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ABSSTRACT

This paper investigates the complete bipartite subgraphs induced within the zero-divisor graph
of a commutative ring formed by the direct product of three distinct modular integer rings. The
set of nonzero zero-divisors is partitioned into six disjoint subsets based on the position of the
zero component in each element. Six complete bipartite subgraphs are constructed and analysed
by pairing subsets with zeros in different positions. For each subgraph, we compute the energy,
Laplacian energy, and three degree-based multiplicative topological indices, namely the Narumi-
Katayama index, and the first and second multiplicative Zagreb indices. The results are expressed
in closed-form formulas and reveal consistent structural patterns, highlighting the relationship
between the algebraic properties of the ring and the graph-theoretic characteristics of the induced
subgraphs.
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INTRODUCTION

Graph theory is a branch of mathematics that is widely developed and applied in
various fields. Its historical roots trace back to the Kénigsberg bridge problem in Prussia,
which Euler in 1736 modeled using a graph by representing land areas as vertices and
bridges as edges [1]. A graph G is defined as an ordered pair (V(G), E(G)), where V(G) is
a non-empty finite set of elements called vertices and E(G) is a finite (possibly empty) set
of pairs of vertices called edges. A subgraph of a graph can be formed by removing vertices
or edges in the original graph. Graphs exhibit various unique structures based on the
properties of their vertex and edge sets, including complete graphs and bipartite graphs.
A complete graph is one in which every pair of distinct vertices is adjacent, whereas a
bipartite graph is one whose vertex set can be partitioned into two disjoint sets V; and V,
such that every edge connects a vertex in V; to a vertex in V,. A bipartite graph is said to
be complete bipartite if and only if every vertex in V; is connected to every vertex in V. If
V1 has m vertices and V, has n vertices, then the complete bipartite graph is denoted by
K [2].

One of the fundamental concepts in graph theory is the degree of a vertex, defined as
the number of edges incident to that vertex. Various matrices can also be associated with
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a graph, such as the degree matrix, adjacency matrix, and Laplacian matrix. For a graph of
order n, the degree matrix is an n X n diagonal matrix whose diagonal entries represent
the degrees of the vertices. The adjacency matrix is an n X n matrix where the entries are
1 if two vertices are adjacent, and 0 otherwise [3]. The Laplacian matrix is derived by
computing the difference between the degree matrix and the adjacency matrix [4].

Graph theory can be combined with algebraic structures, especially commutative rings.
A commutative ring is a non-empty set R equipped with two binary operations, say
addition and multiplication that satisfy the commutative group axioms under addition,
are associative and commutative under multiplication, and follow the distributive laws.
One graph construction based on a commutative ring is the zero-divisor graph. Many
researchers are interested to investigate this graph for many cases. This concept was first
introduced by Beck in 1988, where the vertices represent all elements of R and two
vertices are adjacent if and only if their productis zero [5]. Later, Anderson and Livingston
in 1999 modified Beck's definition. The resulting graph, denoted by I'(R), has as its
vertices all the zero-divisors of the commutative ring R [6]. Moreover, the research of
zero-divisor graphs can be seen in [7] and [8].

Dancheng and Tongsou studied bipartite graphs on zero-divisor graphs [9]. The result
shows that a zero-divisor graph is bipartite if and only if it contains no triangles.
Moreover, if such a graph is bipartite and contains no vertex of degree one, then it is a
complete bipartite graph. Sharma et al. studied the adjacency matrix of a zero-divisor
graph I'(Z, X Z,), where p is a prime number [10]. Akgunes and Togan studied the degree
of each vertex and the distance between pairs of vertices in I'(Z, X Z,;), where p and q are
prime numbers [11]. Furthermore, Aykac and Akgunes studied the diameter, radius, girth,
maximum and minimum degree, dominance number, chromatic number, and clique
number of the zero-divisor graph F(sz X Zqz) [12].

Graph theory is closely related to energy which can be applied to molecules and
chemical compounds, as well as topological indices as a tool to understand the properties
of molecules based on their graphical structure. The energy of a graph is defined as the
sum of the absolute values of all eigenvalues of its adjacency matrix. This concept was first
introduced by Gutman in 1978 inspired by the total energy of electrons in molecules [13].
In 2006, Gutman and Zhou extended this idea by introducing Laplacian energy, calculated
as the sum of the absolute values of the eigenvalues of the Laplacian matrix [14]. Ahmadi
and Jahani-Nezhad studied the energy of the zero-divisor graph I'(Z,,)where p and q are
prime numbers [15]. This graph is isomorphic to I'(Z, X Z,) because it has the same
structure, which both form a complete bipartite graph. Furthermore, in 2021 Singh and
Bhat studied the Laplacian energy of the zero-divisor graph F(qu) [16].

A topological index is a numerical parameter of a graph that describes its topological
characteristics. Degree, distance, or eccentricity-based topological indices are widely
used to characterise molecular graphs, establish relationships between molecular
structure and properties, and predict the biological activity of chemical compounds.
Topological indices are generally categorized as additive or multiplicative. Among the
additive degree-based indices are the first and second Zagreb indices, introduced by
Gutman and Trijnasticin 1972 [17]. The Zagreb indices were initially applied in chemistry
to study total molecular energy, particularly the resonance energy of polyenes and
aromatic hydrocarbons. This research focuses on the relationship between molecular
graph structures, where vertices represent atoms and edges represent chemical bonds,
and chemically relevant properties such as molecular stability. A higher vertex degree
indicates more chemical bonds, suggesting that molecules with many high-degree atoms
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tend to be more stable due to more efficient electron distribution. The first Zagreb index
is defined as the sum of the squares of the vertex degrees, while the second Zagreb index
is defined as the sum of the products of the degrees of adjacent vertices.

In 1975, Gutman et al. developed the first and second Zagreb indices into multiplicative
topological indices [18]. The first multiplicative Zagreb index is calculated as the product
of the squares of the degrees of all vertices, while the second multiplicative Zagreb index
is the product of the degree products of all adjacent vertex pairs. Furthermore, in 1984
Narumi and Katayama also introduced a simpler degree-based multiplicative topological
index, namely the Narumi-Katayama index which focuses on multiplying the degree of
each vertex [19].

Akgunes and Nacaroglu in 2019 studied the properties of the zero-divisor graph
['(Z, X Zq X Z,), where p, q,r are prime numbers, including adjacency, degree, distance,
diameter, radius, and girth [20]. They also analyzed the first and second Zagreb indices
for this graph. Applicatively, Mondal et al. in 2021 studied degree-based multiplicative
topological indices on molecular structures, namely nanostar dendrimers. The topological
indices studied include the first and second multiplicative Zagreb indices, and the Narumi-
Katayama index [21].

Theoretically, zero-divisor graphs derived from the ring Z, X Z, X Z,, where p, q, and
r are distinct primes, exhibit complex structural properties. Although much of the existing
literature focuses on analysing the entire zero-divisor graph, this study concentrates on
specific complete bipartite subgraphs, which provide a more tractable and structured
framework for investigation. These subgraphs offer a controlled setting in which both
spectral and topological characteristics can be systematically examined, with meaningful
implications for algebraic and combinatorial optimisation. Complete bipartite subgraphs
have particular relevance in modelling real-world systems, such as communication
networks and molecular structures, where strong interconnections occur between two
distinct sets of components [22], [23]. In such settings, complete bipartite interactions
serve as natural representations of highly organised and balanced interactions.

To the best of our knowledge, this research presents a novel approach by
systematically forming complete bipartite subgraphs through two disjoint subsets of
nonzero zero-divisors. We investigate their energy, Laplacian energy, and three degree-
based multiplicative topological indices, namely the Narumi-Katayama index, the first
multiplicative Zagreb index, and the second multiplicative Zagreb index. Previous studies
have explored these invariants on full zero-divisor graphs, few have addressed them
within the context of specifically induced bipartite substructures. Our contribution lies in
deriving closed-form expressions that connect these graph invariants to the prime-based
parameters of the underlying ring, offering both theoretical insight and applied potential.

We focus to study induced complete bipartite subgraphs, rather than the entire graph,
since they provide the structural clarity. Such subgraphs, denoted by the union of distinct
vertex classes, isolate specific interactions among zero-divisors and enable explicit
computation of graph invariants. Moreover, in areas such as algebraic coding theory and
cryptography, bipartite graphs offer natural models for structured data flows, such as
those between encoding and decoding processes, or between public and private
components in secure protocols. Investigating the spectral and topological properties of
these well-defined subgraphs reveals algebraic and combinatorial patterns that may
remain hidden in the global structure of the graph [24], [25].

Furthermore, constructing the zero-divisor graph from the product of three distinct
primes introduces greater combinatorial richness compared to products involving only
two primes. This enhanced complexity provides deeper insight into how the
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multiplicative structure of the ring influences the behaviour of the associated graph.

METHODS

This study applies an analytical approach based on concepts from graph theory and
ring theory. To ensure conceptual clarity and provide a solid theoretical basis for the
methodology, several key definitions are introduced first. These definitions guide the
construction of graphs, matrix formulations, and the computation of the graph-theoretic
invariants discussed in the following stages.

Definition 1 [5] Let R be a commutative ring, and let Z*(R) denote the set of nonzero
zero-divisors. The zero-divisor graph of R, denoted I'(R), is a graph whose vertex set is
Z*(R), and two vertices u, v € Z*(R) are adjacent if and only if u-v = 0.

Definition 2 [10] The energy of a graph G, denoted E (G), is the sum of the absolute values
of all the eigenvalues A; of the adjacency matrix A(G).

E(G) =Zn:|/1il-

Definition 3 [11] The Laplacian energy of a:graph G, denoted E;(G), is the sum of the
absolute values of all the eigenvalues y; of the Laplacian matrix L(G).

AGESYM
i=1

Definition 4 [16] The Narumi-Katayama index of a graph G, denoted NK(G), is the
product of the degrees of all vertices in G.

NK(G) = ﬂ deg(v).
VeV (G)
Definition 5 [15] The first multiplicative Zagreb index of the graph G, denoted 1, (G), is
the product of the squares of the degrees of all vertices in G.

m@ = | | @egw?
VeV (G)
Definition 6 [15] The second multiplicative Zagreb index of the graph G, denoted I1,(G),
is the product of the degree products of all adjacent vertex pairs in G.

1,(G) = 1_[ deg(u) deg (v).

UveE(G)

Based on the definitions presented above, the analytical procedure in this study
proceeds through a series of structured steps. Each step is designed to construct and
analyze complete bipartite subgraphs within the zero-divisor graph, incorporating both
algebraic and spectral graph-theoretic techniques. The method is structured into five
stages, as follows:

2.1 Subset Partition

Let R be the ring Z, X Z4 X Z,, where p, q,r are distinct prime numbers. The set of

nonzero zero-divisors Z*(R) is partitioned into six mutually disjoint subsets V;, for i =

1,2,---,6, based on the position of the zero component in each element. These subsets

form the basis for constructing complete bipartite subgraphs by pairing sets V; U V;

such that the zero positions differ.

2.2 Graph Construction
For each valid pair (Vi, V]), a complete bipartite subgraph is constructed where each

Kiki Amanda Eka Meilina 481



Energy and Topological Indices of Complete Bipartite Subgraphs

vertex in V; is adjacent to every vertex in V;. According to Definition 1, two vertices

are adjacent if their product yields the zero element in all components, which holds

when the zero positions are distinct.

2.3 Matrix Assembly

For each induced bipartite graph isomorphic to K,,,, the following matrices are

constructed:

i. Adjacency matrix of the complete bipartite graph K, ,, denoted A(Km,n) is defined
as a block matrix in which the off-diagonal blocks consist of all-ones matrices J,
while the diagonal blocks are zero matrices O,

A(Kmn) []mxm Jmxn .

nxm 071.)(71.

ii. Degree matrix of the complete bipartite graph K, ,,, denoted D(Km,n) is diagonal
matrix where each vertex in V; has degree n, and each vertex in V; has degree m

iii. Laplacian matrix of the complete bipartite graph K,,,, denoted L(Km,n) is
constructed by subtracting the adjacency matrix from the degree matrix, that is,
L(Kmn) = D(Kinn) — A(Kmn)-
2.4 Eigenvalue Derivation
To compute the energy and Laplacian energy, the eigenvalues of the adjacency and
Laplacian matrices are determined. Previously, the calculation of the characteristic
polynomial of adjacency matrix A(K,, ) using the Schur complement method will be
given as follows:

|Asn — A(Kmp)| = 0
PN |[/Um><m mxn] []mxm ]mxn]

OTlXTl

=0

Onxm AITan
AIme ]mxn

=0
_]nxm Alnxn
4 MImelMInxn - (_]nxm)(/Ur;lxm)(_]mxn)l =0

A2 —mn
o Am <—A -A"‘1> =0

& AMN=2(32 —mn) = 0.

The same method is applied to derive the characteristic polynomial of the Laplacian
matrix L(Km,n). Using Definitions 2 and 3, the energy and Laplacian energy are
computed from the eigenvalues of the respective matrices.

2.5 Degree-Based Multiplicative Topological Indices
Once the vertex degrees are established, the Narumi-Katayama index, the first
multiplicative Zagreb index, and the second multiplicative Zagreb index are calculated
based on Definitions 4, 5, and 6.

RESULTS AND DISCUSSION

Based on the work of Akgunes and Nacaroglu, which explores various properties of
the zero-divisor graph over the ring Z, X Z, X Z,, the structure of I'(Z, X Zq X Z,)

exhibits several important characteristics, including its vertex set and the degrees of its

Kiki Amanda Eka Meilina 482



Energy and Topological Indices of Complete Bipartite Subgraphs

vertices [20]. We provide a summary of the fundamental concepts as a basis for deriving
the results.

Let R =Z, X Z4 X Z,, where p,q, and r are distinct prime numbers. Based on
Definition 1 we obtain the set of nonzero zero-divisors in R, can be partitioned into six
disjoint subsets as follows:

1.

A

V1 ={(0,v,, Us)lvz € Zy\{0}, v3 € Z,\{0}},
V, ={(¥,0, v3)|171 € Z,\{0}, v3 € Z,\{0}},
V3 = {(vy, vy, 0)|U1 € Zp\{0}, v, € Zy\{0}},
Ve ={(0,0,v3)|v; € Z,\{0}},
Vs = {(0,v3,0)|v; € Z;\{0}},
Ve = {(v1,0,0)|v; € Z,\{0}}.

The cardinalities of these sets are given by:

Vil=(@@-Dr -1 o |[ip|=@-Dr-1) o [Bl=E-D@E-1
Val =7 =1 e [Vsl=q-1 e [Vsl=p-1

Next, we obtain the degree of the vertices of graph I'(Z, X Z, X Z,) as stated in Lemma

1.

Lemma 1 The degrees of the vertices of graph I'(Z,, X Z; X Z,) are given by:

Proof.

(p—l, vEV,
q-—1, vEV,

_ r—1, vEV,,
deg(v) = < pq—1 vev,
pr—1, v E Vs,

\gqr — 1, v E V.

Letu,v € I'(Z, X Zq X Z,) and define the degree of vertex v as the number of vertices u
such thatu - v = (0,0,0). We obtain the vertex degrees as follows:

1.

For v € V;, the vertex v is only adjacent to all elements in V. Therefore, the degree
of visdeg(v) = p — 1.

. For v € V/,, the vertex v is only adjacent to all elements in V. Hence, the degree of

visdeg(v) = q — 1.

For v €V;, the vertex v is only adjacent to all elements in V,. Thus,
the degree of visdeg(v) = r — 1.

For v € V,, the vertex v is adjacent to all elements in V3, Vg, and V. Therefore, the
degree of v is deg(v) =(p—-1D@-D+@-1D+(P-1)=pg—p—q+1+
q—1+p—1=pqg—-1.

For v € Vs, the vertex v is adjacent to all elements in V,, V,, and V. Thus, the degree
of visdeglw) =(p-Dr-D+0-D+@p-D=pr—p—r+1+r—1+
p—1=pr-—1.

For v € V, the vertex v is adjacent to all elements in V;,V,,and V. Hence, the
degree of v is deglv) =(q—-Dr-D+0-1D+@-1)=qr—q—r+1+
r—1+q—1=qr—1. [
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Example 1 Ifp = 2,q = 3, and r = 5, the set of zero-divisors in Z, X Z3; X Zs as follows:
v, ={(0,1,1),(0,1,2),(0,1,3),(0,1,4),(0,2,1), (0,2,2),(0,2,3), (0,2,4)},

v, ={(1,0,1),(1,0,2),(1,0,3),(1,0,4)},

Vs = {(1,1,0),(1,2,0)},

v, ={(0,0,1),(0,0,2),(0,0,3),(0,0,4)},

Vs ={(0,1,0),(0,2,00},},

Ve = {(1,0,0)}.

ok Wi

Figure 1 visualizes the structure of the zero-divisor graph induced by the ring
Z, X I3 X Zs, where each vertex represents a nonzero zero-divisor, and edges indicate
products resulting in zero. The partitioning of vertices based on the zero component is
clearly illustrated.

024 (1,0,1)
Vi e (1,0,2) Vs

(1,0,3)

(0,1,2) (1,04)

(1,1,0)

Vs

Figure 1. The zero-divisor graph I'(Z, X Z3 X Zsg)

To analyze the structure of the zero-divisor graph I'(Z, X Z; X Z,), we focus on
specific pairs of subsets of nonzero zero-divisors. When these subsets consist of elements
with zero components in different positions, their union induces a subgraph with a
bipartite structure, as described below.

Proposition 1 Let V; and V; be two disjoint subsets of nonzero zero-divisors in
L, X Ly X L., where each element has exactly one zero component, and the position of
the zero component in elements of V; is different from that in elements of V;. Then, the
induced subgraph I'(V; U V;) is isomorphic to the complete bipartite graph K|Vi|.|Vj|'
Proof.

Let u = (uy,up,u3) € V; and v = (vq, v,,v3) € V}, where the zero components in u and v
are located in different positions. As a result, their productis u - v = (0,0,0), implying that
u and v are adjacent in the zero-divisor graph. This holds for every pair (u,v) € V; X V;,
meaning that I'(V; U V;) forms a complete bipartite graph. On the other hand, all elements
within the same subset have their zero component in the same position. Consequently,
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the product of any two vertices from the same subset will have at least one nonzero entry
and thus is not equal to zero. Therefore, no edges exist within V; or V;. Thus, the induced

subgraph I'(V; U V) is a complete bipartite graph K|Vi|‘|V]_|, where each vertex in V; has
degree |V;| and each vertex in V; has degree |V;]. [

The Table 1 describes the characteristics of the complete bipartite subgraph formed from
V; U V; which consists of the order and degree of each set.

Table 1. Degree distribution and structure of complete bipartite subgraphs I'(V; U V})

Order Degreeofeach  Degree of each Complete
ViuV; Order of |V;| of | | s uevy; s veV; bipartitl()e graph
Vi UV (-1 -1) p- p—1 (-1 -1) Kq-ne-n.0-1
V2 U Vs P-Dr-1) q- 1 q-1 P-D(r-1) Kp-1er-1.0-1)
VzUV, P-D@-1) r—1 r—1 r-D@-1) Kop-1)q-1),0-1)
Vo U Vs r—1 q—1 q-—1 r—1 Kir—1)(g-1)
V, UV r—1 p—1 p—1 r—1 Ko —1),0-1)
Vs U Ve qg—1 p—1 p—1 qg—1 Kg-1,0-1)

The complete bipartite subgraphs that can be formed from the zero-divisor graph
['(Zy XLy X Ly) are T'(V; U V), TV UVs),T(V3UV,),T(V,UVs),I'(V,UVe),and I'(Vs U

Vo). If p =2,q =3, and r = 5, the complete bipartite subgraph of I'(Z, X Z; X Zs) is
shown in Figure 2.

Vi v
3
(1 0,0) (0,1,00,2,0) (001 (002 (003) (0,04)

Ve Vs Vy

a.T(V, U Ve) b.T(V; UVs) . T(Vs UVY)

Vy 4
(OW4) (OW4) (Ovm
(0,1,0)(0,2,0) (100) (100)

Vs Ve Ve

ATV, UVs) e.T(V, UV,) £T(Ve U V)

Figure 2. The complete bipartite subgraph of I'(Z, X Z; X Z5)

Figure 2 shows a complete bipartite subgraph formed by the union of two disjoint
subsets of zero-divisors, each subset having its zero component in different positions.
This configuration satisfies the criteria for inducing K, ,, within the zero-divisor graph.
Next, the energy, Laplacian energy, and degree-based multiplicative topological index on
the complete bipartite subgraph of the zero-divisor graph T'(Z, X Z,; X Z,) are
determined as follows:
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Theorem 1 If F(Vi U V]) is a complete bipartite subgraph of the zero-divisor graph
['(Z, X Z4q X Zy) , then the energy of F(Vi U V]) is given by:

E(r(v,uy)) =2 Wilvl.
Proof.

The adjacency matrix from subgraph I'(V; U V}), as follows:

Owixivi Jwyx|vj]
)
|

ATV, uV:) ) =
( ( l 1)) ]|V]-|><|Vi| 0|Vj|x|VJ'

where 0 is a zero matrix and J is a matrix of all ones.
The characteristic polynomial of A (F(Vi U Vj)) is

Ao =4 (v W) =0
o AV (22 — v = o,

which gives the eigenvalues of ./|V;||V;|and —/|V;||V;| with multiplicity 1, and 0
otherwise.
Therefore, according to Definition 2 the energy of [(V; U V) is:

E(r(vivy)) = vy + vl
= 2/ .

We begin by evaluating the energy of the subgraph induced by the union V; U V. This
case serves as a representative example for the spectral analysis of the induced bipartite
subgraphs. The resulting eigenvalues are used to compute the energy explicitly,
illustrating the procedure that applies similarly to other cases.

Example 2 The energy of the subgraph I'(V; U V) in the zero-divisor graph I'(Z,, X Z; X
Z,) is given by:

E(T(V;UVe)) = 2/(p - D(q - D — D).
Proof.
The adjacency matrix from subgraph I'(V; U V), as follows:

A(T(Vyu V) = Ow@-ner-vx@-ne-1  J@-De-Dx@E-1)
e Jo-vx@-1e-1) Op-Dxp-1) 1

The characteristic polynomial of A(F(V1 U VG)) is

[ g-1e-1+@-1 — ATV U V)| =0
& A VEDHED232 — (p — 1) (¢ - D(r— 1) =0,

which gives the eigenvalues of \/(p — 1)(¢ — )(r— Dand —/(p — D(qg— D(r—1)
with multiplicity 1, and 0 otherwise.
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Therefore, the energy of the zero-divisor graph I'(V; U V) is:

ET("UuVe) =@ -D-Dr-D+/p-Dg-D0-1)
=2y(p-1D(g- D —1).
=2Jpqr —pq—pr—qr+p+q+r—1. ]

Similarly, the energy of the subgraphs I'(V, U V), T'(V3 U V,), T(V, U Vs), T (V, UV),
and I'(V5 U V) can be determined using the same approach. By applying Theorem 1 to
each pair of disjoint subsets V; and V}, the energy of the corresponding complete bipartite

subgraphs F(Vi U I/}) is obtained. The results of these computations are summarized in
Table 2 below.

Table 2. The energy of complete bipartite subgraphs F(Vi U V})

Viuy; Vil Vil E(r(v,uv)))
Vi UVs (-1 -1) p—1 2Jpqr—pg—pr—qr+p+q+r—1
V2 U Vs -1 -1) q-1 2pqr —pq—pr—qr+p+q+r—1
VzUV, P-D@-1) r—1 2Jpqr—pg—pr—qr+p+q+r—1
VaUVs r—1 q—1 2Jqr—q-r+1
ViU Vg r—1 p—1 2Jpr—p—-r+1
Vs UV q-1 p—1 2Jpq—-p—q+1

Theorem 2 If F(Vi U V]) is a complete bipartite subgraph of the zero-divisor graph
[(Z, X Z, X Z,), then the Laplacian energy of I'(V; U V) is given by:
E, (F(Vi U Vj)) = 2[Vi||vj].
Proof.
The Laplacian matrix L(I"(Vi U V])) = D(F(Vi U I/})) - A(F(Vi U V])) is constructed based
on the degree matrix D(I"(Vl- U I/})) and adjacency matrix A(I"(Vl- U Vj)), as follows:
Plvaxivit Owaxvj]

)
Owjixivil - Siv;|x1v;l]

Owxivil  Jwvaxiv;i

A(r(viuy)) = Jwsxivi Ojpxavl

where P is a diagonal matrix with all entries |V;| and S is a diagonal matrix with all entries
Vil.
Therefore, the Laplacian matrix is

L(r(v;uv))=p(r(v,uy))-4(r(viuv))
_ lpwuxlvn Q|Vi|x|vj|l
Ryvjixivit - Spvjlxiv;l]

where Q and R are matrices whose entries all —1.
The characteristic polynomial of L (I‘(Vi U Vj)) is

|H1|Vi|+|vj| —L (F(Vi U V}))| =0
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wat (C0Vil =WV 1] + Vil = g
s (Vi —u =0
(W1 =#) ( Vil — u
[Vil-1 |-
& ulu=[vil+ W] = 1" e - Vit = o,

which gives the eigenvalues of 0, |V;| + |V;], [V;| with multiplicity [V;| — 1, and |V;| with
multiplicity |V]| - 1.

Thus, based on Definition 3, the Laplacian energy of F(Vi U V]) can be expressed as:

E,(T(V;uv)) = Vil + V] + [V, aVvil = D + Vil (v = 1)
= 2[vil[v;]. "

To complement the Laplacian energy analysis, we also determine the Laplacian
energy for the same subgraph I'(V; U V). The Laplacian matrix is constructed from the
degree and adjacency matrices, and its spectrum is used to compute the Laplacian energy.
This example reflects the general pattern observed in other bipartite subgraphs formed
from disjoint zero-divisor subsets.

Example 3 The Laplacian energy of the subgraph I'(V; U V) in the zero-divisor graph
['(Z, X Zq X Z,) is given by:

EL(F(V1 U V6)) =2(pqr —pq—pr—qr+p+q+r—1).
Proof.
The Laplacian matrix L(T'(V; UVy)) = DTV, UVy)) — ATV, UVg))is constructed
based on the degree matrix D (I'(V; U V;)) and adjacency matrix A(T'(V; U Vy)), as follows:

D(F(V uvl. )) = [P(q—l)(r—l)x(q—1)(r_1) 0(q—1)(r—1)><(p—1)
1U Ve Op-1)x(q-1)(r-1) Swo-vxp-1) I

ATV, UVY) = [O(q—lxr—l)x(q—l)(r—l) /(q—lxr—l)x(p—l)]
teoe Jo-1x@-1)-1) Op-1yx@p-1) 1

where P is a diagonal matrix with all entries p — 1 and S is a diagonal matrix with all
entries (q — 1)(r — 1).
Therefore, the Laplacian matrix is

L(T(V, UVy)) =D(T(Vy U V) — A(T(V, U V)
_ [P(q—l)(r—l)x(q—l)(r—l) Q(q—l)(r—l)x(p—l)]
Rap-1x@-ne-1) Sw-0x@-1)

where Q and R are matrices whose entries all —1.
The characteristic polynomial of L(F(V1 V) V6)) is

|1l q-r-1)+p-1) = LTV U V)| = 0
esulp-lp-D+@-D0@-D]k-@E-D]@DCDy— (g- 1D -DP2=0,

which gives the eigenvalues of 0,(p —1) + (¢ — 1)(r — 1), (p — 1) with multiplicity
(q—1)(r—1)—1,and (¢ — 1)(r — 1) with multiplicity p — 2.
Therefore, the Laplacian energy of subgraph I'(V; U V) is:
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E(T(Vi1UVe))=(@-D+@-Dr-D+@-D@g-Dr-1D -1+ (@-DF-D(@-2)
=2(pqr—pq—pr—qr+p+q+r—1). [ |

Similarly, the Laplacian energy of the subgraphs T'(V, UVg),T(Vz;UV,),I'(V, U
Vs),T(V, UVy), and T'(Vs U V) can be determined using the same approach. Applying
Theorem 2 to each subset V; and V;, we can compute the Laplacian energy for several
pairs of subgraphs I’ (Vi U V]) The results of these computations are summarized in Table
3 below.

Table 3. The Laplacian energy of complete bipartite subgraphs F(Vi U V])
Viuv; Vil v;l E,(r(v,uv)))
Vi U Ve q@-D(C-1) p—1 2(pqr —pq —pr—qr+p+q+r—1)
Vo UVs P-Dr-1) qg—1 2(pqr —pq —pr—qr+p+q+r—1)
VUV, »-D@-1) r—1 2(pqr —pq —pr—qr+p+q+r—-1)

Vy U Vs r—1 q-1 2(qr—q—1r+1)
V, UV r—1 p—1 2(pr—p—1+1)
Vs U Ve q—1 p—1 2(pg=p—-q+1)

There are three degree-based multiplicative topological indices discussed in this paper,
namely the Narumi-Katayama index, the first multiplicative Zagreb index, and the second
multiplicative Zagreb index.

Theorem 3 Let V; UV; € Z,, X Z; X Z, be such that F(Vi U V]) forms a complete bipartite
subgraph of the zero-divisor graph F(Zp X ZLg X Z,). Then the Narumi-Katayama index of
F(Vi U Vj) is given by:

Nk (r(v,uv)) = vl [y,
Proof.
From Proposition 1, it is known that if v € V;, deg(v) = |V;| and if v € V}, deg(v) = |V;].
Consequently, according to Definition 4, the Narumi-Katayama index of F(Vi U l/}) is
given by:

NK (T(v;uy)) = 1(_[ | deg (v)
vev (T(V,uv;))

VEV; VEV;
Vil )
=™ Vil
_ V; |V|
= Vil ] 7 .

We begin the degree-based topological analysis by computing the Narumi-Katayama
index for the subgraph induced by V; U V. This index is obtained as the product of the
degrees of all vertices and serves as a measure of overall connectivity in the graph
structure.
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Example 4 The Narumi-Katayama index of the subgraph I'(V; U V) in the zero-divisor
graph I'(Z,, X Z4 X Z,) is given by:
NK(T(V; UVy)) = (@ — D — )P (p — DD,

Proof.
From Table 1, it is known if v € V;,deg(v) = p — 1 and if v € Vi, deg(v) = (¢ — 1) (r —
1). Thus, the Narumi-Katayama index is obtained as follows:

NK(T(V, U V) = 1_[ deg (v)
UEV(F(V]_UVG))

= | [deg - | | desw

UEVl UEVé
= (- DU (- D -1
=((@-DE -y (p-DEVCD, m

Similarly, the Narumi-Katayama index of the subgraphs I'(V, U V¢), T'(V; U V,), T (V, U
V), T(V, U V), and I'(Vs U V) can be determined using the same approach. Applying
Theorem 3 to each subset V; and V;, we can compute the Narumi-Katayama index for
several pairs of subgraphs F(Vl- U V]) The results of these computations are summarized
in Table 4 below.

Table 4. The Narumi-Katayama index of complete bipartite subgraphs F(Vl- U Vj)

Viuv; Vil vl NK (r(v,uv,))

ViU Vs (a-D( -1 p-1 ((a = DG =Dy~ (p - HEDED
A2 CEBVGEEY q-1 (0 — DG = 1)1 (q = HE-DE-D
VU, p—-D@-1) r—1 ((p—1D(g—-1)) 1@ —-1PDa-1
V,UVs r—1 q-—1 (r—1)@V.(@q-1)0"Y

V, UV, r—1 p—1 r—1D®D.(p-1)rD

Vs U Vg q—1 p—1 (g—1D® V. (p-1)ED

Theorem 4 Let V; U V; € Z, X Z, X Z, be such that T'(V; U V;) forms a complete bipartite
subgraph of the zero-divisor graph I'(Z, X Z; X Z,). Then the first multiplicative Zagreb
index ofF(Vl- U Vj) is given by:

I, (F(Vi U V])) = |v;|2Ivil . |Vj|2|Vi| _ (lVi||Vj| _ |lelvi|)z VK (F(Vi y V]))
Proof.
According to Proposition 1, the degree of each vertex v € V;,deg(v) = |V;|, while the
degree of each vertex v € V;, deg(v) = |V;|. Thus, by Definition 5, the first multiplicative
Zagreb index of F(Vl- U Vj) is given by:

m(riuy))= || @egw)

2

veV (I(v;uv;)))
= [ [ceg @y | cteg w2
VEV; VeV

= ()™ e
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= (vl "y’

2
= NK (T(v,u 1)) n
Next, we calculate the first multiplicative Zagreb index, which involves squaring the
degrees of vertices and taking their product. For the subgraph I'(V; U V), this index
provides further insight into how vertex degrees are distributed across both partitions.

Example 5 The first multiplicative Zagreb index of the subgraph I'(V; U V) in the zero-
divisor graph I'(Z, X Z, X Z,) is given by:

M, (T(V, uVy)) = (g — D(r — 1)2P~V - (p — 1@ D=1,
Proof.
From Table 1, it can be seen that the degree of each vertex v € V;,deg(v) = p — 1, while
the degree of each vertex v € Vg, deg(v) = (¢ — 1)(r — 1). Thus, the first multiplicative
Zagreb index is obtained as follows:

mrwuv)) = || @egon?

veV (T (V1UVg))
= | [ceg ?- | [cdeg 22
VeV, VEV,

= (p ~ DA@VED) (g - D@~ DYEV
= (¢ =D -1V (p-1@HED),

Similarly, the first multiplicative Zagreb index of the subgraphs TI'(V, U Vs),['(V; U
V), T(V, V), T(V, UVp), and I'(Vs U V) can be determined using the same approach.
Applying Theorem 4 to each subset V; and V;, we can compute the first multiplicative
Zagreb index for several pairs of subgraphs F(Vi U V]) The results of these computations
are summarized in Table 5 below.

Table 5. The first multiplicative Zagreb index of complete bipartite subgraphs F(V,- u V])

ViuV; Vil Vil n, (r(v;uv,))

ViUV @-D(-1) p—1 ((q = D@ —1)2P-D. (p — 1)2(@-DE-1)
V,uVs p-D0r-1 q—1 (p—D@ - 1))2(q—1) (g — 1)2((p—1)(r—1))
VUV, -1D@-1) r—1 ((p = 1(g — 1)20D . (r — 1)2(-D-1)
V,UVs r—1 q-—1 (r —1)?2@D . (g —1)20-D

V, UV r—1 p—1 (r —1)2®@-1 . (p — 1)20-D

Vs U Vg q—1 p—1 (g — D*P~D . (p—1)2@-D

Theorem 5 LetV; UV; € Z,, X Z; X Z, be such that I‘(Vi U V]) forms a complete bipartite
subgraph of the zero-divisor graph I'(Z, X Z, X Z,). Then the second multiplicative
Zagreb index of F(Vi U V]) is given by:

, (r(v:uwy)) = (wally )",

Proof.
For any uv € E(T(V; U Vj)), we have deg(u) = |V;| and deg(v) = |V;|. Therefore,
according to Definition 6, the second multiplicative Zagreb index of F(Vi U V]) is:
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I, (F(Vi U V])) = l_[ deg (u) - deg (v)
uveE (T(V;uV;))
= |V],||Vi||Vi||Vj|

villvl

= [Vl L

Finally, the second multiplicative Zagreb index is determined by multiplying the

degrees at both ends of each edge and taking the product over all edges. In the case of I/; U

Vs, this index captures how interactions between vertex pairs contribute to the graph's
topological complexity.

Example 6 The second multiplicative Zagreb index of the subgraph I'(V; U V) in the zero-
divisor graph I'(Z,, X Z; X Z,) is given by:

M,(T(V, U V) = [(p — D(g — D(r — D]P~DE@DE™D,
Proof.
Given that uv € V(I'(V; UVy)), with deg(u) =p — 1 and deg(v) = (¢ — 1)(r — 1), the
second multiplicative Zagreb index can be expressed as follows:

M,(T(V, U V) = 1_[ deg (u) - deg (v)

uveV (L'(V,uVg))
=[(p - 1)(q — D)(r — D]@DC-DE-D
=[(p —1D(qg -1 —1)]PVE-Dr-1, .

Similarly, the second multiplicative Zagreb index of the subgraphs I'(V, U V;), (V5 U
V), T(V, UVs5),T(V, UVp), and I'(Vs U V) can be determined using the same approach.
Applying Theorem 5 to each subset V; and V}, we can compute the second multiplicative

Zagreb index for several pairs of subgraphs F(Vi U V]) The results of these computations
are summarized in Table 6 below.

Table 6. The second multiplicative Zagreb index of complete bipartite subgraphs F(Vi u V])

Viuv; Vil vl m, (r(v;uv;))

ViUV q-D@r-1) p—1 [(p—1D(qg -1 —1)]P-DE-DE-1
Vo U Vs (- -1 q-1 [ - D)(q - D — D]P-DEHC-D
VU, p-1D(@-1) r—1 [(p—1(g -1 —1)]PDE-DE-1
V,UVs r—1 q—1 [(q —D(r—1)]@ V-V

V, UV r—1 p—1 [(p — D(r—1)]P~DC-D

Vs U Vg q-—1 p—1 [(q— 1D —1)]@ V-1

CONCLUSIONS

This paper investigates the structural and topological properties of the zero-divisor
graph I'(Z, X Z4 X Z,), where p,q, and r are distinct prime numbers. The graph is
analysed based on the structure of its nonzero zero-divisors, with particular emphasis on
induced complete bipartite subgraphs F(Vi U Vj), formed by combining disjoint subsets
whose zero components occupy different positions. For each such subgraph, the energy,
Laplacian energy, and three degree-based multiplicative topological indices are
computed: the Narumi-Katayama index, and the first and second multiplicative Zagreb
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indices. The results reveal consistent patterns in the degree distributions and energy
expressions, which depend on the cardinalities of the corresponding sets V; and V.

This study is limited to commutative rings of the form Z, X Z, X Z,, where p, q, and
r are distinct prime numbers, and considers only induced complete bipartite subgraphs.
A full analysis of the entire zero-divisor graph and other potential subgraph types is
beyond the scope of this work. Future research directions may include extending the
framework to rings of the form Zpa X qu X Zyc, where a,b,c € Z*, to examine the

influence of higher powers of primes on the resulting graph structures. Other possibilities
involve generalisations to noncommutative rings or semirings, and investigating similar
spectral and topological characteristics in alternative algebraic graphs, such as unit
graphs and total graphs. Moreover, the application of the topological indices in fields such
as algebraic coding theory and cryptography could be a practical significance, particularly
since bipartite structures can serve as natural models for secure data transmission. In
summary, the findings of this study provide deeper insights into how the algebraic
properties of commutative rings influence the topological and spectral features of their
associated graphs.
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