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ABSSTRACT  

This paper investigates the complete bipartite subgraphs induced within the zero-divisor graph 
of a commutative ring formed by the direct product of three distinct modular integer rings. The 
set of nonzero zero-divisors is partitioned into six disjoint subsets based on the position of the 
zero component in each element. Six complete bipartite subgraphs are constructed and analysed 
by pairing subsets with zeros in different positions. For each subgraph, we compute the energy, 
Laplacian energy, and three degree-based multiplicative topological indices, namely the Narumi–
Katayama index, and the first and second multiplicative Zagreb indices. The results are expressed 
in closed-form formulas and reveal consistent structural patterns, highlighting the relationship 
between the algebraic properties of the ring and the graph-theoretic characteristics of the induced 
subgraphs. 
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INTRODUCTION 

Graph theory is a branch of mathematics that is widely developed and applied in 
various fields. Its historical roots trace back to the Königsberg bridge problem in Prussia, 
which Euler in 1736 modeled using a graph by representing land areas as vertices and 
bridges as edges [1]. A graph 𝐺 is defined as an ordered pair (𝑉(𝐺), 𝐸(𝐺)), where 𝑉(𝐺) is 
a non-empty finite set of elements called vertices and 𝐸(𝐺) is a finite (possibly empty) set 
of pairs of vertices called edges. A subgraph of a graph can be formed by removing vertices 
or edges in the original graph. Graphs exhibit various unique structures based on the 
properties of their vertex and edge sets, including complete graphs and bipartite graphs. 
A complete graph is one in which every pair of distinct vertices is adjacent, whereas a 
bipartite graph is one whose vertex set can be partitioned into two disjoint sets 𝑉1 and 𝑉2 
such that every edge connects a vertex in 𝑉1 to a vertex in 𝑉2. A bipartite graph is said to 
be complete bipartite if and only if every vertex in 𝑉1 is connected to every vertex in 𝑉2. If 
𝑉1 has 𝑚 vertices and 𝑉2 has 𝑛 vertices, then the complete bipartite graph is denoted by 
𝐾𝑚,𝑛 [2].  

One of the fundamental concepts in graph theory is the degree of a vertex, defined as 
the number of edges incident to that vertex. Various matrices can also be associated with 
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a graph, such as the degree matrix, adjacency matrix, and Laplacian matrix. For a graph of 
order 𝑛, the degree matrix is an 𝑛 ×  𝑛 diagonal matrix whose diagonal entries represent 
the degrees of the vertices. The adjacency matrix is an 𝑛 ×  𝑛 matrix where the entries are 
1 if two vertices are adjacent, and 0 otherwise [3]. The Laplacian matrix is derived by 
computing the difference between the degree matrix and the adjacency matrix [4]. 

Graph theory can be combined with algebraic structures, especially commutative rings. 
A commutative ring is a non-empty set 𝑅 equipped with two binary operations, say 
addition and multiplication that satisfy the commutative group axioms under addition, 
are associative and commutative under multiplication, and follow the distributive laws. 
One graph construction based on a commutative ring is the zero-divisor graph. Many 
researchers are interested to investigate this graph for many cases. This concept was first 
introduced by Beck in 1988, where the vertices represent all elements of 𝑅 and two 
vertices are adjacent if and only if their product is zero [5]. Later, Anderson and Livingston 
in 1999 modified Beck's definition. The resulting graph, denoted by Γ(𝑅), has as its 
vertices all the zero-divisors of the commutative ring 𝑅 [6]. Moreover, the research of 
zero-divisor graphs can be seen in [7] and [8]. 

Dancheng and Tongsou studied bipartite graphs on zero-divisor graphs [9]. The result 
shows that a zero-divisor graph is bipartite if and only if it contains no triangles. 
Moreover, if such a graph is bipartite and contains no vertex of degree one, then it is a 
complete bipartite graph. Sharma et al. studied the adjacency matrix of a zero-divisor 
graph Γ(ℤ𝑝 × ℤ𝑝), where 𝑝 is a prime number [10]. Akgunes and Togan studied the degree 

of each vertex and the distance between pairs of vertices in Γ(ℤ𝑝 × ℤ𝑞), where 𝑝 and 𝑞 are 

prime numbers [11]. Furthermore, Aykac and Akgunes studied the diameter, radius, girth, 
maximum and minimum degree, dominance number, chromatic number, and clique 

number of the zero-divisor graph Γ(ℤ𝑝2 × ℤ𝑞2) [12] . 

Graph theory is closely related to energy which can be applied to molecules and 
chemical compounds, as well as topological indices as a tool to understand the properties 
of molecules based on their graphical structure. The energy of a graph is defined as the 
sum of the absolute values of all eigenvalues of its adjacency matrix. This concept was first 
introduced by Gutman in 1978 inspired by the total energy of electrons in molecules [13]. 
In 2006, Gutman and Zhou extended this idea by introducing Laplacian energy, calculated 
as the sum of the absolute values of the eigenvalues of the Laplacian matrix [14]. Ahmadi 
and Jahani-Nezhad studied the energy of the zero-divisor graph Γ(ℤ𝑝𝑞)where 𝑝 and 𝑞 are 

prime numbers [15]. This graph is isomorphic to Γ(ℤ𝑝 × ℤ𝑞) because it has the same 

structure, which both form a complete bipartite graph. Furthermore, in 2021 Singh and 
Bhat studied the Laplacian energy of the zero-divisor graph Γ(ℤ𝑝𝑞) [16] . 

A topological index is a numerical parameter of a graph that describes its topological 
characteristics. Degree, distance, or eccentricity-based topological indices are widely 
used to characterise molecular graphs, establish relationships between molecular 
structure and properties, and predict the biological activity of chemical compounds. 
Topological indices are generally categorized as additive or multiplicative. Among the 
additive degree-based indices are the first and second Zagreb indices, introduced by 
Gutman and Trijnastic in 1972 [17]. The Zagreb indices were initially applied in chemistry 
to study total molecular energy, particularly the resonance energy of polyenes and 
aromatic hydrocarbons. This research focuses on the relationship between molecular 
graph structures, where vertices represent atoms and edges represent chemical bonds, 
and chemically relevant properties such as molecular stability. A higher vertex degree 
indicates more chemical bonds, suggesting that molecules with many high-degree atoms 
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tend to be more stable due to more efficient electron distribution. The first Zagreb index 
is defined as the sum of the squares of the vertex degrees, while the second Zagreb index 
is defined as the sum of the products of the degrees of adjacent vertices.  

In 1975, Gutman et al. developed the first and second Zagreb indices into multiplicative 
topological indices [18]. The first multiplicative Zagreb index is calculated as the product 
of the squares of the degrees of all vertices, while the second multiplicative Zagreb index 
is the product of the degree products of all adjacent vertex pairs. Furthermore, in 1984 
Narumi and Katayama also introduced a simpler degree-based multiplicative topological 
index, namely the Narumi-Katayama index which focuses on multiplying the degree of 
each vertex [19]. 

Akgunes and Nacaroglu in 2019 studied the properties of the zero-divisor graph 
Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟), where 𝑝, 𝑞, 𝑟 are prime numbers, including adjacency, degree, distance, 

diameter, radius, and girth [20]. They also analyzed the first and second Zagreb indices 
for this graph. Applicatively, Mondal et al. in 2021 studied degree-based multiplicative 
topological indices on molecular structures, namely nanostar dendrimers. The topological 
indices studied include the first and second multiplicative Zagreb indices, and the Narumi-
Katayama index [21]. 

Theoretically, zero-divisor graphs derived from the ring ℤ𝑝 × ℤ𝑞 × ℤ𝑟 , where 𝑝, 𝑞, and 

𝑟 are distinct primes, exhibit complex structural properties. Although much of the existing 
literature focuses on analysing the entire zero-divisor graph, this study concentrates on 
specific complete bipartite subgraphs, which provide a more tractable and structured 
framework for investigation. These subgraphs offer a controlled setting in which both 
spectral and topological characteristics can be systematically examined, with meaningful 
implications for algebraic and combinatorial optimisation. Complete bipartite subgraphs 
have particular relevance in modelling real-world systems, such as communication 
networks and molecular structures, where strong interconnections occur between two 
distinct sets of components [22], [23]. In such settings, complete bipartite interactions 
serve as natural representations of highly organised and balanced interactions. 

To the best of our knowledge, this research presents a novel approach by 
systematically forming complete bipartite subgraphs through two disjoint subsets of 
nonzero zero-divisors. We investigate their energy, Laplacian energy, and three degree-
based multiplicative topological indices, namely the Narumi–Katayama index, the first 
multiplicative Zagreb index, and the second multiplicative Zagreb index. Previous studies 
have explored these invariants on full zero-divisor graphs, few have addressed them 
within the context of specifically induced bipartite substructures. Our contribution lies in 
deriving closed-form expressions that connect these graph invariants to the prime-based 
parameters of the underlying ring, offering both theoretical insight and applied potential. 

We focus to study induced complete bipartite subgraphs, rather than the entire graph, 
since they provide the structural clarity. Such subgraphs, denoted by the union of distinct 
vertex classes, isolate specific interactions among zero-divisors and enable explicit 
computation of graph invariants. Moreover, in areas such as algebraic coding theory and 
cryptography, bipartite graphs offer natural models for structured data flows, such as 
those between encoding and decoding processes, or between public and private 
components in secure protocols. Investigating the spectral and topological properties of 
these well-defined subgraphs reveals algebraic and combinatorial patterns that may 
remain hidden in the global structure of the graph [24], [25]. 

Furthermore, constructing the zero-divisor graph from the product of three distinct 
primes introduces greater combinatorial richness compared to products involving only 
two primes. This enhanced complexity provides deeper insight into how the 
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multiplicative structure of the ring influences the behaviour of the associated graph. 
 

METHODS  

This study applies an analytical approach based on concepts from graph theory and 
ring theory. To ensure conceptual clarity and provide a solid theoretical basis for the 
methodology, several key definitions are introduced first. These definitions guide the 
construction of graphs, matrix formulations, and the computation of the graph-theoretic 
invariants discussed in the following stages. 
Definition 1 [5] Let 𝑅 be a commutative ring, and let 𝑍∗(𝑅) denote the set of nonzero 
zero-divisors. The zero-divisor graph of 𝑅, denoted Γ(𝑅), is a graph whose vertex set is 
𝑍∗(𝑅), and two vertices 𝑢, 𝑣 ∈ 𝑍∗(𝑅) are adjacent if and only if  𝑢 ∙ 𝑣 = 0. 
Definition 2 [10] The energy of a graph 𝐺, denoted 𝐸(𝐺), is the sum of the absolute values 
of all the eigenvalues 𝜆𝑖 of the adjacency matrix 𝐴(𝐺). 

𝐸(𝐺) =∑|𝜆𝑖|

𝑛

𝑖=1

. 

Definition 3 [11] The Laplacian energy of a graph 𝐺, denoted 𝐸𝐿(𝐺), is the sum of the 
absolute values of all the eigenvalues 𝜇𝑖 of the Laplacian matrix 𝐿(𝐺). 

𝐸𝐿(𝐺) =∑|𝜇𝑖|

𝑛

𝑖=1

. 

Definition 4 [16] The Narumi-Katayama index of a graph 𝐺, denoted 𝑁𝐾(𝐺), is the 
product of the degrees of all vertices in 𝐺. 

𝑁𝐾(𝐺) = ∏ deg(𝑣)

𝑣∈𝑉(𝐺)

. 

Definition 5 [15] The first multiplicative Zagreb index of the graph 𝐺, denoted 𝛱1(𝐺), is 
the product of the squares of the degrees of all vertices in 𝐺.  

𝛱1(𝐺) = ∏ (deg(𝑣))2

𝑣∈𝑉(𝐺)

. 

Definition 6 [15] The second multiplicative Zagreb index of the graph 𝐺, denoted 𝛱2(𝐺), 
is the product of the degree products of all adjacent vertex pairs in 𝐺. 

𝛱2(𝐺) = ∏ deg(𝑢) deg (𝑣)

𝑢𝑣∈𝐸(𝐺)

. 

 
Based on the definitions presented above, the analytical procedure in this study 

proceeds through a series of structured steps. Each step is designed to construct and 
analyze complete bipartite subgraphs within the zero-divisor graph, incorporating both 
algebraic and spectral graph-theoretic techniques. The method is structured into five 
stages, as follows: 
2.1 Subset Partition 

Let 𝑅 be the ring ℤ𝑝 × ℤ𝑞 × ℤ𝑟 , where 𝑝, 𝑞, 𝑟 are distinct prime numbers. The set of 

nonzero zero-divisors 𝑍∗(𝑅) is partitioned into six mutually disjoint subsets 𝑉𝑖, for 𝑖 =
1,2,⋯ ,6, based on the position of the zero component in each element. These subsets 
form the basis for constructing complete bipartite subgraphs by pairing sets 𝑉𝑖 ∪ 𝑉𝑗  

such that the zero positions differ. 
2.2 Graph Construction 

For each valid pair (𝑉𝑖, 𝑉𝑗), a complete bipartite subgraph is constructed where each 
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vertex in 𝑉𝑖 is adjacent to every vertex in 𝑉𝑗. According to Definition 1, two vertices 

are adjacent if their product yields the zero element in all components, which holds 
when the zero positions are distinct. 

2.3 Matrix Assembly  
For each induced bipartite graph isomorphic to 𝐾𝑚,𝑛, the following matrices are 
constructed: 
i. Adjacency matrix of the complete bipartite graph 𝐾𝑚,𝑛, denoted 𝐴(𝐾𝑚,𝑛) is defined 

as a block matrix in which the off-diagonal blocks consist of all-ones matrices 𝐽, 
while the diagonal blocks are zero matrices 𝑂, 

𝐴(𝐾𝑚,𝑛) = [
𝑂𝑚×𝑚 𝐽𝑚×𝑛
𝐽𝑛×𝑚 𝑂𝑛×𝑛

]. 

ii. Degree matrix of the complete bipartite graph 𝐾𝑚,𝑛, denoted 𝐷(𝐾𝑚,𝑛) is diagonal 

matrix where each vertex in 𝑉𝑖 has degree 𝑛, and each vertex in 𝑉𝑗 has degree 𝑚 

iii. Laplacian matrix of the complete bipartite graph 𝐾𝑚𝑛, denoted 𝐿(𝐾𝑚,𝑛) is 

constructed by subtracting the adjacency matrix from the degree matrix, that is,  

𝐿(𝐾𝑚,𝑛) = 𝐷(𝐾𝑚,𝑛) − 𝐴(𝐾𝑚,𝑛). 

2.4 Eigenvalue Derivation 

To compute the energy and Laplacian energy, the eigenvalues of the adjacency and 

Laplacian matrices are determined. Previously, the calculation of the characteristic 

polynomial of adjacency matrix 𝐴(𝐾𝑚,𝑛) using the Schur complement method will be 

given as follows: 

|𝜆𝐼𝑚+𝑛 − 𝐴(𝐾𝑚,𝑛)| = 0 

⇔ |[
𝜆𝐼𝑚×𝑚 𝑂𝑚×𝑛
𝑂𝑛×𝑚 𝜆𝐼𝑛×𝑛

] − [
𝑂𝑚×𝑚 𝐽𝑚×𝑛
𝐽𝑛×𝑚 𝑂𝑛×𝑛

]| = 0 

⇔ |
𝜆𝐼𝑚×𝑚 −𝐽𝑚×𝑛
−𝐽𝑛×𝑚 𝜆𝐼𝑛×𝑛

| = 0 

⇔ |𝜆𝐼𝑚×𝑚||𝜆𝐼𝑛×𝑛 − (−𝐽𝑛×𝑚)(𝜆𝐼𝑚×𝑚
−1 )(−𝐽𝑚×𝑛)| = 0 

⇔ 𝜆𝑚 (
𝜆2 −𝑚𝑛

𝜆
⋅ 𝜆𝑛−1) = 0 

⇔ 𝜆𝑚+𝑛−2(𝜆2 −𝑚𝑛) = 0. 
 

The same method is applied to derive the characteristic polynomial of the Laplacian 

matrix 𝐿(𝐾𝑚,𝑛). Using Definitions 2 and 3, the energy and Laplacian energy are 

computed from the eigenvalues of the respective matrices. 

2.5 Degree-Based Multiplicative Topological Indices 

Once the vertex degrees are established, the Narumi–Katayama index, the first 

multiplicative Zagreb index, and the second multiplicative Zagreb index are calculated 

based on Definitions 4, 5, and 6. 

RESULTS AND DISCUSSION  

Based on the work of Akgunes and Nacaroglu, which explores various properties of 
the zero-divisor graph over the ring ℤ𝑝 × ℤ𝑞 × ℤ𝑟 , the structure of Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) 

exhibits several important characteristics, including its vertex set and the degrees of its 
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vertices [20]. We provide a summary of the fundamental concepts as a basis for deriving 
the results. 

Let 𝑅 = ℤ𝑝 × ℤ𝑞 × ℤ𝑟 , where 𝑝, 𝑞, and 𝑟 are distinct prime numbers. Based on 

Definition 1 we obtain the set of nonzero zero-divisors in 𝑅, can be partitioned into six 
disjoint subsets as follows: 

1. 𝑉1 = {(0, 𝑣2, 𝑣3)|𝑣2 ∈ ℤ𝑞\{0}, 𝑣3 ∈ ℤ𝑟\{0}},  

2. 𝑉2 = {(𝑣1, 0, 𝑣3)|𝑣1 ∈ ℤ𝑝\{0}, 𝑣3 ∈ ℤ𝑟\{0}},  

3. 𝑉3 = {(𝑣1, 𝑣2, 0)|𝑣1 ∈ ℤ𝑝\{0}, 𝑣2 ∈ ℤ𝑞\{0}},  

4. 𝑉4 = {(0, 0, 𝑣3)|𝑣3 ∈ ℤ𝑟\{0}},  

5. 𝑉5 = {(0, 𝑣2, 0)|𝑣2 ∈ ℤ𝑞\{0}},  

6. 𝑉6 = {(𝑣1, 0, 0)|𝑣1 ∈ ℤ𝑝\{0}}. 

The cardinalities of these sets are given by: 
• |𝑉1| = (𝑞 − 1)(𝑟 − 1) • |𝑉2| = (𝑝 − 1)(𝑟 − 1) • |𝑉3| = (𝑝 − 1)(𝑞 − 1) 
• |𝑉4| = 𝑟 − 1 • |𝑉5| = 𝑞 − 1 • |𝑉6| = 𝑝 − 1 

 
Next, we obtain the degree of the vertices of graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) as stated in Lemma 

1. 
 
Lemma 1 The degrees of the vertices of graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) are given by: 

deg(𝑣) =

{
 
 

 
 
𝑝 − 1, 𝑣 ∈ 𝑉1,

𝑞 − 1, 𝑣 ∈ 𝑉2,

𝑟 − 1, 𝑣 ∈ 𝑉3,

𝑝𝑞 − 1, 𝑣 ∈ 𝑉4,

𝑝𝑟 − 1, 𝑣 ∈ 𝑉5,

𝑞𝑟 − 1, 𝑣 ∈ 𝑉6.

 

Proof. 
Let 𝑢, 𝑣 ∈ Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) and define the degree of vertex 𝑣 as the number of vertices 𝑢 

such that 𝑢 ∙ 𝑣 = (0,0,0). We obtain the vertex degrees as follows:  
1. For 𝑣 ∈ 𝑉1, the vertex 𝑣  is only adjacent to all elements in 𝑉6. Therefore, the degree 

of 𝑣 is deg(𝑣) =  𝑝 − 1. 

2. For 𝑣 ∈ 𝑉2, the vertex 𝑣 is only adjacent to all elements in 𝑉5. Hence, the degree of 

𝑣 is deg(𝑣) =  𝑞 − 1. 

3. For 𝑣 ∈ 𝑉3, the vertex 𝑣 is only adjacent to all elements in 𝑉4. Thus, 

 the degree of 𝑣 is deg(𝑣) =  𝑟 − 1. 

4. For 𝑣 ∈ 𝑉4, the vertex 𝑣 is adjacent to all elements in 𝑉3, 𝑉5, and 𝑉6. Therefore, the 

degree of 𝑣 is deg(𝑣) = (𝑝 − 1)(𝑞 − 1) + (𝑞 − 1) + (𝑝 − 1) = 𝑝𝑞 − 𝑝 − 𝑞 + 1 +

𝑞 − 1 + 𝑝 − 1 = 𝑝𝑞 − 1. 

5. For 𝑣 ∈ 𝑉5, the vertex 𝑣 is adjacent to all elements in 𝑉2, 𝑉4, and 𝑉6. Thus, the degree 

of 𝑣 is deg(𝑣) = (𝑝 − 1)(𝑟 − 1) + (𝑟 − 1) + (𝑝 − 1) = 𝑝𝑟 − 𝑝 − 𝑟 + 1 + 𝑟 − 1 +

𝑝 − 1 = 𝑝𝑟 − 1. 

For 𝑣 ∈ 𝑉6, the vertex 𝑣 is adjacent to all elements in 𝑉1, 𝑉4, and 𝑉5. Hence, the 

degree of 𝑣 is deg(𝑣) = (𝑞 − 1)(𝑟 − 1) + (𝑟 − 1) + (𝑞 − 1) = 𝑞𝑟 − 𝑞 − 𝑟 + 1 +

𝑟 − 1 + 𝑞 − 1 = 𝑞𝑟 − 1.                                                                                                            ∎ 
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Example 1 If 𝑝 = 2, 𝑞 = 3, and 𝑟 = 5, the set of zero-divisors in ℤ2 × ℤ3 × ℤ5 as follows: 
1. 𝑉1 = {(0,1,1), (0,1,2), (0,1,3), (0,1,4), (0,2,1), (0,2,2), (0,2,3), (0,2,4)},  

2. 𝑉2 = {(1,0,1), (1,0,2), (1,0,3), (1,0,4)},  

3. 𝑉3 = {(1,1,0), (1,2,0)},  

4. 𝑉4 = {(0,0,1), (0,0,2), (0,0,3), (0,0,4)},  

5. 𝑉5 = {(0,1,0), (0,2,0)}, },  

6. 𝑉6 = {(1,0,0)}. 

 

Figure 1 visualizes the structure of the zero-divisor graph induced by the ring 
ℤ2 × ℤ3 × ℤ5, where each vertex represents a nonzero zero-divisor, and edges indicate 
products resulting in zero. The partitioning of vertices based on the zero component is 
clearly illustrated. 
  

 

 
Figure 1. The zero-divisor graph Γ(ℤ2 × ℤ3 × ℤ5)  

  

To analyze the structure of the zero-divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟), we focus on 

specific pairs of subsets of nonzero zero-divisors. When these subsets consist of elements 
with zero components in different positions, their union induces a subgraph with a 
bipartite structure, as described below.  

 
Proposition 1 Let 𝑉𝑖 and 𝑉𝑗 be two disjoint subsets of nonzero zero-divisors in 

ℤ𝑝 × ℤ𝑞 × ℤ𝑟 , where each element has exactly one zero component, and the position of 

the zero component in elements of 𝑉𝑖 is different from that in elements of 𝑉𝑗. Then, the 

induced subgraph Γ(𝑉𝑖 ∪ 𝑉𝑗) is isomorphic to the complete bipartite graph 𝐾|𝑉𝑖|,|𝑉𝑗|. 

Proof. 
Let 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ 𝑉𝑖 and 𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ 𝑉𝑗, where the zero components in 𝑢 and 𝑣 

are located in different positions. As a result, their product is 𝑢 ∙ 𝑣 = (0,0,0), implying that 
𝑢 and 𝑣 are adjacent in the zero-divisor graph. This holds for every pair (𝑢, 𝑣) ∈ 𝑉𝑖 × 𝑉𝑗, 

meaning that Γ(𝑉𝑖 ∪ 𝑉𝑗) forms a complete bipartite graph. On the other hand, all elements 

within the same subset have their zero component in the same position. Consequently, 
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the product of any two vertices from the same subset will have at least one nonzero entry 
and thus is not equal to zero. Therefore, no edges exist within 𝑉𝑖 or 𝑉𝑗 . Thus, the induced 

subgraph Γ(𝑉𝑖 ∪ 𝑉𝑗) is a complete bipartite graph 𝐾|𝑉𝑖|,|𝑉𝑗|, where each vertex in 𝑉𝑖 has 

degree |𝑉𝑗| and each vertex in 𝑉𝑗 has degree |𝑉𝑖|.                                                             ∎ 

 
The Table 1 describes the characteristics of the complete bipartite subgraph formed from 
𝑉𝑖 ∪ 𝑉𝑗  which consists of the order and degree of each set. 
 

Table 1. Degree distribution and structure of complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) 

𝑽𝒊 ∪ 𝑽𝒋 Order of |𝑽𝒊| 
Order 

of |𝑽𝒋| 
Degree of each 

𝒖 ∈ 𝑽𝒊 

Degree of each 
𝒗 ∈ 𝑽𝒋 

Complete 
bipartite graph 

𝑉1 ∪ 𝑉6 (𝑞 − 1)(𝑟 − 1) 𝑝 − 1 𝑝 − 1 (𝑞 − 1)(𝑟 − 1) 𝐾(𝑞−1)(𝑟−1),(𝑝−1) 

𝑉2 ∪ 𝑉5 (𝑝 − 1)(𝑟 − 1) 𝑞 − 1 𝑞 − 1 (𝑝 − 1)(𝑟 − 1) 𝐾(𝑝−1)(𝑟−1),(𝑞−1) 

𝑉3 ∪ 𝑉4 (𝑝 − 1)(𝑞 − 1) 𝑟 − 1 𝑟 − 1 (𝑝 − 1)(𝑞 − 1) 𝐾(𝑝−1)(𝑞−1),(𝑟−1) 

𝑉4 ∪ 𝑉5 𝑟 − 1 𝑞 − 1 𝑞 − 1 𝑟 − 1 𝐾(𝑟−1)(𝑞−1) 

𝑉4 ∪ 𝑉6 𝑟 − 1 𝑝 − 1 𝑝 − 1 𝑟 − 1 𝐾(𝑟−1),(𝑝−1) 

𝑉5 ∪ 𝑉6 𝑞 − 1 𝑝 − 1 𝑝 − 1 𝑞 − 1 𝐾(𝑞−1),(𝑝−1) 

 

The complete bipartite subgraphs that can be formed from the zero-divisor graph 
Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) are Γ(𝑉1 ∪ 𝑉6), Γ(𝑉2 ∪ 𝑉5), Γ(𝑉3 ∪ 𝑉4), Γ(𝑉4 ∪ 𝑉5), Γ(𝑉4 ∪ 𝑉6), and Γ(𝑉5 ∪

𝑉6). If 𝑝 = 2, 𝑞 = 3, and 𝑟 = 5, the complete bipartite subgraph of Γ(ℤ2 × ℤ3 × ℤ5)  is 
shown in Figure 2. 

 
Figure 2. The complete bipartite subgraph of Γ(ℤ2 × ℤ3 × ℤ5)   

 

Figure 2 shows a complete bipartite subgraph formed by the union of two disjoint 
subsets of zero-divisors, each subset having its zero component in different positions. 
This configuration satisfies the criteria for inducing 𝐾𝑚,𝑛 within the zero-divisor graph. 
Next, the energy, Laplacian energy, and degree-based multiplicative topological index on 
the complete bipartite subgraph of the zero-divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) are 

determined as follows: 
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Theorem 1 If Γ(𝑉𝑖 ∪ 𝑉𝑗) is a complete bipartite subgraph of the zero-divisor graph 

Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) , then the energy of Γ(𝑉𝑖 ∪ 𝑉𝑗) is given by: 

𝐸 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = 2√|𝑉𝑖||𝑉𝑗|. 

Proof. 
The adjacency matrix from subgraph Γ(𝑉𝑖 ∪ 𝑉𝑗), as follows: 

 

𝐴 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = [
𝑂|𝑉𝑖|×|𝑉𝑖| 𝐽|𝑉𝑖|×|𝑉𝑗|

𝐽|𝑉𝑗|×|𝑉𝑖| 𝑂|𝑉𝑗|×|𝑉𝑗|
], 

 
where 𝑂 is a zero matrix and 𝐽 is a matrix of all ones. 

The characteristic polynomial of 𝐴 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) is 

 

|𝜆𝐼|𝑉𝑖|+|𝑉𝑗| − 𝐴(Γ(𝑉𝑖 ∪ 𝑉𝑗))| = 0 

⇔ 𝜆|𝑉𝑖|+|𝑉𝑗|−2(𝜆2 − |𝑉𝑖||𝑉𝑗|) = 0, 

 

which gives the eigenvalues of √|𝑉𝑖||𝑉𝑗| and −√|𝑉𝑖||𝑉𝑗| with multiplicity 1, and 0 

otherwise. 

Therefore, according to Definition 2 the energy of Γ(𝑉𝑖 ∪ 𝑉𝑗) is: 

 

𝐸 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = √|𝑉𝑖||𝑉𝑗| + √|𝑉𝑖||𝑉𝑗| 

                                                      = 2√|𝑉𝑖||𝑉𝑗|.                                                                  ∎ 

 

We begin by evaluating the energy of the subgraph induced by the union 𝑉1 ∪ 𝑉6. This 
case serves as a representative example for the spectral analysis of the induced bipartite 
subgraphs. The resulting eigenvalues are used to compute the energy explicitly, 
illustrating the procedure that applies similarly to other cases. 
 
Example 2 The energy of the subgraph Γ(𝑉1 ∪ 𝑉6) in the zero-divisor graph Γ(ℤ𝑝 × ℤ𝑞 ×

ℤ𝑟) is given by: 

𝐸(Γ(𝑉1 ∪ 𝑉6)) = 2√(𝑝 − 1)(𝑞 − 1)(𝑟 − 1). 

Proof. 
The adjacency matrix from subgraph Γ(𝑉1 ∪ 𝑉6), as follows: 
 

𝐴(Γ(𝑉1 ∪ 𝑉6)) = [
𝑂(𝑞−1)(𝑟−1)×(𝑞−1)(𝑟−1) 𝐽(𝑞−1)(𝑟−1)×(𝑝−1)
𝐽(𝑝−1)×(𝑞−1)(𝑟−1) 𝑂(𝑝−1)×(𝑝−1)

]. 

 
The characteristic polynomial of 𝐴(Γ(𝑉1 ∪ 𝑉6)) is 

 

|𝜆𝐼(𝑞−1)(𝑟−1)+(𝑝−1) − 𝐴(Γ(𝑉1 ∪ 𝑉6))| = 0 

⇔ 𝜆(𝑞−1)(𝑟−1)+(𝑝−1)−2(𝜆2 − (𝑝 − 1)(𝑞 − 1)(𝑟 − 1)) = 0, 
 

which gives the eigenvalues of √(𝑝 − 1)(𝑞 − 1)(𝑟 − 1) and −√(𝑝 − 1)(𝑞 − 1)(𝑟 − 1) 

with multiplicity 1, and 0 otherwise. 
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Therefore, the energy of the zero-divisor graph Γ(𝑉1 ∪ 𝑉6) is: 
 

𝐸(Γ(𝑉1 ∪ 𝑉6)) = √(𝑝 − 1)(𝑞 − 1)(𝑟 − 1) + √(𝑝 − 1)(𝑞 − 1)(𝑟 − 1) 

                         = 2√(𝑝 − 1)(𝑞 − 1)(𝑟 − 1). 

                                               = 2√𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1.                                   ∎ 

 
Similarly, the energy of the subgraphs Γ(𝑉2 ∪ 𝑉5), Γ(𝑉3 ∪ 𝑉4), Γ(𝑉4 ∪ 𝑉5), Γ(𝑉4 ∪ 𝑉6), 

and Γ(𝑉5 ∪ 𝑉6) can be determined using the same approach. By applying Theorem 1 to 
each pair of disjoint subsets  𝑉𝑖 and 𝑉𝑗, the energy of the corresponding complete bipartite 

subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) is obtained. The results of these computations are summarized in 

Table 2 below. 
 

Table 2. The energy of complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) 

𝑽𝒊 ∪ 𝑽𝒋  |𝑽𝒊| |𝑽𝒋| 𝑬 (𝚪(𝑽𝒊 ∪ 𝑽𝒋)) 

𝑉1 ∪ 𝑉6 (𝑞 − 1)(𝑟 − 1) 𝑝 − 1 2√𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1 

𝑉2 ∪ 𝑉5 (𝑝 − 1)(𝑟 − 1) 𝑞 − 1 2√𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1 

𝑉3 ∪ 𝑉4 (𝑝 − 1)(𝑞 − 1) 𝑟 − 1 2√𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1 

𝑉4 ∪ 𝑉5 𝑟 − 1 𝑞 − 1 2√𝑞𝑟 − 𝑞 − 𝑟 + 1 

𝑉4 ∪ 𝑉6 𝑟 − 1 𝑝 − 1 2√𝑝𝑟 − 𝑝 − 𝑟 + 1 

𝑉5 ∪ 𝑉6 𝑞 − 1 𝑝 − 1 2√𝑝𝑞 − 𝑝 − 𝑞 + 1 

 

Theorem 2 If Γ(𝑉𝑖 ∪ 𝑉𝑗) is a complete bipartite subgraph of the zero-divisor graph 

Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟), then the Laplacian energy of Γ(𝑉𝑖 ∪ 𝑉𝑗) is given by: 

𝐸𝐿 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = 2|𝑉𝑖||𝑉𝑗|. 

Proof. 

The Laplacian matrix 𝐿(𝛤(𝑉𝑖 ∪ 𝑉𝑗)) = 𝐷(𝛤(𝑉𝑖 ∪ 𝑉𝑗)) − 𝐴(𝛤(𝑉𝑖 ∪ 𝑉𝑗)) is constructed based 

on the degree matrix 𝐷(𝛤(𝑉𝑖 ∪ 𝑉𝑗)) and adjacency matrix 𝐴(𝛤(𝑉𝑖 ∪ 𝑉𝑗)), as follows: 

𝐷 (𝛤(𝑉𝑖 ∪ 𝑉𝑗)) = [
𝑃|𝑉𝑖|×|𝑉𝑖| 𝑂|𝑉𝑖|×|𝑉𝑗|

𝑂|𝑉𝑗|×|𝑉𝑖| 𝑆|𝑉𝑗|×|𝑉𝑗|
], 

 

𝐴 (𝛤(𝑉𝑖 ∪ 𝑉𝑗)) = [
𝑂|𝑉𝑖|×|𝑉𝑖| 𝐽|𝑉𝑖|×|𝑉𝑗|

𝐽|𝑉𝑗|×|𝑉𝑖| 𝑂|𝑉𝑗|×|𝑉𝑗|
], 

 

where 𝑃 is a diagonal matrix with all entries |𝑉𝑗| and 𝑆 is a diagonal matrix with all entries 

|𝑉𝑖|. 
Therefore, the Laplacian matrix is 

𝐿 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = 𝐷 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) − 𝐴 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) 

                                                                    = [
𝑃|𝑉𝑖|×|𝑉𝑖| 𝑄|𝑉𝑖|×|𝑉𝑗|

𝑅|𝑉𝑗|×|𝑉𝑖| 𝑆|𝑉𝑗|×|𝑉𝑗|
],  

  

where 𝑄 and 𝑅 are matrices whose entries all −1. 

The characteristic polynomial of 𝐿 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) is 

 

|𝜇𝐼|𝑉𝑖|+|𝑉𝑗| − 𝐿 (𝛤(𝑉𝑖 ∪ 𝑉𝑗))| = 0 



Energy and Topological Indices of Complete Bipartite Subgraphs 

Kiki Amanda Eka Meilina 488 

⇔ (|𝑉𝑗| − 𝜇)
|𝑉𝑖| (

(−𝜇)[|𝑉𝑖| − 𝜇]
|𝑉𝑗|−1[|𝑉𝑗| + |𝑉𝑖| − 𝜇]

|𝑉𝑗| − 𝜇
) = 0 

⇔ 𝜇 [𝜇 − [|𝑉𝑖| + |𝑉𝑗|]] [𝜇 − |𝑉𝑗|]
|𝑉𝑖|−1[𝜇 − |𝑉𝑖|]

|𝑉𝑗|−1 = 0, 

which gives the eigenvalues of 0, |𝑉𝑖| + |𝑉𝑗|, |𝑉𝑗| with multiplicity |𝑉𝑖| − 1, and |𝑉𝑖| with 

multiplicity |𝑉𝑗| − 1. 

Thus, based on Definition 3, the Laplacian energy of Γ(𝑉𝑖 ∪ 𝑉𝑗) can be expressed as: 

 

𝐸𝐿 (Γ(𝑉𝑖 ∪ 𝑉𝑗))  = |𝑉𝑖| + |𝑉𝑗| + |𝑉𝑗|(|𝑉𝑖| − 1) + |𝑉𝑖|(|𝑉𝑗| − 1) 

                                  = 2|𝑉𝑖||𝑉𝑗|.                                                                                                         ∎ 

 

To complement the Laplacian energy analysis, we also determine the Laplacian 
energy for the same subgraph Γ(𝑉1 ∪ 𝑉6). The Laplacian matrix is constructed from the 
degree and adjacency matrices, and its spectrum is used to compute the Laplacian energy. 
This example reflects the general pattern observed in other bipartite subgraphs formed 
from disjoint zero-divisor subsets. 
 
Example 3 The Laplacian energy of the subgraph Γ(𝑉1 ∪ 𝑉6) in the zero-divisor graph 
Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) is given by:  

𝐸𝐿(Γ(𝑉1 ∪ 𝑉6)) = 2(𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1). 

Proof. 
The Laplacian matrix 𝐿(Γ(𝑉1 ∪ 𝑉6)) = 𝐷(Γ(𝑉1 ∪ 𝑉6)) − 𝐴(Γ(𝑉1 ∪ 𝑉6)) is constructed 
based on the degree matrix 𝐷(Γ(𝑉1 ∪ 𝑉6)) and adjacency matrix 𝐴(Γ(𝑉1 ∪ 𝑉6)), as follows: 
 

𝐷(Γ(𝑉1 ∪ 𝑉6)) = [
𝑃(𝑞−1)(𝑟−1)×(𝑞−1)(𝑟−1) 𝑂(𝑞−1)(𝑟−1)×(𝑝−1)
𝑂(𝑝−1)×(𝑞−1)(𝑟−1) 𝑆(𝑝−1)×(𝑝−1)

], 

 

𝐴(Γ(𝑉1 ∪ 𝑉6)) = [
𝑂(𝑞−1)(𝑟−1)×(𝑞−1)(𝑟−1) 𝐽(𝑞−1)(𝑟−1)×(𝑝−1)
𝐽(𝑝−1)×(𝑞−1)(𝑟−1) 𝑂(𝑝−1)×(𝑝−1)

], 

 
where 𝑃 is a diagonal matrix with all entries 𝑝 − 1 and 𝑆 is a diagonal matrix with all 
entries (𝑞 − 1)(𝑟 − 1). 
Therefore, the Laplacian matrix is 
 

𝐿(Γ(𝑉1 ∪ 𝑉6)) = 𝐷(Γ(𝑉1 ∪ 𝑉6)) − 𝐴(Γ(𝑉1 ∪ 𝑉6)) 

                                                  = [
𝑃(𝑞−1)(𝑟−1)×(𝑞−1)(𝑟−1) 𝑄(𝑞−1)(𝑟−1)×(𝑝−1)
𝑅(𝑝−1)×(𝑞−1)(𝑟−1) 𝑆(𝑝−1)×(𝑝−1)

], 

 
where 𝑄 and 𝑅 are matrices whose entries all −1. 
The characteristic polynomial of  𝐿(Γ(𝑉1 ∪ 𝑉6)) is 

 
|𝜇𝐼(𝑞−1)(𝑟−1)+(𝑝−1) − 𝐿(𝛤(𝑉1 ∪ 𝑉6))| = 0 

⇔ 𝜇[𝜇 − [(𝑝 − 1) + (𝑞 − 1)(𝑟 − 1)]][𝜇 − (𝑝 − 1)](𝑞−1)(𝑟−1)−1[𝜇 − (𝑞 − 1)(𝑟 − 1)]𝑝−2 = 0, 

 
which gives the eigenvalues of 0, (𝑝 − 1) + (𝑞 − 1)(𝑟 − 1), (𝑝 − 1) with multiplicity 
(𝑞 − 1)(𝑟 − 1) − 1, and (𝑞 − 1)(𝑟 − 1) with multiplicity 𝑝 − 2. 
Therefore, the Laplacian energy of subgraph Γ(𝑉1 ∪ 𝑉6) is: 
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𝐸𝐿(Γ(𝑉1 ∪𝑉6)) = (𝑝 − 1) + (𝑞 − 1)(𝑟 − 1) + (𝑝 − 1)[(𝑞 − 1)(𝑟 − 1) − 1] + (𝑞 − 1)(𝑟 − 1)(𝑝 − 2) 

      = 2(𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1).                                                                  ∎ 
 

Similarly, the Laplacian energy of the subgraphs Γ(𝑉2 ∪ 𝑉5), Γ(𝑉3 ∪ 𝑉4), Γ(𝑉4 ∪
𝑉5), Γ(𝑉4 ∪ 𝑉6), and Γ(𝑉5 ∪ 𝑉6) can be determined using the same approach. Applying 
Theorem 2 to each subset 𝑉𝑖 and 𝑉𝑗, we can compute the Laplacian energy for several 

pairs of subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗). The results of these computations are summarized in Table 

3 below. 
 

Table 3. The Laplacian energy of complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) 

𝑽𝒊 ∪ 𝑽𝒋  |𝑽𝒊| |𝑽𝒋| 𝑬𝑳 (𝚪(𝑽𝒊 ∪ 𝑽𝒋)) 

𝑉1 ∪ 𝑉6 (𝑞 − 1)(𝑟 − 1) 𝑝 − 1 2(𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1) 
𝑉2 ∪ 𝑉5 (𝑝 − 1)(𝑟 − 1) 𝑞 − 1 2(𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1) 
𝑉3 ∪ 𝑉4 (𝑝 − 1)(𝑞 − 1) 𝑟 − 1 2(𝑝𝑞𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝 + 𝑞 + 𝑟 − 1) 
𝑉4 ∪ 𝑉5 𝑟 − 1 𝑞 − 1 2(𝑞𝑟 − 𝑞 − 𝑟 + 1) 
𝑉4 ∪ 𝑉6 𝑟 − 1 𝑝 − 1 2(𝑝𝑟 − 𝑝 − 𝑟 + 1) 
𝑉5 ∪ 𝑉6 𝑞 − 1 𝑝 − 1 2(𝑝𝑞 − 𝑝 − 𝑞 + 1) 

 
There are three degree-based multiplicative topological indices discussed in this paper, 
namely the Narumi-Katayama index, the first multiplicative Zagreb index, and the second 
multiplicative Zagreb index. 
 

Theorem 3 Let 𝑉𝑖 ∪ 𝑉𝑗 ⊆ ℤ𝑝 × ℤ𝑞 × ℤ𝑟 be such that Γ(𝑉𝑖 ∪ 𝑉𝑗) forms a complete bipartite 

subgraph of the zero-divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟). Then the Narumi–Katayama index of 

Γ(𝑉𝑖 ∪ 𝑉𝑗) is given by: 

𝑁𝐾 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = |𝑉𝑖|
|𝑉𝑗| ⋅ |𝑉𝑗|

|𝑉𝑖|
. 

Proof. 
From Proposition 1, it is known that if 𝑣 ∈ 𝑉𝑖, deg(𝑣) = |𝑉𝑗| and if 𝑣 ∈ 𝑉𝑗, deg(𝑣) = |𝑉𝑖|. 

Consequently, according to Definition 4, the Narumi-Katayama index of Γ(𝑉𝑖 ∪ 𝑉𝑗) is 

given by: 
 

𝑁𝐾 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = ∏ deg (𝑣)

𝑣∈𝑉(Γ(𝑉𝑖∪𝑉𝑗))

 

  = ∏deg (𝑣)

𝑣∈𝑉𝑖

∙ ∏ deg(𝑣)

𝑣∈𝑉𝑗

 

                         = |𝑉𝑗|
|𝑉𝑖|

⋅ |𝑉𝑖|
|𝑉𝑗|. 

                                                                                 = |𝑉𝑖|
|𝑉𝑗| ⋅ |𝑉𝑗|

|𝑉𝑖|
.                                                     ∎ 

 
We begin the degree-based topological analysis by computing the Narumi–Katayama 

index for the subgraph induced by 𝑉1 ∪ 𝑉6. This index is obtained as the product of the 
degrees of all vertices and serves as a measure of overall connectivity in the graph 
structure. 
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Example 4 The Narumi–Katayama index of the subgraph Γ(𝑉1 ∪ 𝑉6) in the zero-divisor 
graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) is given by: 

𝑁𝐾(Γ(𝑉1 ∪ 𝑉6)) = ((𝑞 − 1)(𝑟 − 1))𝑝−1 ∙ (𝑝 − 1)(𝑞−1)(𝑟−1). 

 
 
Proof. 
From Table 1, it is known if 𝑣 ∈ 𝑉1, deg(𝑣) = 𝑝 − 1 and if 𝑣 ∈ 𝑉6, deg(𝑣) = (𝑞 − 1)(𝑟 −
1). Thus, the Narumi-Katayama index is obtained as follows:  
 

𝑁𝐾(Γ(𝑉1 ∪ 𝑉6)) = ∏ deg (𝑣)

𝑣∈𝑉(Γ(𝑉1∪𝑉6))

 

 = ∏deg (𝑣)

𝑣∈𝑉1

∙∏deg(𝑣)

𝑣∈𝑉6

 

                                                                    = (𝑝 − 1)(𝑞−1)(𝑟−1) ⋅ ((𝑞 − 1)(𝑟 − 1))𝑝−1 

                                                                    = ((𝑞 − 1)(𝑟 − 1))𝑝−1 ∙ (𝑝 − 1)(𝑞−1)(𝑟−1).        ∎ 
 

Similarly, the Narumi-Katayama index of the subgraphs Γ(𝑉2 ∪ 𝑉5), Γ(𝑉3 ∪ 𝑉4), Γ(𝑉4 ∪
𝑉5), Γ(𝑉4 ∪ 𝑉6), and Γ(𝑉5 ∪ 𝑉6) can be determined using the same approach. Applying 
Theorem 3 to each subset 𝑉𝑖 and 𝑉𝑗, we can compute the Narumi–Katayama index for 

several pairs of subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗). The results of these computations are summarized 

in Table 4 below. 
 

Table 4. The Narumi-Katayama index of complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) 

𝑽𝒊 ∪ 𝑽𝒋  |𝑽𝒊| |𝑽𝒋| 𝑵𝑲(𝚪(𝑽𝒊 ∪ 𝑽𝒋)) 

𝑉1 ∪ 𝑉6 (𝑞 − 1)(𝑟 − 1) 𝑝 − 1 ((𝑞 − 1)(𝑟 − 1))𝑝−1 ∙ (𝑝 − 1)(𝑞−1)(𝑟−1) 
𝑉2 ∪ 𝑉5 (𝑝 − 1)(𝑟 − 1) 𝑞 − 1 ((𝑝 − 1)(𝑟 − 1))𝑞−1 ∙ (𝑞 − 1)(𝑝−1)(𝑟−1) 
𝑉3 ∪ 𝑉4 (𝑝 − 1)(𝑞 − 1) 𝑟 − 1 ((𝑝 − 1)(𝑞 − 1))𝑟−1 ∙ (𝑟 − 1)(𝑝−1)(𝑞−1) 
𝑉4 ∪ 𝑉5 𝑟 − 1 𝑞 − 1 (𝑟 − 1)(𝑞−1) ∙ (𝑞 − 1)(𝑟−1) 
𝑉4 ∪ 𝑉6 𝑟 − 1 𝑝 − 1 (𝑟 − 1)(𝑝−1) ∙ (𝑝 − 1)(𝑟−1) 
𝑉5 ∪ 𝑉6 𝑞 − 1 𝑝 − 1 (𝑞 − 1)(𝑝−1) ∙ (𝑝 − 1)(𝑞−1) 

 

Theorem 4 Let 𝑉𝑖 ∪ 𝑉𝑗 ⊆ ℤ𝑝 × ℤ𝑞 × ℤ𝑟 be such that Γ(𝑉𝑖 ∪ 𝑉𝑗) forms a complete bipartite 

subgraph of the zero-divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟). Then the first multiplicative Zagreb 

index of Γ(𝑉𝑖 ∪ 𝑉𝑗) is given by: 

Π1 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = |𝑉𝑖|
2|𝑉𝑗| ⋅ |𝑉𝑗|

2|𝑉𝑖|
= (|𝑉𝑖|

|𝑉𝑗| ⋅ |𝑉𝑗|
|𝑉𝑖|
)
2

= 𝑁𝐾 (Γ(𝑉𝑖 ∪ 𝑉𝑗))
2

. 

Proof. 
According to Proposition 1, the degree of each vertex 𝑣 ∈ 𝑉𝑖, deg(𝑣) = |𝑉𝑗|, while the 

degree of each vertex 𝑣 ∈ 𝑉𝑗, deg(𝑣) = |𝑉𝑖|. Thus, by Definition 5, the first multiplicative 

Zagreb index of Γ(𝑉𝑖 ∪ 𝑉𝑗) is given by: 

Π1 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = ∏ (deg (𝑣))2

𝑣∈𝑉(Γ(𝑉𝑖∪𝑉𝑗))

 

     = ∏(deg (𝑣))2

𝑣∈𝑉𝑖

∙ ∏(deg (𝑣))2

𝑣∈𝑉𝑗

 

                        = (|𝑉𝑗|)
2|𝑉𝑖|

∙ |𝑉𝑖|
2|𝑉𝑗| 
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                       = (|𝑉𝑖|
|𝑉𝑗| ⋅ |𝑉𝑗|

|𝑉𝑖|
)
2

 

                       = 𝑁𝐾 (Γ(𝑉𝑖 ∪ 𝑉𝑗))
2

.                                                   ∎ 

 
Next, we calculate the first multiplicative Zagreb index, which involves squaring the 

degrees of vertices and taking their product. For the subgraph Γ(𝑉1 ∪ 𝑉6), this index 
provides further insight into how vertex degrees are distributed across both partitions. 
 
Example 5 The first multiplicative Zagreb index of the subgraph Γ(𝑉1 ∪ 𝑉6) in the zero-
divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) is given by: 

Π1(Γ(𝑉1 ∪ 𝑉6)) = ((𝑞 − 1)(𝑟 − 1))
2(𝑝−1) ∙ (𝑝 − 1)2((𝑞−1)(𝑟−1)). 

Proof. 
From Table 1, it can be seen that the degree of each vertex 𝑣 ∈ 𝑉1, deg(𝑣) = 𝑝 − 1, while 
the degree of each vertex 𝑣 ∈ 𝑉6, deg(𝑣) = (𝑞 − 1)(𝑟 − 1). Thus, the first multiplicative 
Zagreb index is obtained as follows:  
 

Π1(Γ(𝑉1 ∪ 𝑉6))  = ∏ (deg (𝑣))2

𝑣∈𝑉(Γ(𝑉1∪𝑉6))

 

     = ∏(deg (𝑣))2

𝑣∈𝑉1

∙∏(deg (𝑣))2

𝑣∈𝑉6

 

                              = (𝑝 − 1)2((𝑞−1)(𝑟−1)) ⋅ ((𝑞 − 1)(𝑟 − 1))2(𝑝−1) 

    = ((𝑞 − 1)(𝑟 − 1))2(𝑝−1) ∙ (𝑝 − 1)2((𝑞−1)(𝑟−1)).  ∎ 
 

Similarly, the first multiplicative Zagreb index of the subgraphs  Γ(𝑉2 ∪ 𝑉5), Γ(𝑉3 ∪
𝑉4), Γ(𝑉4 ∪ 𝑉5), Γ(𝑉4 ∪ 𝑉6), and Γ(𝑉5 ∪ 𝑉6) can be determined using the same approach. 
Applying Theorem 4 to each subset 𝑉𝑖 and 𝑉𝑗, we can compute the first multiplicative 

Zagreb index for several pairs of subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗). The results of these computations 

are summarized in Table 5 below. 
 

Table 5. The first multiplicative Zagreb index of complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) 

𝑽𝒊 ∪ 𝑽𝒋  |𝑽𝒊| |𝑽𝒋| 𝚷𝟏 (𝚪(𝑽𝒊 ∪ 𝑽𝒋)) 

𝑉1 ∪ 𝑉6 (𝑞 − 1)(𝑟 − 1) 𝑝 − 1 ((𝑞 − 1)(𝑟 − 1))2(𝑝−1) ∙ (𝑝 − 1)2((𝑞−1)(𝑟−1)) 
𝑉2 ∪ 𝑉5 (𝑝 − 1)(𝑟 − 1) 𝑞 − 1 ((𝑝 − 1)(𝑟 − 1))2(𝑞−1) ∙ (𝑞 − 1)2((𝑝−1)(𝑟−1)) 
𝑉3 ∪ 𝑉4 (𝑝 − 1)(𝑞 − 1) 𝑟 − 1 ((𝑝 − 1)(𝑞 − 1))2(𝑟−1) ∙ (𝑟 − 1)2((𝑝−1)(𝑞−1)) 
𝑉4 ∪ 𝑉5 𝑟 − 1 𝑞 − 1 (𝑟 − 1)2(𝑞−1) ∙ (𝑞 − 1)2(𝑟−1) 
𝑉4 ∪ 𝑉6 𝑟 − 1 𝑝 − 1 (𝑟 − 1)2(𝑝−1) ∙ (𝑝 − 1)2(𝑟−1) 
𝑉5 ∪ 𝑉6 𝑞 − 1 𝑝 − 1 (𝑞 − 1)2(𝑝−1) ∙ (𝑝 − 1)2(𝑞−1) 

 

Theorem 5 Let 𝑉𝑖 ∪ 𝑉𝑗 ⊆ ℤ𝑝 × ℤ𝑞 × ℤ𝑟 be such that Γ(𝑉𝑖 ∪ 𝑉𝑗) forms a complete bipartite 

subgraph of the zero-divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟). Then the second multiplicative 

Zagreb index of Γ(𝑉𝑖 ∪ 𝑉𝑗) is given by: 

Π2 (Γ(𝑉𝑖 ∪ 𝑉𝑗)) = (|𝑉𝑖||𝑉𝑗|)
|𝑉𝑖||𝑉𝑗|

. 

 
Proof. 

For any 𝑢𝑣 ∈ 𝐸(Γ(𝑉𝑖 ∪ 𝑉𝑗)), we have deg(𝑢) = |𝑉𝑗| and deg(𝑣) = |𝑉𝑖|. Therefore, 

according to Definition 6, the second multiplicative Zagreb index of Γ(𝑉𝑖 ∪ 𝑉𝑗)  is: 
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Π2 (Γ(𝑉𝑖 ∪ 𝑉𝑗))   = ∏ deg (𝑢) ∙ deg (𝑣)

𝑢𝑣∈𝐸(Γ(𝑉𝑖∪𝑉𝑗))

 

= |𝑉𝑗||𝑉𝑖|
|𝑉𝑖||𝑉𝑗| 

     = [|𝑉𝑖||𝑉𝑗|]
|𝑉𝑖||𝑉𝑗|

.                                                               ∎ 

 
Finally, the second multiplicative Zagreb index is determined by multiplying the 

degrees at both ends of each edge and taking the product over all edges. In the case of 𝑉1 ∪
𝑉6, this index captures how interactions between vertex pairs contribute to the graph's 
topological complexity. 
 
Example 6 The second multiplicative Zagreb index of the subgraph Γ(𝑉1 ∪ 𝑉6) in the zero-
divisor graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟) is given by: 

Π2(Γ(𝑉1 ∪ 𝑉6)) = [(𝑝 − 1)(𝑞 − 1)(𝑟 − 1)](𝑝−1)(𝑞−1)(𝑟−1). 

Proof. 
Given that 𝑢𝑣 ∈ 𝑉(Γ(𝑉1 ∪ 𝑉6)), with deg(𝑢) = 𝑝 − 1 and deg(𝑣) = (𝑞 − 1)(𝑟 − 1), the 
second multiplicative Zagreb index can be expressed as follows:  
 

Π2(Γ(𝑉1 ∪ 𝑉6)) = ∏ deg (𝑢) ∙ deg (𝑣)

𝑢𝑣∈𝑉(Γ(𝑉1∪𝑉6))

         

                                      = [(𝑝 − 1)(𝑞 − 1)(𝑟 − 1)](𝑞−1)(𝑟−1)(𝑝−1) 
                                       = [(𝑝 − 1)(𝑞 − 1)(𝑟 − 1)](𝑝−1)(𝑞−1)(𝑟−1).                        ∎ 

 
Similarly, the second multiplicative Zagreb index of the subgraphs Γ(𝑉2 ∪ 𝑉5), Γ(𝑉3 ∪

𝑉4), Γ(𝑉4 ∪ 𝑉5), Γ(𝑉4 ∪ 𝑉6), and Γ(𝑉5 ∪ 𝑉6) can be determined using the same approach. 
Applying Theorem 5 to each subset 𝑉𝑖 and 𝑉𝑗, we can compute the second multiplicative 

Zagreb index for several pairs of subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗). The results of these computations 

are summarized in Table 6 below. 
 

Table 6. The second multiplicative Zagreb index of complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗) 

𝑽𝒊 ∪ 𝑽𝒋  |𝑽𝒊| |𝑽𝒋| 𝚷𝟐 (𝚪(𝑽𝒊 ∪ 𝑽𝒋)) 

𝑉1 ∪ 𝑉6 (𝑞 − 1)(𝑟 − 1) 𝑝 − 1 [(𝑝 − 1)(𝑞 − 1)(𝑟 − 1)](𝑝−1)(𝑞−1)(𝑟−1) 
𝑉2 ∪ 𝑉5 (𝑝 − 1)(𝑟 − 1) 𝑞 − 1 [(𝑝 − 1)(𝑞 − 1)(𝑟 − 1)](𝑝−1)(𝑞−1)(𝑟−1) 
𝑉3 ∪ 𝑉4 (𝑝 − 1)(𝑞 − 1) 𝑟 − 1 [(𝑝 − 1)(𝑞 − 1)(𝑟 − 1)](𝑝−1)(𝑞−1)(𝑟−1) 
𝑉4 ∪ 𝑉5 𝑟 − 1 𝑞 − 1 [(𝑞 − 1)(𝑟 − 1)](𝑞−1)(𝑟−1) 
𝑉4 ∪ 𝑉6 𝑟 − 1 𝑝 − 1 [(𝑝 − 1)(𝑟 − 1)](𝑝−1)(𝑟−1) 
𝑉5 ∪ 𝑉6 𝑞 − 1 𝑝 − 1 [(𝑞 − 1)(𝑟 − 1)](𝑞−1)(𝑟−1) 

 

CONCLUSIONS 

This paper investigates the structural and topological properties of the zero-divisor 
graph Γ(ℤ𝑝 × ℤ𝑞 × ℤ𝑟), where 𝑝, 𝑞, and 𝑟 are distinct prime numbers. The graph is 

analysed based on the structure of its nonzero zero-divisors, with particular emphasis on 

induced complete bipartite subgraphs Γ(𝑉𝑖 ∪ 𝑉𝑗), formed by combining disjoint subsets 

whose zero components occupy different positions. For each such subgraph, the energy, 
Laplacian energy, and three degree-based multiplicative topological indices are 
computed: the Narumi–Katayama index, and the first and second multiplicative Zagreb 
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indices. The results reveal consistent patterns in the degree distributions and energy 
expressions, which depend on the cardinalities of the corresponding sets 𝑉𝑖 and 𝑉𝑗.  

This study is limited to commutative rings of the form ℤ𝑝 × ℤ𝑞 × ℤ𝑟 , where 𝑝, 𝑞, and 

𝑟 are distinct prime numbers, and considers only induced complete bipartite subgraphs. 
A full analysis of the entire zero-divisor graph and other potential subgraph types is 
beyond the scope of this work. Future research directions may include extending the 
framework to rings of the form ℤ𝑝𝑎 × ℤ𝑞𝑏 × ℤ𝑟𝑐 , where 𝑎, 𝑏, 𝑐 ∈ ℤ+, to examine the 

influence of higher powers of primes on the resulting graph structures. Other possibilities 
involve generalisations to noncommutative rings or semirings, and investigating similar 
spectral and topological characteristics in alternative algebraic graphs, such as unit 
graphs and total graphs. Moreover, the application of the topological indices in fields such 
as algebraic coding theory and cryptography could be a practical significance, particularly 
since bipartite structures can serve as natural models for secure data transmission. In 
summary, the findings of this study provide deeper insights into how the algebraic 
properties of commutative rings influence the topological and spectral features of their 
associated graphs. 
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