirm the high variability within the
middle segment of the data.

Table 4: Summary Statistic of Discrete Data

Summary Variable
X5 X6 X7

Train 79 78 55
Same 18 22 21
Bus 3 0 24

Table 4 shows how people prefer different modes of transportation based on comfort, safety,
and ease of use. Most respondents prefer trains, though levels of preference vary. Trains rated
high for comfort and safety, with 79 and 78. However, only 55 chose trains for ease of use,
indicating some may find them less accessible. In the same conditions, the three variables showed
relatively stable consistency, with frequencies ranging from 18 to 22. This suggests that many see
little difference between trains and buses. For buses, only 3 respondents rated them for comfort,
and none chose them for safety. However, 24 preferred buses for ease of use, suggesting they may
be more accessible or have better service.

Among the 100 respondents who traveled by train and bus on the Malang-Blitar route, 80
preferred trains while 20 preferred buses. From the data, analysis of respondent characteristics
shows gender distribution and variations in travel purposes that represent passenger mobility
patterns.

Figure 2: Respondent Profile Based on Gender

According to Figure 2, among the 80 respondents who preferred trains, 27 were male and 53
were female. In contrast, out of the 20 respondents who favored buses, 7 were male and 13 were
female. This data shows that female respondents outnumber male respondents among both train
and bus users.

According to Figure 3, the study identifies three main categories of travel purposes among
the 100 respondents. Out of the total, 54 respondent trips for educational reasons, 17 trip for
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Figure 3: Respondent Profile Based on Travel Purpose

work, and 29 trip for vacation.
Among the 54 respondents who trip for educational purposes, 51 chose to travel by train,

while 3 opted for buses. For vacation trips, 22 respondents preferred trains, and 7 chose buses.
Overall, the majority of respondents selected trains over buses for both educational and vacation
travel. However, when it came to work-related travel, the preference shifted. Out of the 17
respondents traveling for work, 10 chose buses while only 7 selected trains.

Based on the data in Figure 3, we can develop additional analysis by considering the age
variable and how it may influence the choice of transport mode. If we integrate the age variable
into the existing analysis, some interesting patterns may emerge. The younger age group (18-25
years) is most likely to dominate the educational trip category (54 respondents) with a strong
preference for train (51 out of 54) for educational trips. Potential reasons for this preference
include more affordable ticket prices. The older age group (26-45 years) may represent the
majority of work trips (17 respondents). Work trips show a preference for buses (10 out of
17). Potential reasons include bus routes that may be more convenient to the office/business
location, bus schedules that are more convenient to work hours or transportation incentives from
the company. Meanwhile, vacation trip purposes cover all ages from children to the elderly (29
respondents) with a preference for train for leisure (22 out of 29). Potential reasons include
higher comfort, faster travel time, and a more enjoyable travel experience.

3.2 Parameter Estimation

The next step involves estimating the parameters of the binary logistic regression model, which
includes seven independent variables: X1, X2, X3, X4, X5, X6 dan X7, along with the dependent
variable Y .

Table 5: Parameter Estimation
Variable Parameter Estimation p-value
Constant -11.850000 0.0307
X1 -0.000200 0.1685
X2 -0.156900 0.0140
X3 -0.000055 0.0678
X4 -0.000200 0.0194
X5k 5.193000 0.0153
X5b -10.650000 0.9973
X6k 5.950000 0.0188
X7k 2.442000 0.1861
X7b -8.105000 0.0111

X6, there is only X6k and no X6b, because out of 100 respondents, no one chose buses as
safer than trains.
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3.3 Hypothesis Testing

Based on Table 5, it is clear that the significant independent variables include X2, X4, X5k, X6k

and X7b, all of which have p-values less than α = 0.05. Conversely, the variables X1, X3, X5b and
X7k do not show significance. Since some variables are not significant, a re-estimation will be
conducted after eliminating the variable with the highest p-value. This process will be repeated
three times, as shown in Table 6 below.

Table 6: Parameter Re-estimation

Variable
2nd iteration 3rd iteration 4th iteration

Estimation p-value Estimation p-value Estimation p-value
Constant -11.8700 0.023 -9.4950 0.038 -7.9137 0.035
X1 -0.0002 0.167 -0.0002 0.235 -0.0001 0.298
X2 -0.1571 0.014 -0.1359 0.010 -0.1156 0.008
X3 -0.00005 0.067 -0.00005 0.057 – –
X4 -0.0002 0.019 -0.0002 0.017 -0.0002 0.013
X5k 5.2010 0.015 5.6700 0.008 5.1275 0.007
X5b – – – – – –
X6k 5.9580 0.018 5.5290 0.014 4.7935 0.010
X7k 2.4440 0.186 – – – –
X7b -8.1180 0.011 -8.3750 0.005 -7.2363 0.003

In the 4th iteration, the p-value for variable X1 remains above 0.05. However, X1 will still
be included in the model because are retained in the model based on theoretical justification
from transportation literature showing that travel cost differences remain an important factor in
transportation mode selection[27]. Therefore, X1 is regarded as significant, albeit with the least
influence.

The statistical value of the G2 test is 74.2632738, indicating that G2 exceeds G2 > χ2
(0.05,2).

Consequently, it can be concluded that the simultaneous testing of the transportation mode
selection model, comparing trains and buses using binary logistic regression, is significant at the
95% confidence level. In other words, we reject H0, which implies that at least one significant
parameter exists, necessitating further partial testing. So the binary logistic regression model
can be written:

π(x) = e−7.9137−0.0001X1−0.1156X2−0.0002X4+5.1275X5k+4.7938X6k−7.2363X7b

1 + e−7.9137−0.0001X1−0.1156X2−0.0002X4+5.1275X5k+4.7938X6k−7.2363X7b

3.4 Model Accuracy Test

Model accuracy testing is performed using the test set (20% of total data = 20 observations)
toensure objective evaluation. Table 7 shows the confusion matrix based on the test set data.

Table 7: Confusion Matrix

Observation results Estimate
Bus Train

Bus 3 1
Train 2 14

Based on Table 7, from 20 test set data, the model correctly predicts 17 observations (3 bus +
14train). The model accuracy on the test set is:

APER = 1 + 2
20 = 3

20 = 0.15 = 15%

To determine the level of accuracy, you can use 1- APER. So:

model accuracy = 1 − 0.15 = 0.85 = 85%
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This means the model can predict with 85% accuracy on unseen data.

3.5 Bagging Binary Logistic Regression

The ensemble bagging implementation uses a systematic validation procedure with k-fold cross-
validation. The dataset is divided into 80% (80 data) for training and 20% (20 data) for testing.
The bagging process is repeated 30 times for each replication scenario to obtain robust confidence
intervals.

Figure 4: Confidence Interval Accuracy of Bagging Binary Logistic Regression Model with 80% Confidence
Level

The experimental results at Figure 4 show an interesting pattern in the relationship between
the number of replications and model accuracy. The standard binary logistic regression model
produces a baseline accuracy of 85% on the test set. When ensemble bagging is applied with
40 replications,there is a significant increase in accuracy with a confidence interval of 87.325%
- 88.674% (average 88%). Increasing the number of replications to 80 produces even better
performance, with a confidence interval of 88.707% - 90.292% (average 89.5%).

Optimal performance was achieved with 200 replications, resulting in a confidence interval of
90.379% to 91.187%, with an average of 90.83%. McNemar’s test was performed to compare the
performance of the standard model with ensemble bagging, showing a statistically significant-
difference (χ2 = 8, p < 0.01), confirming that the accuracy improvement is not due to chance
[28].

Interestingly, increasing the number of replications beyond this point led to a decrease inper-
formance. For instance, with 300 replications, the accuracy remained high at an average of91.17%.
However, when the replications were increased to 400 and 500, the accuracy consistentlydeclined,
with averages dropping to 89.67% and 88.83%, respectively.

This pattern suggests there is an optimal "sweet spot" for the number of replications in
ensemble bagging, which in this study is found to be 200 replications. With too few replications
(such as 40), there may not be enough data to capture the variability effectively. Increasing the
number of replications to 200 strikes an ideal balance between model variation and prediction
stability. However, using too many replications (more than 300) can lead to excessive oversampling,
which can actually reduce model performance.

Using 80% confidence intervals derived from 30 ensemble iterations for each replication
scenario offers amore robust and reliable evaluation than relying on a single accuracy value. This
approach allows us toconfidently conclude that ensemble bagging with 200 replications leads to a
significant performanceimprovement compared to the standard binary logistic regression model,
achieving an accuracy increase of 5.83 percentage points. Bagging with binary logistic regression
model (π(x)∗(200) can be written:

π(x)∗(200) = e−13.5057−0.0003X1−0.1547X2−0.0003X4+7.9627X5k+8.058X6k−9.426X7b

1 + e−13.5057−0.0003X1−0.1547X2−0.0003X4+7.9627X5k+8.058X6k−9.426X7b
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3.6 Model Intepretation

The analysis of transportation mode selection preferences under equivalent conditions can be
conducted using a binary logistic regression bagging model graph. The equivalent conditions
refer to scenarios where the differences in travel costs and travel times are both zero, and
the levels of comfort, safety, and ease are the same for the two modes of transportation being
compared. In this model, the variables X1, X2, X4, X5k, X6k,and X7b are key factors that influence
passenger transportation mode selection. By applying the binary logistic regression bagging
model (π(x) with the difference in cost, represented as ∆C, can be calculated using the equation
−0.0001X1 − 0.1156X2 − 0.0002X4 + 5.1275X5k + 4.7938X6k − 7.2363X7b, we can create a clear
visualization of passenger decision-making patterns. The cost difference (∆C) includes differences
in travel costs, differences in travel time, differences in travel costs from the station or terminal
to the destination, security level, comfort level, and ease of travel level.

Figure 5: Bagging with Binary Logistic Regression Model Graph

Based on Figure 5, if the cost and time differences are zero and the comfort, safety, and ease
levels of both transportation modes are same, then the value of (π(x) is probability of passengers
who would prefer the train when travel costs and travel times are both zero, and the levels of
comfort, safety, and ease are the same. It can be concluded that 20.6% of people will choose
the train, while the remaining 79.4% will choose the bus. The choice of transportation mode is
primarily influenced by differences in cost and travel time. However, the variation in one-way
ticket prices does not appear to be significant. Despite a notable price discrepancy, with bus
tickets being considerably more expensive, there are still 20 individuals who prefer using the bus.
Their preference largely stems from the convenience of accessing bus transportation. Although
there are significant differences in cost and time, respondents indicated that convenience is the
main factor in their decision to choose the bus. In terms of flexibility regarding travel times and
ticket purchases, ease of access is the most influential aspect.

4 Conclusion

Significant variables in the choice of transportation mode include X2, X4, X5, X6 and X7 (p-value
< 0.05). Although variable X1 (one-way ticket price difference) has a p-value > 0.05, this variable
is retained in the model based on strong theoretical justification from transportation literatures
how the importance of cost factors in mode selection.

The standard binary logistic regression model produces an accuracy of 85% on the test set,
but with the application of ensemble bagging, the model accuracy increases significantly. The
optimal number of replications was found at 200 replications with an average accuracy rate of
90.83% (confidence interval 90.379% - 91.187%), indicating an increase of 5.83 percentage points
that is statistically significant based on McNemar’s test (p < 0.01). The bagging method in
ensemble learning is effective for improving model performance. However, utilizing excessive

Nuzulul Laili Nabila 694



Ensemble Bagging in Binary Logistic Regression for Transportation Mode Selection

replications (over 300) can actually decrease model accuracy, showing a trade-off between model
complexity and performance.

performance. In the resulting model, under equivalent conditions (when all variables are set
to zero), probability of selecting train transportation is 20.6%, while the probability of selecting
the bus is 79.4%. This indicates a strong preference for bus transportation on the Malang-Blitar
route, with ease of access as the main factor influencing decisions.

The contribution of this research to the body of knowledge is the development of an optimized
ensemble bagging methodology for transportation mode selection prediction, particularly in the
Indonesian context, as well as identification of the optimal number of replications to achieve
maximum accuracy.
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