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Abstract

A tree graph is a connected graph and has no circuits. Tree graphs used in this study include:
broom graph, centipede graph, and Banana Tree graph. Graph coloring is the process of
giving color to graph elements with the rule that neighboring elements must not have the
same color, and the number of colors used must be as minimal as possible. b-coloring of a
graph G is a coloring of the vertices of G such that each color class has at least one vertex
adjacent to all other color classes. The b-chromatic number of a graph G is denoted by φ(G),
is the largest integer k such that G has a b-coloring with k colors. The limit of b-coloring
of graph G with maximum degree ∆(G) is as follows, χ(G) ≤ φ(G) ≤ ∆(G) + 1.χ(G) is the
chromatic number of a graph G where χ(G) is the minimum value of the color required for
proper coloring of graph G. While ∆(G) is the maximum degree of the vertices in graph
G. This study uses an exploratory research type with an axiomatic deductive method and
a pattern detection method. Based on this study, the results of the b-coloring analysis on
the tree graph family are known. The results of this study are expected to be used as study
material and the development of scientific knowledge related to b-coloring analysis on other
graphs.
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1 Introduction
The 21st century has witnessed rapid technological advancements that have simultaneously driven
progress in scientific fields, including mathematics. As a fundamental discipline, mathematics
forms the foundation for technological development and plays a crucial role in enhancing cognitive
abilities. It is a branch of science that offers numerous practical applications for problem-solving.
Mathematics continues to evolve in response to emerging challenges, reflecting its dynamic nature.
One of the key areas of development in applied mathematics is graph theory, which is increasingly
used to model and solve complex problems, particularly those related to networks, transportation,
and the flow of information [1]. In the context of traffic systems, graph theory serves as a tool to
understand and optimize vehicle flow, aiming to alleviate congestion and other related issues [2].

Graph theory, as a broader mathematical framework, is defined by Slamin as an ordered set
of (V, E), where V represents a non-empty set of elements called vertices, and E is a finite set of
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edges, which may be empty, connecting pairs of distinct vertices in V (G) [3]. A graph G is a
finite set of vertices and edges, denoted by G = (V, E), where V is a set of vertices and E is a
set of edges. A graph may not have edges but must have at least one vertex [4]. V (G) is called
the vertex set of G and E(G) is called the edge set of G. Two vertices in a graph connected by a
common edge are called adjacent vertices, while a vertex that is an end of an edge is said to be
adjacent [5]. The degree of a vertex v in graph G is denoted by d(v), defined as the number of
edges attached to the vertex [6]. Graph coloring is the process of assigning colors to the elements
of the graph in question [7]. From this definition, graph coloring can be interpreted as the process
of assigning colors to the elements of the graph with the rule that adjacent elements must not
have the same color and the number of colors used must be as minimal as possible.

A concept closely related to graph coloring is b-coloring. The concept of b-coloring was
first introduced by Irving and Manlove in 1999 as a development of the classical graph coloring
problem [8]. A tree graph, which is a type of graph that does not contain cycles [9], is one of
the types of graphs where b-coloring can be applied. As cited in [10], the calculation of the
b-chromatic number is more challenging in graphs with complex structures, such as branched tree
graphs. Kornelia also conducted related research [11], which discusses b-coloring in cross-section
graphs, origami graphs, and tadpole graphs. Researchers are interested in developing b-coloring
in other graphs, one of which is the tree graph family. Previous research was conducted by
[12], who studied the tree graph family entitled On the b-coloring of cographs and P4-sparse. In
addition, another study by [13] discusses b-coloring of unicyclic and bicyclic graphs.

The novelty of this research lies in its exploration of the b-chromatic number for various tree
graph families, specifically focusing on how their structural properties influence the b-coloring
process. This study extends the current understanding by developing new b-coloring results and
providing insights into how these results can contribute to broader applications in optimization
and network theory. The objective of this research is to fill this gap by analyzing b-coloring for
tree graphs and formulating a set of patterns applicable to these structures, thereby advancing
the theoretical foundation of graph coloring. The following definitions and lemma outline the
fundamental concepts of graph coloring and b-coloring, providing the theoretical foundation for
the analysis of graph coloring in this study.

Definition 1. [14] A coloring of all vertices of a graph G(V, E) is a mapping F : V → N with
the condition that adjacent vertices have different colors in N , meaning that v1v2 ∈ E then
F (v1) ̸= F (v2).

Definition 2. [11] The chromatic number of a graph G, denoted χ(G), is the minimum number
of colors required to produce a proper coloring of the graph G

Definition 3. [10] A b-coloring of a graph G is a coloring of the vertices of G such that each
color class has at least one vertex adjacent to all other color classes.

A color class in b-coloring is a set of vertices that have the same color. The color class in
question is the set of vertices that have color i and 1 ≤ i ≤ k. Based on this definition, the letter
"b" in "b-coloring" stands for "bounded", which refers to the limit on the number of colors used in
the coloring process.

Lemma 1. [15] For every graph G, it holds: χ(G) ≤ φ(G) ≤ ∆(G) + 1.

χ(G) is the chromatic number of a graph G, where χ(G) is the minimum value of the color
required for a correct coloring of the graph G.

2 Methods
There are two research methods in this study, namely the axiomatic deductive method and the
pattern detection method. The axiomatic deductive method is one of the research methods
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that uses the principles of deductive proof in mathematical logic, applying existing theorems,
axioms, and lemmas to b-coloring on a family of tree graphs. Then, pattern detection is used to
formulate patterns and determine the b-chromatic number on the family of tree graphs studied.
The research procedure is a systematic series of steps used to gather, analyze, and interpret
data to answer research questions or test hypotheses. This procedure ensures that the research
is structured, consistent, and replicable. The procedure for determining the b-coloring in tree
graph families is as follows:

1. Selection of Graphs for b-coloring Study: The first step is to select the tree graphs to be
studied for b-coloring. These graphs include the broom graph, banana tree graph, and
centipede graph. These specific graphs are chosen due to their distinct structural properties,
which will be analyzed under the b-coloring concept.

2. Determining Cardinality for Each Graph: The next step is to determine the cardinality
(the number of vertices and edges) for each selected graph: the broom graph, banana tree
graph, and centipede graph. This step is crucial because the graph’s size and structure
directly influence the coloring process.

3. Assigning Colors to the Graph Vertices: In this step, colors are assigned to the vertices
of each graph according to the definition of b-coloring. The b-coloring is applied so that
adjacent vertices receive different colors, with the condition that each color class must have
at least one vertex adjacent to all other color classes.

4. Verification of b-coloring Definition Compliance: After assigning colors, the next step is to
verify whether all vertices in the graphs (broom graph, banana tree graph, and centipede
graph) comply with the b-coloring definition. This means ensuring that adjacent vertices
do not share the same color and that each color class meets the b-coloring criteria.

5. Determining the b-chromatic Number: Once b-coloring is verified, the b-chromatic number
for each graph is determined. The b-chromatic number refers to the maximum number
of color classes used in a valid b-coloring of the graph. This number is essential for
understanding the graph’s coloring complexity.

6. Formulating Theorems Based on b-coloring Results: After determining the b-chromatic
number, the next step is to formulate theorems based on the results of the b-coloring
analysis. These theorems describe the relationships between the graph’s structure and its
b-chromatic number, thereby formalizing the findings.

7. Proving the Theorems: The formulated theorems are then proven using logical reasoning
and the axiomatic deductive method. This involves demonstrating that the theorems hold
true for the selected tree graphs, relying on mathematical proofs that confirm the validity
of the relationships discovered in the b-coloring process.

3 Results and Discussion
This study presents three theorems on the b-chromatic number for tree graph families, specifically
the broom graph, banana tree graph, and centipede graph, as follows:

Theorem 1. b-Chromatic number of on the Bn,3 for 9 ≤ n ≤ 13 is φ(Bn,3) = 5.

Proof. The broom graph (Bn,3) has a vertex set, namely V (Bn,3) = {xi; 1 ≤ i ≤ n} ∪ {yi; 1 ≤ i ≤
3} and an edge set E(Bn,3) = {xixi+1; 1 ≤ i ≤ n − 1} ∪ {x1yi; 1 ≤ i ≤ 3}. The cardinalities of the
vertex set and edge set of the broom graph (Bn,3) are |V (Bn,3| = n + 3 and |E(Bn,3)| = n + 2,
respectively. Furthermore, to determine the b-chromatic number on the broom graph Bn,3
with 9 ≤ n ≤ 13, the upper bound on the broom graph Bn,3. Based on Definition 3 and
Lemma 1, we obtain χ(Bn,3) ≤ φ(Bn,3) ≤ ∆(Bn,3) + 1. Next, determine the coloring function
f : V (G) → {1, 2, 3, 4, 5} for each vertex on the broom graph Bn,3 for n = 9, the coloring function
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is defined as follows:

f(v) =



1, v = x1,

2, v = x5, x9, y1,

3, v = x4, x7, y2,

4, v = x3, x6, y3,

5, v = x2, x8.

Based on this function, the color class obtained in the broom graph for n = 9 is five with the
following set of color classes :

C1 = {x1}, C2 = {x5, x9, y1}, C3 = {x4, x7, y2}, C4 = {x3, x6, y3}, C5 = {x2, x8}

So that
∃ x1 ∈ C1 such that x1 is adjacent to y1, y1 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to y2, y2 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to y3, y3 ∈ C4,

∃ x1 ∈ C1 such that x1 is adjacent to x2, x2 ∈ C5,

∃ x2 ∈ C5 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to x5, x5 ∈ C2,

∃ x5 ∈ C2 such that x5 is adjacent to x6, x6 ∈ C4,

∃ x8 ∈ C5 such that x8 is adjacent to x7, x7 ∈ C3,

∃ x9 ∈ C2 such that x9 is adjacent to x8, x8 ∈ C5.

for n = 10

f(v) =



1, v ∈ {x1, x10},

2, v ∈ {x5, x9, y1},

3, v ∈ {x4, x7, y2},

4, v ∈ {x3, x6, y3},

5, v ∈ {x2, x8}.

Based on this function, the broom graph Bn,3 for n = 10 admits a b-coloring using five colors
with the following color classes:

C1 = {x1, x10}, C2 = {x5, x9, y1}, C3 = {x4, x7, y2}, C4 = {x3, x6, y3}, C5 = {x2, x8}.

So that
∃ x1 ∈ C1 such that x1 is adjacent to y1, y1 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to y2, y2 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to y3, y3 ∈ C4,

∃ x1 ∈ C1 such that x1 is adjacent to x2, x2 ∈ C5,

∃ x2 ∈ C5 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to x5, x5 ∈ C2,

∃ x5 ∈ C2 such that x5 is adjacent to x6, x6 ∈ C4,

∃ x8 ∈ C5 such that x8 is adjacent to x7, x7 ∈ C3,

∃ x9 ∈ C2 such that x9 is adjacent to x8, x8 ∈ C5,

∃ x9 ∈ C2 such that x9 is adjacent to x10, x10 ∈ C1.
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for n = 11

f(v) =



1, v ∈ {x1, x10},

2, v ∈ {x5, x9, y1},

3, v ∈ {x4, x7, y2},

4, v ∈ {x3, x6, y3},

5, v ∈ {x2, x8, x11}.

Based on this function, the broom graph Bn,3 for n = 11 admits a b-coloring using five colors
with the following color classes:

C1 = {x1, x10}, C2 = {x5, x9, y1}, C3 = {x4, x7, y2}, C4 = {x3, x6, y3}, C5 = {x2, x8, x11}.

So that
∃ x1 ∈ C1 such that x1 is adjacent to y1, y1 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to y2, y2 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to y3, y3 ∈ C4,

∃ x1 ∈ C1 such that x1 is adjacent to x2, x2 ∈ C5,

∃ x2 ∈ C5 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to x5, x5 ∈ C2,

∃ x5 ∈ C2 such that x5 is adjacent to x6, x6 ∈ C4,

∃ x8 ∈ C5 such that x8 is adjacent to x7, x7 ∈ C3,

∃ x9 ∈ C2 such that x9 is adjacent to x8, x8 ∈ C5,

∃ x9 ∈ C2 such that x9 is adjacent to x10, x10 ∈ C1,

∃ x10 ∈ C1 such that x10 is adjacent to x11, x11 ∈ C5.

for n = 12

f(v) =



1, v ∈ {x1, x10},

2, v ∈ {x5, x9, y1},

3, v ∈ {x4, x7, x12, y2},

4, v ∈ {x3, x6, y3},

5, v ∈ {x2, x8, x11}.

Based on this function, the graph Bn,3 for n = 12 admits a b-coloring using 5 colors with the
following set of color classes:

C1 = {x1, x10}, C2 = {x5, x9, y1}, C3 = {x4, x7, x12, y2},C4 = {x3, x6, y3},

C5 = {x2, x8, x11}.

So that
∃ x1 ∈ C1 such that x1 is adjacent to y1, y1 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to y2, y2 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to y3, y3 ∈ C4,

∃ x1 ∈ C1 such that x1 is adjacent to x2, x2 ∈ C5,

∃ x2 ∈ C5 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to x5, x5 ∈ C2,

∃ x5 ∈ C2 such that x5 is adjacent to x6, x6 ∈ C4,
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∃ x8 ∈ C5 such that x8 is adjacent to x7, x7 ∈ C3,

∃ x9 ∈ C2 such that x9 is adjacent to x8, x8 ∈ C5,

∃ x9 ∈ C2 such that x9 is adjacent to x10, x10 ∈ C1,

∃ x10 ∈ C1 such that x10 is adjacent to x11, x11 ∈ C5,

∃ x11 ∈ C5 such that x11 is adjacent to x12, x12 ∈ C3.

for n = 13

f(v) =



1, v ∈ {x1, x12},

2, v ∈ {x5, x8, x11, y1},

3, v ∈ {x4, x10, y2},

4, v ∈ {x3, x6, y3},

5, v ∈ {x2, x7, x9, x13}.

Based on this function, the color class obtained in the broom graph Bn,3 for n = 13 is five with
the following set of color classes:

C1 = {x1, x12}, C2 = {x5, x8, x11, y1}, C3 = {x4, x10, y2}, C4 = {x3, x6, y3},

C5 = {x2, x7, x9, x13}.

So that
∃ x1 ∈ C1 such that x1 is adjacent to y1, y1 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to y2, y2 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to y3, y3 ∈ C4,

∃ x1 ∈ C1 such that x1 is adjacent to x2, x2 ∈ C5,

∃ x2 ∈ C5 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to x5, x5 ∈ C2,

∃ x5 ∈ C2 such that x5 is adjacent to x6, x6 ∈ C4,

∃ x8 ∈ C2 such that x8 is adjacent to x7, x7 ∈ C5,

∃ x9 ∈ C5 such that x9 is adjacent to x8, x8 ∈ C2,

∃ x10 ∈ C3 such that x10 is adjacent to x11, x11 ∈ C2,

∃ x12 ∈ C1 such that x12 is adjacent to x13, x13 ∈ C5.

It will be proven that χ(Bn,3) = 2 is a lower bound of the broom graph Bn,3 if φ(Bn,3) = 5 for
9 ≤ n ≤ 13. Based on Lemma 1, the following is obtained.

5 = φ(Bn,3) ≥ 2. (1)

Based on inequality 1, it is proven that χ(Bn,3) = 2 is the lower bound of the broom graph Bn,3
with 9 ≤ n ≤ 13. It will be proven that φ(Bn,3) = 5 for 9 ≤ n ≤ 13 and ∆(Bn,3) + 1 is the upper
bound of the Bn,3. Based on Lemma 1, the following is obtained.

φ(Bn,3) ≤ ∆(Bn,3) + 1 = 5 (2)

Based on inequality 2, it is proven that φ(Bn,3) = 5 for 9 ≤ n ≤ 13. Based on the color class
above, the broom graph (Bn,3) for 9 ≤ n ≤ 13 satisfies the definition of b-coloring with the upper
bound obtained φ(Bn,3) ≤ 5 for 9 ≤ n ≤ 13. According to the definition of b-chromatic number,
the b-chromatic number value is obtained from the maximum value in the graph color class (Bn,3)
for 9 ≤ n ≤ 13 namely φ(Bn,3) = 5. Below is an illustration of b-coloring applied to a broom
graph.
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Figure 1: b-coloring on Broom Graph (B9,3)

Theorem 2. The b-chromatic number of the Banana Tree graph (Bt2,n) for n ≥ 4 is φ(Bt2,n) = 4

Proof. The banana tree graph (Bt2,n) has a set of points, namely V (Bt2,n) = {y} ∪ {xi; 1 ≤ i ≤
2}∪{xi,j ; 1 ≤ i ≤ 2, 1 ≤ j ≤ n} and a set of edges E(Bt2,n) = {yxi,1; 1 ≤ i ≤ 2}∪{xixi,j ; 1 ≤ i ≤
2, 1 ≤ j ≤ n}. The cardinalities of the vertex set and edge set of the banana tree graph (Bt2,n) are
respectively |V (Bt2,n)| = 2n+3 and |E(Bt2,n)| = 2n+2. To determine the b-chromatic number of
the banana tree graph (Bt2,n) with n ≥ 4, the upper bound of the banana tree graph (Bt2,n) will
be analyzed. Based on Definition 3 and Lemma 1, we obtain χ(Bt2,n) ≤ φ(Bt2,n) ≤ ∆(Bt2,n) + 1.
Next, determine the coloring function f : V (G) → {1, 2, 3, 4} for each vertex in the banana tree
graph (Bt2,n).

For n = 4

f(v) =


1, v = x1,

2, v ∈ {x1,1, x1,2, x2},

3, v ∈ {x1,3, y, x2,2, x2,4},

4, v ∈ {x1,4, x2,1, x2,3}.

Based on this function, the color class obtained in the banana tree graph for n = 4 is four
with the following color class sets:

C1 = {x1}, C2 = {x1,1, x1,2, x2}, C3 = {x1,3, y, x2,2, x2,4}, C4 = {x1,4, x2,1, x2,3}.

Thus,
∃ x1 ∈ C1 such that x1 is adjacent to x1,1 and x1,2, x1,1, x1,2 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to x1,3, x1,3 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to x1,4, x1,4 ∈ C4,

∃ x2 ∈ C2 such that x2 is adjacent to x2,2 and x2,4, x2,2, x2,4 ∈ C3,

∃ x2 ∈ C2 such that x2 is adjacent to x2,1 and x2,3, x2,1, x2,3 ∈ C4,

∃ y ∈ C3 such that y is adjacent to x1,1, x1,1 ∈ C2.

for n = 5

f(v) =


1, v ∈ {x1},

2, v ∈ {x1,1, x1,2, x2, x1,5},

3, v ∈ {x1,3, y, x2,2, x2,4},

4, v ∈ {x1,4, x2,1, x2,3}.

Based on this function, the color class obtained in the banana tree graph for n = 5 is 4 with the
following color class sets:

C1 = {x1}, C2 = {x1,1, x1,2, x2, x1,5}, C3 = {x1,3, y, x2,2, x2,4}, C4 = {x1,4, x2,1, x2,3, x2,5}.
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Thus,

∃ x1 ∈ C1 such that x1 is adjacent to x1,1, x1,2, and x1,5, x1,1, x1,2, x1,5 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to x1,3, x1,3 ∈ C3,

∃ x1 ∈ C1 such that x1 is adjacent to x1,4, x1,4 ∈ C4,

∃ x2 ∈ C2 such that x2 is adjacent to x2,2 and x2,4, x2,2, x2,4 ∈ C3,

∃ x2 ∈ C2 such that x2 is adjacent to x2,1, x2,3, and x2,5, x2,1, x2,3, x2,5 ∈ C4,

∃ y ∈ C3 such that y is adjacent to x1,1, x1,1 ∈ C2.

for n = 6

f(v) =


1, v ∈ {x1},

2, v ∈ {x1,2, x2, x1,5},

3, v ∈ {x1,3, y, x2,2, x2,4, x1,6},

4, v ∈ {x1,1, x1,4, x2,1, x2,3, x2,5}.

Based on this function, the color class obtained in the banana tree graph for n = 6 is 4 with the
following color class sets:

C1 = {x1}, C2 = {x1,2, x2, x1,5}, C3 = {x1,3, y, x2,2, x2,4, x1,6}, C4 = {x1,1, x1,4, x2,1, x2,3, x2,5}.

Thus,
∃ x1 ∈ C1 such that x1 is adjacent to x1,1 and x1,4, x1,1, x1,4 ∈ C4,

∃ x1 ∈ C1 such that x1 is adjacent to x1,2 and x1,5, x1,2, x1,5 ∈ C2,

∃ x1 ∈ C1 such that x1 is adjacent to x1,3 and x1,6, x1,3, x1,6 ∈ C3,

∃ x2 ∈ C2 such that x2 is adjacent to x2,1 and x2,3, x2,1, x2,3 ∈ C4,

∃ x2 ∈ C2 such that x2 is adjacent to x2,2 and x2,4, x2,2, x2,4 ∈ C3,

∃ y ∈ C3 such that y is adjacent to x1,1 and x2,1, x1,1, x2,1 ∈ C4.

It will be proven that χ(Bt2,n) = 2 is the lower bound of the banana tree graph (Bt2,n) if
φ(Bt2,n) = 4 for n ≥ 4. Based on Lemma 1, the following is obtained.

4 = φ(Bt2,n) ≥ 2 (3)

Based on inequality 3, it is proven that χ(Bt2,n) = 2 is the lower bound of the banana tree graph
(Bt2,n) with n ≥ 4. It will be proven that φ(Bt2,n) = 4 for n ≥ 4 and ∆(Bt2,n) + 1 is the upper
bound of the banana tree graph. Based on Lemma 1, the following is obtained.

φ(Bt2,n) ≤ ∆(Bt2,n) + 1 = 5 (4)

Based on inequality 4, this contradicts the color class of the banana tree graph (Bt2,n) for n ≥ 4.
Meanwhile, according to the definition of b-chromatic number, the b-chromatic number value is
obtained from the maximum value in the color class of the banana tree graph (Bt2,n) for n ≥ 4,
namely φ(Bt2,n) = 5. When viewed from the color class, it will fail at point y, because there are
two pairs of non adjacent vertex, which does not comply with the definition of b-coloring. Thus,
the b-chromatic number of the banana tree graph (Bt2,n) for n ≥ 4 is φ(Bt2,n) = 4.

Figure 2 shows an illustration of b-coloring on the banana tree graph (Bt2,4) with the
b-chromatic number of the Banana Tree graph (Bt2,4) is 4.
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Figure 2: b-coloring on Banana Tree Graph (B2,4)

Theorem 3. The b-Chromatic number of a Centipede graph (Cpn) for 4 ≤ n ≤ 5 is φ(Cpn) = 4.

Proof. The centipede graph (Cpn) has a vertex set, namely V (Cpn) = {xi; 1 ≤ i ≤ n} ∪ {yi; 1 ≤
i ≤ n} and an edge set E(Cpn) = {xixi+1; 1 ≤ i ≤ n − 1} ∪ {xiyi; 1 ≤ i ≤ n}.The cardinalities of
the vertex set and edge set of the centipede graph (Cpn) are |V (Cpn)| = 2n and |E(Cpn)| = 2n−1,
respectively. Next, to determine the b-chromatic number of the centipede graph (Cpn) with
4 ≤ n ≤ 11 , the upper bound of the centipede graph (Cpn). Based on Definition 3 and
Lemma 1, we obtain χ(Cpn) ≤ φ(Cpn) ≤ ∆(Cpn) + 1. Next, determine the coloring function
f : V (G) → {1, 2, 3, 4} for each vertex of the centipede graph (Cpn) for 4 ≤ n ≤ 5, the coloring
function is defined as follows:

for n = 4

f(v) =


1, v = x2,

2, v ∈ {x1, y3, y4},

3, v ∈ {x4, y1, y2},

4, v = x3.

Based on this function, the color class obtained in the centipede graph for n = 4 uses 4 colors
with the following set of color classes:

C1 = {x2}, C2 = {x1, y3, y4}, C3 = {x4, y1, y2}, C4 = {x3}.

So that
∃ x2 ∈ C1 such that x2 is adjacent to x1, x1 ∈ C2,

∃ x2 ∈ C1 such that x2 is adjacent to y2, y2 ∈ C3,

∃ x2 ∈ C1 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to y3, y3 ∈ C2,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to y4, y4 ∈ C2.

for n = 5

f(v) =


1, v ∈ {x2, x5},

2, v ∈ {x1, y3, y4},

3, v ∈ {x4, y1, y2, y5},

4, v = x3.

Based on this function, the color class obtained in the centipede graph for n = 5 uses 4 colors
with the following set of color classes:

C1 = {x2, x5}, C2 = {x1, y3, y4}, C3 = {x4, y1, y2, y5}, C4 = {x3}.
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So that
∃ x2 ∈ C1 such that x2 is adjacent to x1, x1 ∈ C2,

∃ x2 ∈ C1 such that x2 is adjacent to y2, y2 ∈ C3,

∃ x2 ∈ C1 such that x2 is adjacent to x3, x3 ∈ C4,

∃ x3 ∈ C4 such that x3 is adjacent to y3, y3 ∈ C2,

∃ x3 ∈ C4 such that x3 is adjacent to x4, x4 ∈ C3,

∃ x4 ∈ C3 such that x4 is adjacent to y4, y4 ∈ C2.

It will be proven that χ(Cpn) = 2 is a lower bound of the centipede graph (Cpn) if φ(Cpn) = 4
for 4 ≤ n ≤ 5. Based on Lemma 1, the following is obtained.

4 = φ(Cpn) ≥ 2 (5)

Based on inequality 5, it is proven that χ(Cpn) = 2 is the lower b-chromatic bound of the
centipede graph (Cpn) for 4 ≤ n ≤ 5. It will be proven that φ(Cpn) = 4 for 4 ≤ n ≤ 5 and
∆(Cpn) + 1 is the upper bound of the centipede graph. Based on Lemma 1, the following is
obtained.

φ(Cpn) ≤ ∆(Cpn) + 1 = 4 (6)

Based on inequality 6, it is proven that φ(Cpn) = 4 for 4 ≤ n ≤ 5. Based on the color class
above, for the centipede graph (Cpn) for 4 ≤ n ≤ 5 it satisfies the definition of b-coloring with
the upper bound obtained φ(Cpn) = 4 for 4 ≤ n ≤ 5. According to the definition of b-chromatic
number, the b-chromatic number value is obtained from the maximum value in the color class of
the centipede graph (Cpn) for 4 ≤ n ≤ 5, namely φ(Cpn) = 4. Figure 3 illustrates the application
of b-coloring to the Centipede Graph (Cp4) where each vertex is assigned colors according to the
b-coloring rules.

Figure 3: b-coloring on Centipede Graph (Cp4)

4 Conclusion
Based on the results, three new theorems were derived on the b-coloring of tree graph families,
specifically the broom graph (Bn,3), the banana tree graph (Bt2,n), and the centipede graph
(Cpn). These theorems provide exact formulas for the b-chromatic numbers of these graphs,
offering valuable insights into how their structure influences b-coloring. These results advance
theoretical understanding and can be applied in practical fields such as network design, where
minimizing color classes is essential for efficiency. Future research should explore b-coloring in
other graph families, including hybrid and non-tree graphs, to further expand its applicability.
Additionally, computational approaches can validate these theoretical findings in larger, more
complex networks, and further investigate the relationship between b-coloring and other graph
properties.
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