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Abstract

Barrier options represent a particular type of exotic option that has gained popularity in global finan-
cial markets. These options are characterized by their ability to mitigate risk through an activation
mechanism contingent upon specific price limits. However, determining the price of options with
complex structures requires an efficient and accurate numerical approach. The objective of this study
is to develop and analyze a bino-trinomial tree model to determine the price of modified barrier op-
tions. These options serve as an alternative hedging strategy to minimize potential investor losses.
The model is constructed by combining a trinomial tree scheme in the initial step to enhance the flex-
ibility of asset price movements, followed by a binomial tree in subsequent steps to simplify compu-
tations. The novelty of this research lies in the application of the model to European down-and-out
call Options with multi-step moving barriers and European up-and-out call window barrier options,
which have not been extensively discussed in previous studies. The present study is grounded in
the principles of numerical accuracy, computational efficiency, and practical relevance in the con-
text of financial decision-making. The findings suggest that the bino-trinomial tree model possesses
the capability to produce stable and adaptive price estimates for complex barrier options, thereby
demonstrating its potential to serve as an effective alternative approach in pricing exotic options.
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1 Introduction

Since the early twentieth century, mathematical models in modern finance have undergone rapid devel-
opment, marked by the integration of probability and optimization in derivative pricing. This evolution
has been driven by the need for realistic models that can adapt to the dynamic fluctuations of market
dynamics.

Derivatives are financial instruments whose value is dependent on the value of the underlying asset
[1]. A derivative instrument that is frequently utilized in risk management is options [2]. In Indonesia,
options trading was first introduced in 2024, following its global inception through the Chicago Board
Options Exchange (CBOE) in 1973. In the context of the capital market, options are classified into
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two categories: vanilla options and exotic options [3]. Vanilla options are options whose payoff value
depends on the stock price at the time of exercise. In contrast, exotic options are options whose payoff
value depends not only on the stock price at the time of exercise but also on stock prices during the
option’s lifespan.

A particular type of exotic option is the barrier option [4]. This option is most popular because it
offers lower prices than vanilla options [5] and has an activation mechanism based on certain price limits
that serve as risk and return controls for investors and option issuers [6].

The pricing of barrier options represents a critical aspect of derivative modeling, particularly in cases
where these options exhibit intricate characteristics. There are two general approaches to option pricing:
the analytical method and the numerical method [7]. The analytical approach is frequently selected for its
ability to produce explicit solutions. One of the most well-known analytical models is the Black-Scholes-
Merton (BSM) model, which serves as the foundation for the development of barrier option pricing
theory. The BSM model is capable of providing closed-form solutions for vanilla options and certain
simple barrier options, under the assumption of an ideal market and constant volatility [8]. However, the
efficacy of this model is significantly reduced when applied to options with additional features, such as
dynamic barriers, partial barriers, or path-dependent barriers, as the mathematical formulation becomes
too complex or even unattainable in closed form [9].

In contrast, numerical methods have been demonstrated to exhibit superiority due to their ability to
manage modified option structures with high flexibility, despite their elevated computational costs [10].
Various numerical methods are frequently used in the context of option pricing, including the Monte
Carlo simulation method [11], the finite difference method [12], and the lattice method [13].

In the context of modified barrier options, a numerical approach constitutes an appropriate alterna-
tive, as it is capable of capturing the complexity of market characteristics with greater realism. Among
the various numerical methods, this study decided to utilize the lattice approach because it is regarded
as more efficient and flexible. The finite difference method, while precise in certain circumstances,
necessitates an explicit form of the option differential equation, which is not universally available, par-
ticularly when the option incorporates features such as dynamic barriers. In contrast, the Monte Carlo
method requires a substantial number of simulations to achieve convergent estimates, resulting in higher
computational costs [13].

The binomial tree model, which was introduced by Cox, Ross, and Rubinstein (CRR) [14], is a
frequently employed lattice method. This is primarily due to the fact that it is both straightforward
and simple to implement. Despite its application in the pricing of barrier options, this model exhibits
suboptimal efficiency in managing the intricacies inherent in such options. The primary deficiency of
the CRR model stems from distribution error, which stems from the approximation of the lognormal
distribution with a discrete distribution, and nonlinear error, which emanates from the nonlinearity of
option values, particularly in barrier options, leading to substantial fluctuations in value over an extensive
number of steps [15].

In order to overcome the limitations of the binomial model, the Kamrad—Ritchken (K-R) trinomial
method has been introduced for barrier option pricing [16]. Asnawi [17] applied the K-R trinomial model
in the context of barrier options, producing results that were more accurate than those produced by the
binomial method. However, the application of this model to complex options or those with large step
sizes can result in a significant increase in complexity and computational expense.

Binomial and trinomial models have limitations in handling barrier options with dynamic structures.
To address this challenge, Dai and Lyuu [18] proposed the bino-trinomial tree model (BTT), which
integrates the strengths of both approaches. Specifically, the BTT model leverages the flexibility of price
movements characteristic of the trinomial model in the early stages, while leveraging the computational
efficiency of the binomial model in the later stages. This approach has been demonstrated to enhance
accuracy without substantial augmentation of the computational load.

A relevant study by Agustina [19] modified the BTT model for European call options by incorporat-
ing volatility uncertainty using triangular fuzzy numbers. This modification resulted in a price range that
reflects market fluctuations and risk preferences. However, the study’s primary focus was on parameter
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uncertainty rather than on the design of options.

In contrast to the aforementioned approach, this study builds on Dai and Lyuu’s BTT framework
by expanding its application to more complex barrier options, specifically the shifting barrier type, also
known as moving barrier options [20]. Moving barrier options enable investors to manage risk and ad-
just their hedging strategies to market changes gradually, without the need to establish a single, overly
restrictive barrier level. In order to enhance the relevance of the model to the dynamic nature of capital
markets, the researchers will also propose the utilization of this model to address multi-step single mov-
ing barrier cases. This approach is undertaken to furnish a substitute solution for the management of risk
exposure that is more optimal for companies and investors who necessitate more flexible and effective
hedging instruments in complex and dynamic markets [21].

However, researchers also recognize that companies or investors sometimes face challenges in de-
termining the price of barrier options where the barrier does not apply throughout the option’s lifespan
but only during specific periods deemed most relevant. In such situations, partial barrier options, also
known as window barrier options [22], offer an equally attractive solution. These options allow investors
to project according to their specific needs to obtain more appropriate protection and returns. This option
type is a highly relevant, measurable, and efficient hedging tool in dealing with market dynamics.

To the best of the author’s knowledge, there has been no research on the use of the binomial-trinomial
tree model to determine the price of partial barrier options or multi-step single moving barrier options,
which is also the basis for conducting this research.

2 Methods

This study implements the bino-trinomial tree (BTT) method to valuation exotic barrier options. The
following discussion will analyze two types of options: European call options with multi-step moving
down-and-out barriers and European call options with window up-and-out barriers. Subsection 2.1 de-
scribes the construction of the model, Subsection 2.2 describes the barrier option framework, followed
by the forward stock price construction in Subsection 2.3 and the determination of option value through
backward induction in Subsection 2.4.

2.1 Model Construction
2.1.1 Multi-Step Moving Barrier

Referring to Figure 1, it can be posited that three monitoring time periods may be considered, namely
[0,T1],(T\,Ti + 1], and (T} + T», Ty + T» + T3]. For each of these times, there exist lower barriers desig-
nated L;,L,, and L3, respectively.

The branching BTT that originates from node § is constructed through the integration of multiple
basic bino-trinomial trees (bBTT) that emanate from node S,X,D,E,F,Z,L,M,N,O,P, and Q. bBTT is
a combination of the CRR binomial tree model and the K-R trinomial tree model. In this model, the initial
step is a trinomial tree, and the subsequent steps are binomial trees. The trinomial step at the beginning
is used to capture asset price dynamics more flexibly (up, down, or constant) and is especially important
if there are features such as barriers. The subsequent steps utilize the binomial method to simplify the
calculations. If the sequence is inverted, the initial flexibility is lost and the complexity increases. The
initial segment of the binomial tree, emanating from node A, B,C when Aty. The cell width is equivalent
to the time-step length of the tree At and the cell height of the grid is 6v/At;. Notation ¢ indicates the
volatility of asset prices, and the height of the grid in the binomial tree reflects the magnitude of price
deviations that may occur in a single time step. This is used to ascertain the structure of the tree and
the accuracy of option price calculations. The second part of the binomial tree is initiated from node
Y,G,H,I,J,K when T + At,. The cell width is equivalent to the time-step length of the tree Az, and the
cell height of the grid is 61/At, ). The third binomial tree section begins at node Z,L,M,N, O, P,Q when
T + T>. The cell width is equivalent to the time-step length of the tree Az3 and the cell height of the grid

1S 0/ Af3).
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Figure 1: Structure of the Bino-Trinomial Tree for Pricing European Down-and-Out Call Options with Multi-Step
Moving Barriers

To ensure the efficacy and accuracy of option prices obtained, it is imperative that the BTT satisfy the
following two properties: firstly, it must have nodes that coincide with each discrete barrier, and secondly,
it must possess valid trinomial tree branching probabilities. This approach is adopted to ensure the
model’s capacity to manage non-linearity errors. In the context of single-barrier systems, the alignment
of nodes to coincide with each barrier is typically achieved by defining the time step for monitoring as
At, = L for x depending on the monitoring time and N an integer. To fulfill the two properties mentioned
carlier and ascertain the option value, the following steps are presented.

In the first step, the focus must be placed on the part of the bBTT at [0,7;], which means that
the bBTT initiates from node S. To construct the bBTT for the single barrier option, it is necessary to
select candidate nodes A, B, and C from other nodes that guarantee a valid probability of p,, p,,, and
Pa (0O < py,pm,pa < 1). The selection of candidate nodes is determined by defining the stock price for

node X as Sy and the V-log-price of stock price V' as In (VV/) Therefore, it can be concluded that the
V-log-price of z is equivalent to the stock price of Ve*. At the initial monitoring instance, the Sg-log-price
of the barrier L; is designated as [} = In (IS‘—;) It is imperative to consider that the value of Ss-log-price
at each gray node in the trinomial tree step At is

ey

Iy +2jo+/ Aty ; if the number of steps of CRR is even
L+ 2j+1)oVAr, ;else

for an integer j.
The increase and decrease factors in the CRR binomial are represented by o+/Af, and —o+/At,,
respectively. Subsequently, the mean and variance functions are defined as follows.

He = <r_‘;2>x @)

var(x) = 6%x

The mean and variance functions of the Sg-log-price at nodes A, B, and C are represented by ((Af;)
and var(Aty), respectively. The parameter r denotes the risk-free interest rate. The difference between ad-
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jacent Sg-log-price values (e.g., nodes A and B) is 20+/At,. Therefore, it can be concluded with a degree
of certainty that there is a unique vertex located within the interval [ (Ar,) — 6+/Ary, 1u(Ar) + 6+/Ary ],
select node B as the vertex. The Sg-log-price at B is denoted by [, which is the Ss-log-price that is closest
to u(At,). Subsequently, the Ss-log-price at A and C are fl +20+/At; and ft —20+/Aty, respectively. The
subsequent step is to define.

B=u—p(Ar)
o =p+20\/At,— u(At) = B +20+/ Aty 3)
Y=U—20\/Aty — u(Aty) =B —20+/At,

The equation resulting from the first equation is € [—G Aty, 0 Atx], with o > B > 7. The
calculation of the branching probability is obtained through the solution of the following system of
equations.

(04 ﬁ Y Pu Var(AIX)
o B V| lpm|=| O 4)
1 1 1 Pd 1

The Eq. 4 can be solved through the application of Cramer’s rule. The resulting equation is as
follows.

det= (B —a)(y—B)(y—a) <0
det,, = (oy+ var(Aty))(a —7y)
dety = (af +var(At,))(f — )
det, = (By+var(Aty))(y—B)

Therefore, the branching probability values are given by the following equations: p, = ‘ffel;‘ ,DPm =

djef't" ,and pg = de"‘ . Subsequently, the validity of the branching probability results will be demonstrated.

It can be proven that DPusPm, Pa = 0. Since det < 0, it is sufficient to demonstrate that det,, det,,,det; < 0.
Given that ot > B > v, it is sufficient to demonstrate that B+ var(Az,) > 0, ay+var(Az,) <0, and o +
var(At,) > 0. See.

2
By+var(Aty) = B2 — 2Bo /Aty + 02A1 = (ﬁ - G\/Atl) >
y+var(Ar) = B% —46%At; + 267 A1 = B? —26%A1 <0

2
af +var(Ar) = % +2Bc At1+62At1:<[5+0 Atl) >0

It has been determined that the branching opportunities are valid.

2.1.2  Window Barrier

In constructing a bBTT model with an up-and-out window barrier , similar steps can be used as when
constructing a bBTT model with a down-and-out barrier. This refers to research conducted by Dai and
Lyuu [18]. However, the difference lies in the fact that for the down-and-out barrier option, the knock-
out condition occurs if the asset price falls below the lower boundary throughout the entire period until

maturity, so each node must be checked against the lower log-barrier value [ = In (S£s> Conversely,
for the up-and-out window barrier option, the knock-out condition only applies within a specific time

interval and occurs if the asset price rises above the upper limit H, with the log-barrier [ = In (s%)
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2.2 Barrier Option Framework

Barrier options are a class of path-dependent options whose payoff depends on the price movement of the
underlying asset when it attains a predetermined barrier price level during the life of the option. In this
study, a European call option is selected based on exercise time. This option entails the right to purchase
shares at the strike price within an agreed period, and it can only be exercised at maturity. Concurrently,
the employed option is the barrier knock-out option. There are two payoff conditions at maturity time 7
, strike price K, final asset price St (at maturity), initial asset price Sy (at time zero), lower barrier L, and
upper barrier H, given by [23]:
a. Down-and-Out

max (St — K,0) ;if So > L
payoff = | 57 ~K.0) 5)
0 ;else.
b. Up-and-Out
max(Sy — K,0) ;ifSo < H
payof f = ( ) (6)
0 ;else.

2.3 Forward Construction of Stock Prices
2.3.1 Multi-Step Moving Barrier

In determining the stock price S;; employing a forward phase. At the trinomial step 71, the stock prices
at nodes A,B, and C are a = bu?, b = Sse?, and ¢ = bd?, respectively. In the following stage of the
procedure, the binomial step stock price is to be calculated at the initial monitoring time. This is to be
done in connection with the trinomial step stock price that was obtained earlier.

After converting the log-price value into the actual stock price at the first monitoring time, the BTT
is built at the second monitoring time using the stock price of the valid node at the first monitoring
time as the starting point. At the second monitoring time, the BTT grows at [T}, T; + T»]. As previously
established, to ensure that BTT is aligned with L,, the cell width is set to A, = % . Additionally, the
Sp-log-price of the barrier L, is selected, with [, defined as ln(é—;) Using analogous steps, determine
the nodes that are above L,, and select the successors of the nodes X,D,E, and FF when T + At,. To
ensure that the branching opportunity is valid, consider the node D as a representative point. The Sp-
log-price of the light grey vertex can be expressed in Eq. 1, where [, and At, are replaced by [, dan
At, respectively. Furthermore, a single light gray vertex of Sp-log-price will exists within the interval
[1(Ar) — 0/At, 1L(A1y) + 6+/Ary)|. For instance, the vertex indicated here as "node H" in Figure 1.
The Sp-log-price for node H is defined as fi The Sp-log-price of the other D successors is set to fL(Az,) +
0/ Ar and [i1(Arp) — 6/ A, respectively. The parameters @, B, and ¥ should be defined as in Eq. 3, with
W (At,)and At, replaced by u(Aty) and At,, respectively. In addition, the branching probability of node D
can be solved by Eq. 4, where var(At,) is replaced by var(At,). However, in this case, there is not only one
bBTT that has a triple branching probability. However, given the uniformity in time-step values across
each section, the branching probability values will remain constant for the other bBTTs. It is sufficient
to demonstrate a single valid triple of branching probabilities, with the remaining triples being adjusted
accordingly. Subsequent to the substantiation of the validity of the branching opportunities, the stock
price should be constructed as was done in the initial monitoring time step.

The construction of the BTT for the third monitoring period is essentially analogous to the construc-
tion of the BTT for the second monitoring period. The objective is to ensure that a single layer of nodes
comes into contact with the L3 barrier. Subsequently, it is imperative to ascertain that the Sx-log-price of
each bBTT possesses a valid branching probability value. This can be accomplished by designating one
of the bBTTs that possesses a triple valid branching probability and making the requisite adjustments to
the others. The subsequent step involves the construction of a CRR tree, with nodes Wy, Wi, W>, and so
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forth serving as the foundation for this structure. It is evident that this model can be calibrated to align
with the strike price by manipulating the cell width, designated as At3, which is the time step.

2.3.2 Window Barrier

In general, the construction of the stock price for an up-and-out window barrier is analogous to the
construction of the stock price for a bBTT model with a down-and-out barrier. The primary distinction
lies in the direction of the log-barrier comparison, as delineated in Subsubsection 2.1.2., as well as in the
monitoring time frame that imposes limitations on the application of the knockout condition, which will
be addressed in greater detail in Subsubsection 2.4.2.

2.4 Backward Induction for Option Valuation
2.4.1 Multi-Step Moving Barrier

After constructing the stock price tree using the BTT model, the subsequent step involves determining the
option price through the backward induction method. This method involves the calculation of the option
value from the maturity time to the initial time, with consideration given to the movement of stock prices
and the application of barrier conditions that undergo change at each monitoring time interval. In the
initial stage, the option price is determined at maturity based on the standard payoff for a down-and-out
European call option, as illustrated in Eq. 5. Subsequently, a backward calculation is initiated, originating
from the most recent monitoring time and progressing towards the initial monitoring time. In the interval
[T1 + T> + A3, T + T + T3], the stock price is constrained to moving in either an upward or a downward
direction. Consequently, the option value is calculated based on the binomial tree formula [24]. Eq. 7
presents the binomial tree formula when the barrier type is European call down and out.
{emt (PuCjt1,it1+ pacjiv1), ifSj;i>L
C Jii = (7)
0, else.

L is adjusted to the monitoring time, for instance, when [T} + T + At3, T} + T + T3], the employed
barrier is designated as L3, along with Ar adjusted to Arz. The stock price factor exhibits an increase in
value as indicated by the expression u = ¢V while the stock price factor demonstrates a decrease in

value as indicated by the expression d = —e9VM | The values of the up and down probabilities in the
binomial model are given by p, = e;&%dd, and p; = 1 — p,, respectively.

In the subsequent stage, during the interval (7} + T», T} + T», At3], the stock price can increase, remain
constant, or decrease. Consequently, the option value is calculated using the K-R trinomial tree formula
[25]. Eq. 8 presents the trinomial tree formula with the type of a European down-and-out call option.

®)

o e ™M (PuCjt1itt + PmCjitt + Pacj—1i+1) ifS;i>L
M 0 selse.

L is adjusted to the monitoring time. For instance, when (T} + T, T} + T> + At3], the barrier used is
L3, and the Ar used is Arz. The stock price factor exhibits an increase of An increase of u = MoV and

a decrease of d = e~ *°VA' | with the condition that A = %, where N = lni"\;gL, no=1|n]J.
According to the trinomial model, the probability values of increase, remain unchanged, and decrease

are determined by p, = 555 + “2){?, pm=1—5,and pg = 71> — “2){5 respectively, where u = r — 162

This backward phase is performed until a value of Cy is obtained. This process is carried out in a
manner analogous to the previous steps, with the monitoring period being taken into consideration and
the model being adjusted accordingly.
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2.4.2 Window Barrier

As illustrated in Figure 2, it is assumed that there are 7; > 0 and #, < T within the interval [0, T]. Sub-
sequent to the construction of the stock price utilizing the bBTT model, it is imperative to ascertain
the validity of the triple branching probability and to ensure that the stock price node layer comes into
contact with the barrier.

Barrier

Asset Price T
—
=
=
&Lz
=
=
B L=
R ol
=
—
—
=
=
—=
=
=
=
=
&
=

w
S
=

0 t t T
! Time z

Figure 2: Schematic Representation of Stock Price Dynamics in a European Up-and-Out Call Option with Window
Barrier Feature

In this instance, the single window barrier option calculation should be performed using the backward
phase. In the absence of any barriers during the interval [T,1,], the payoff is to be calculated using the
payoff formula inherent to the binomial model. Subsequently, in the event that an upper barrier is present
within the interval [t;,#,), the option must be calculated using the formula established within the binomial
model for a European up-and-out call option. Subsequently, within the interval [0,¢;), where the barrier
is no longer in effect, the option price is to be calculated employing the binomial method. This is then
followed by the trinomial method, which will yield the option value at the initial time. Eq. 9 presents the
binomial tree formula for a European up-and-out call option.

©)

P e ™M (puCjtr,it1 +pacjiv) it Sji<H
M 0 selse.
In contrast, Eq. 10 presents the trinomial tree formula with the type of European up-and-out call
option [26].

(10)

P e ™M (PuCit1,it1 + PmCjit1 + Pacj—rir1) ifSji <H
M 0 selse.

3 Results and Discussion

This section presents the results of numerical tests conducted to evaluate the reliability of the Bino-
Trinomial Tree (BTT) model in determining the price of barrier options under complex conditions. Two
testing scenarios are discussed. The initial experiment focused on assessing various barrier options,
specifically European down-and-out call options with a multi-step moving barrier. The second test was
conducted on European up-and-out call options with a window barrier. Subsequent analysis focused on
three key metrics: price accuracy, convergence behavior, and computational efficiency.

3.1 A Test of the BTT Model for Multi-Step Single Moving Barrier Options

This section discusses the pricing of European down-and-out call options with multi-step moving barriers
using the Bino-Trinomial Tree (BTT) model and verifies it with benchmarks obtained from the Black-
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Scholes-Merton (BSM) analytical approach. Two experiments were conducted: constant barriers and
decreasing barriers.

3.1.1 Experiment involved the use of a constant barrier

Initial experiments were conducted with the following basic parameters: Sy = 95,K = 100,L =90,T =
1,06 =0.25, and r = 0.1. According to the BSM formula, the theoretical value of the down-and-out
European call option is 5.9968. In addition, the BTT model is implemented with a segmentation of
the monitoring time into three phases, designated as 7o = 0.25,71 = 0.5, and 7, = 1. The selection of
these time points is based on a periodic monitoring scheme that represents the quarterly practice in the
options market. This scheme reflects the actual condition in which the monitoring barrier is discrete.
The number of steps is structured as Ny = Nj, and N, = 2N, ensuring the time distribution remains
consistent with the interval length of each period. This approach maintains the accuracy of the stochastic
process discretization, prevents local numerical errors, and supports the stability and convergence of
the BTT scheme to the analytical solution. In this case, the barrier values are kept constant. That is,
Lo=L; =L, =90.

As illustrated in Figure 3, the convergence pattern of option values calculated using the BTT model is
in accordance with the benchmark for down-and-out European call options with a constant barrier. In this
scenario, Ly = L1 = L, = 90. The graph illustrates that as the number of steps in the simulation increases,
the option values generated by the BTT model increasingly approach the BSM benchmark value of
5.9968. Option value fluctuations are more significant at smaller step counts but become increasingly
stable and approach the benchmark value after approximately 1500 — 2000 steps.

5.9982

T T
—@— Bino-Trinomial Tree
——— Benchmark

5.998 -

5.9978 -

5.9976 -

Option Price

5.9974

5.9972 -

5.997 -

5.9968 -

I I . . . I . J
500 1000 1500 2000 2500 3000 3500 4000
Number of Steps

Figure 3: Convergence of the Bino-Trinomial Tree Model to the Black—Scholes-Merton Solution in Pricing Euro-
pean Down-and-Out Call Options with Constant Barrier (Lo = L; = L, = 90)

Table 1 provides quantitative data that corroborates the observations presented in the graph. A dis-
cernible trend emerges wherein the absolute error between the option values derived from the BTT model
and the BSM benchmark undergoes a consistent decrease as the number of steps increases. For instance,
at 100 steps, the error is 0.00121, while at 4000 steps, the error shrinks to only 0.00009. This finding
suggests that the BTT model demonstrates convergent properties toward the analytical BSM solution as
the discretization resolution is elevated.

The Root Mean Square Error (RMSE) value of the BTT model simulation relative to the BSM ref-
erence value is 0.000274, as indicated by the calculation results. The low RMSE value indicates a
negligible average squared deviation between the numerical results and the analytical solution. This
finding suggests that the BTT model is not only numerically convergent but also possesses a high degree
of accuracy and reliability in its representation of complex barrier option values.

The integration of graphical and numerical analysis demonstrates the viability of the BTT model as a
reliable and effective numerical approach for the valuation of barrier options, particularly in the context
of down-and-out call options with a fixed barrier.
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Table 1: Summary of Bino-Trinomial Tree Model Performance for Multi-Step European Down-and-Out Call

Options with Constant Barrier (Lo = L; = Ly = 90)

Number of Steps Option Price Benchmark Absolute Error
100 5.998012 5.9968 0.00121
500 5.997252 5.9968 0.00045
1000 5.997026 5.9968 0.00023
2000 5.996897 5.9968 0.00010
3000 5.996866 5.9968 0.00007
4000 5.996887 5.9968 0.00009

3.1.2  Experiment with decreasing barrier

To assess the model’s sensitivity to temporal variations in barrier levels, two simulation scenarios were
implemented. In the first scenario, the barriers were set as Lo = 90, L; = 80, and L, = 70, while in the
second scenario, the values were Ly = 90, L; = 70, and L, = 60. In both scenarios, all other parameters
are kept constant to ensure that the changes originate solely from the barrier variable. The simulation
results are presented in Figure 4, which illustrates the convergence behavior of the BTT model with
respect to the number of simulation steps for each scenario.

Figure 4 shows that the option price increased rapidly at the initial stage, then steadily reached
stability. To verify this stability numerically, a successive difference convergence test was used, which
involved calculating the absolute difference between the last four values of the simulation results. If all
differences are less than the tolerance threshold of 10~ the solution is considered to have converged
[27].
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Figure 4: Convergence Behavior of the Bino-Trinomial Tree Model for Pricing Multi-Step European Down-and-
Out Call Options with Decreasing Moving Barriers

As exhibited in Table 2, for Scenario 1, when the step exceeds 2000, the option price approaches
a stable value of approximately 6.5826. Conversely, for Scenario 2, the option value has a propensity
to converge to a higher number, which is approximately 6.6091. This tendency is consistent with the
principle that the lower the barrier level at the subsequent monitoring point, the smaller the likelihood of
a knock-out occurrence. Consequently, the option is more likely to remain active until maturity.

From a probabilistic standpoint, reducing the barrier expands the option’s survival area, thereby di-
rectly contributing to an increase in the expected value of the payoff at the end of the period. This
development serves to enhance the perceived value of the option to its holder. Consequently, the BTT
model exhibits not only adequate convergence capabilities but also sensitivity to the temporal character-
istics of the barrier, thereby rendering it effective for evaluating dynamic barrier options.

The results of the BTT model test demonstrate that the convergence pattern of the option prices is
influenced by the barrier structure used. In the initial experiment with a constant barrier (90,90, 90),
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Table 2: Summary of Bino-Trinomial Tree Model Performance for Multi-Step European Down-and-Out Call
Options with Decreasing Moving Barriers

Steps Option Price

Scenario1l Scenario 2

100 6.57511 6.60174
500 6.58097 6.60777
1000 6.58192 6.60860
1500 6.58230 6.60872
2000 6.58241 6.60898
2500 6.58253 6.60900
3000 6.58253 6.60902
3500 6.58262 6.60908
4000 6.58262 6.60915

as the number of steps increases, the option price demonstrates a decreasing trend. This is due to the
relatively low knock-out risk, which results in an initial approach that overestimates the option value.
However, as the discretization becomes more precise, the calculations become more accurate, and the
option value approaches the actual price. In contrast, in the second test (barriers 90, 80,70) and third
test (barriers 90,70, 60), where barriers decrease at each monitoring time, option prices instead exhibit
an increasing trend. This phenomenon occurs because, when the number of steps is still small, the
granularity of price movements is insufficient to represent the complex dynamics. Consequently, many
price paths are incorrectly deemed to have touched the barrier and disqualified. This results in option
value estimates being lower than they should be. However, as the number of steps increases, estimates
of price paths become more precise, and the overly high knock-out probability is rectified, causing the
option value to rise toward the convergent value. This finding confirms that barrier structure and the
number of steps significantly influence the accuracy of option pricing in a numerical tree-based approach.

3.2 A Test of the BTT Model for Single Window Barrier Options

In this section, the performance of the BTT model for the European up-and-out window call option
will be examined. This option type was selected because it reflects more realistic market conditions. The
objective of this test is to evaluate the model’s capacity to type options with knock-out risk when the asset
price rises through the upper barrier (H) at a specified monitoring time. This phenomenon differs from
the standard barrier, which remains valid until maturity. In this test, the European up-and-out window
call option is utilized with the following parameters:

So=100,K =90,r =0.1,6 = 0.2,T = 1,H = 110,#, = 0.25,t, = 0.75

The benchmark value is derived from the modified BSM formula method, as outlined in Stoklosa’s
research [28]. This method yielded a value of 2.20433. Given the continued viability of the K-R trinomial
model for testing such barriers, it is selected for comparison. This model is recognized for its stability
and accuracy in evaluating barrier options. Concurrently, the BTT model was developed to enhance
numerical efficiency and stability, particularly in the context of complex barriers. The comparison is
conducted with the same number of steps for both models. The following results were obtained from the
convergence:

As illustrated in Figure 5, the convergence pattern of option values from the BTT and K-R trinomial
models is evident for a range of discretization steps. It is evident that the option values from both methods
converge towards the benchmark value as the number of steps increases, with substantial fluctuations
observed only at low numbers of steps. This finding suggests that both methods can be employed to
model option values with a degree of accuracy that can be enhanced by selecting an appropriate number
of steps.
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Figure 5: Convergence Analysis of Bino-Trinomial Tree and Trinomial Kamrad-Ritchken Models for a European
Up-and-Out Call Option with Window Barrier toward the Analytical Black-Scholes Merton

Currently, Table 3 provides a comprehensive overview of the absolute error values and computation
times for each method. The BTT model has been shown to consistently provide estimation values that
are more proximate to the benchmark values and that require less computing time than the K-R trinomial
method. For example, when N = 1000, the BTT error value is 0.0059 with a time of 0.3566 seconds.
In comparison, the K-R trinomial method yields an error of 0.0088 with a time of 0.6361 seconds.
This pattern persists up to N = 5000, and BTT produces an error value of 0.0013 in 17.1792 seconds,
compared to the K-R trinomial method, which generates an error value of 0.0018 in 53.8274 seconds.

Table 3: Comparison of Option Price, Error, and Computation Time for Trinomial Tree and Bino-Trinomial Tree
Models Applied to a European Up-and-Out Window Call Option

Trinomial Tree Bino-Trinomial Tree
Number of Steps
Option Price  Error  Computation Time Option Price  Error =~ Computation Time
100 2.2911 0.0868 0.0498 2.3088 0.1045 0.0362
500 2.2211 0.0168 0.1058 2.2267 0.0224 0.0814
1000 2.2131 0.0088 0.6361 2.2102 0.0059 0.3566
2000 2.2086 0.0043 4.2086 2.2076 0.0033 1.6034
3000 2.2072 0.0029 12.8533 2.2065 0.0022 4.5544
4000 2.2065 0.0022 28.8375 2.2059 0.0016 9.5192
5000 2.2061 0.0018 53.8274 2.2057 0.0013 17.1792

These results are of particular significance for practitioners and analysts in the capital market, par-
ticularly in the context of valuing exotic derivative products such as barrier options with specific time
windows. A more efficient and accurate BTT model can be used for faster and more reliable fair value
determination, enabling market participants to make hedging and pricing decisions with lower risk and
computational costs.

4 Conclusion

This study demonstrates the effectiveness of the bino-trinomial tree model in pricing barrier options with
modified structures, including moving and window barriers. The model offers a significant computational
advantage while maintaining high pricing accuracy. These characteristics make it particularly suitable for
modern derivative markets where efficiency and flexibility are critical. Future research should explore
its application to American-style barrier options and stochastic volatility models to further assess its
robustness in diverse financial settings.
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