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Abstract

In actuarial practice, mortality modeling is essential, especially in life insurance and social protec-
tion planning. The purpose of this study is to estimate the parameters of the Gompertz Mortality
Law using three distinct approaches: Poisson Regression on the Indonesian Population Mortality
Table (TMPI) 2023, Weighted Least Squares (WLS), and Nonlinear Least Squares (NLLS) using the
Gauss-Newton algorithm. The force of mortality is computed and Gompertz parameters are estimated
using each method as part of the methodological framework. The analysis comprises the estimation
of parameters for each method, the transformation of the Gompertz model, and the computation of
values in the mortality table. The WLS method work in a way by converting natural logarithms from
the force of mortality function with dx as weight, creating the dx function, and optimizing the log
ordered function on Poisson Regression, the WLS method reduces the number of squares of error.
The Root Mean Square Error (RMSE), which compares the expected and actual mortality rates, is
used to evaluate each models accuracy. The NLLS approach consistently yields the most accurate
estimates, according to the results. This study improves actuarial modeling procedures in Indonesia
by providing a new comparative method for parameter estimation on national mortality data.
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1 Introduction

Life and death are two inseparable things, where death is often unpredictable with certainty both time and
caused [1]. Life insurance is present as a solution to provide financial protection to heirs from the insured
in the face of unexpected risk of death [2]. Actuarial calculations in life insurance are very dependent
on the mortality table that reflects the actual events, but for more flexible applications a mortality law
approach such as Gompertz and Makeham law is needed.

Mortality law such as Gompertz is used to model the death rate that increases exponentially as we
get older and are very useful in the development of life insurance products and long-term financial plan-
ning [3]. In Indonesia, the application of this law began to be used by insurance companies to perfect
mortality assumptions in actuarial calculations, such as in the development of life insurance products and
evaluating technical reserves [4]. The Gompertz model helps project life expectations more realistically
in avoiding the risk of lack of funds, both in the insurance sector and public policy such as social security
and elderly health financing [5].
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Despite its usefulness, one of the main challenges in implementing accurate mortality models in
Indonesia is the limited availability of high-quality mortality data [6]. This limitation highlights the need
for collaboration among industry practitioners, academics, and the government to develop models that
are both statistically reliable and suitable for the Indonesian demographic context. Most existing research
has used foreign datasets, and few studies have directly applied Indonesian mortality data in estimating
mortality model parameters.

To address this gap, this study utilizes the 2023 Indonesian Population Mortality Table (TMPI) to
estimate parameters of the Gompertz model. The parameters, α and β , which characterize the baseline
mortality rate and its rate of exponential growth with age [6], are estimated using three methods such
as Nonlinear Least Squares (NLLS), Weighted Least Squares (WLS), and Poisson Regression. Model
accuracy is evaluated using Root Mean Square Error (RMSE) to assess the predictive performance [7].

The study contributes into the effectiveness of several estimation techniques and contributes to the
local actuarial calculations of premium reserves or mortality assumption based from data driven concept,
especially Indonesian mortality data. Prior studies, such as those by Tai and Noymer [7] and Putra et
al. [8], suggest the advantage of WLS and Poisson Regression in estimating Gompertz parameters [9].
However, comparative applications using Indonesian data remain limited. This study aims to fill that gap
and demonstrate that the Gompertz model is especially suitable for adult age groups (35–60 years) where
mortality risk tends to increase exponentially in line with the models assumptions.

2 Methods

This section will be conveyed regarding this research method. The process begins with the preparation
of mortality data, the preparation of the Gompertz mortality model and the OLS, WLS, and Poisson
regression methods in estimating the parameters, calculating the value of qx based on the estimated value
of each method, and evaluating the results of the estimation of parameters using RMSE.

2.1 Data Preparation (Force of Mortality Calculations (mx))

Secondary data obtained from the Indonesian Population Mortality Table (TMPI) 2023, published by the
Indonesian Social Security Agency for Health. The table contains age-specific mortality probabilities for
age 0 to 111 years. Other death function values will be obtained through the table. In this step, function
value (mx) calculated based on the value of the function (mx). Calculation begins by initializing the
value of (l0) is 100,000 which indicates that it is assumed to cover the mortality rate per 100,000 people
[8]. Next, the value can be calculated (↕x) for x = 1,2,3, and etc, with n = 1, then obtained

qx =
ℓx − ℓx+1

ℓx

qxℓx = ℓx − ℓx+1

ℓx+1 = (1− qx)ℓx. (1)

where ℓx states that the population that remains alive right at the age of x originating from the initial
population (ℓ0) [10]. Furthermore, the value of the dx function which states the number of people who
died exactly between the age of x and x+n from the initial population l0 [11]), that is

d0 = ℓ0 − ℓ1 (2)

and ℓx which states the number of years of life that someone survive x between x to x+n.

nLx = n(ℓx+n + nax.ndx)

L0 = ℓ1 +0,5d0 (3)

The value of 0.5 is the assumption that death occurs in the middle of the year and the value is not
calculated by the value in the mortality table [12]. Furthermore, the value of the mx function will be
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calculated which states the force of mortality measured per unit time [13].

nmx =
ndx

nLx
(4)

2.2 Gompertz Mortality Law

Gompertz Mortality Law was first introduced by Benjamin Gompertz in 1825 [11]. This model has two
parameters, namely the parameter α as the initial value of the function of the force of mortality and
parameter β as a speed of the speed of increasing the force of mortality to age [14]. Gompertz law
modeling that the rate of death or force of mortality (µx) increases exponentially with age [15].

The law of Gompertz mortality is defined by the rate of death as

µx = αβ
x, (5)

for x > 0, α > 0, and β > 1. The Survival Densitiy Function (SDF) is

SX(x) = exp
[∫ x

0
µy dy

]
= exp

[
α

ln β
(1−β

x)

]
. (6)

Furthermore, it can be calculated Probability Density Function (PDF) Gompertz mortality by multiplying
the rate of death and the survival distribution function [16]. Obtained PDF for Gompertz mortality is

fX(x) = µx ·SX(x) = αβ
x · exp

[
α

ln β
(1−β

x)

]
.

2.3 Estimation of parameters α and β on the Gompertz model

Parameters α and β on the Gompertz mortality law were conducted using three methods, namely NLLS
through the Gauss-Newton, WLS, and Poisson regression.

1. Non Linear Least Square (NLLS)
Estimated parameters of α and β carried out with an NLLS approach, namely by minimizing
the number of quadratic differences between empirical values and the prediction results of the
Gompertz mortality model

S(α,β ) =
n

∑
i=1

(mi −α ·β xi)2 (7)

Then, the partial derivative of the Eq. 7 function of the parameters α and β becomes

∂S
∂α

=−2
n

∑
i=1

(mi −α ·β xi)β
xi

∂S
∂β

=−2α

n

∑
i=1

(mi −α ·β xi)xiβ
xi−1

so that the NLLS equation system is formed
n

∑
i=1

(mi −α ·β xi)β
xi = 0

n

∑
i=1

(mi −α ·β xi)xiβ
xi−1 = 0

The equation has no exact solution, so a numerical approach is needed to solve the problem.
The method used in this study is the Gauss-Newton. The Gauss-Newton method is an iterative
algorithm to estimate the parameters α dan β in the Gompertz mortality model

mi = αβ
xi

by minimizing the square error between data and models. The steps for Gauss-Newton iterations
are [17]:
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(a) Determine the initial guess of the parameter α0 and β0.
(b) Calculate the residual

ri = mi −αβ
xi

which is the difference between data and models.
(c) Calculate the Jacobian matrix containing a partial residual derivative to α and β :

∂ ri

∂α
=−β

xi ,
∂ ri

∂β
=−αxiβ

xi−1

(d) Update the parameter with the formula

θ
(k+1) = θ

(k)− (JT J)−1JT r

with Jacobian matrix θ = (α,β )T , J, and residual vector r.
(e) Repeat steps 2-4 until the relative changes of parameters between iterations are very small

(convergent), namely ∣∣∣∣∣ θ̂k+1 − θ̂k

θ̂k

∣∣∣∣∣< δ

Through this process, the estimated parameters are improved in stage until they reach the optimum
value and the minimum error.

2. Weighted Least Square (WLS)
According to Montgomery et al. [18], linear regression model parameters with non-constant vari-
ants of errors can be estimated using the WLS method. In this method, the quadratic function of
the error is given weight wi so that the function is minimized to be

S(β0,β1) =
n

∑
i=1

wi (yi −β0 −β1zi)
2 . (8)

Based on the Eq. 8, WLS normal equation can be obtained

β̂0

n

∑
i=1

wi + β̂1

n

∑
i=1

wizi =
n

∑
i=1

wiyi, (9)

β̂0

n

∑
i=1

wizi + β̂1

n

∑
i=1

wiz2
i =

n

∑
i=1

wiyizi. (10)

Parameter estimator can obtain with completing the Eq. 9 and Eq. 10

β̂1 =
(∑n

i=1 wiyizi)∑
n
i=1 wi − (∑n

i=1 wiyi)(∑
n
i=1 wizi)(

∑
n
i=1 wiz2

i

)
∑

n
i=1 wi − (∑n

i=1 wizi)
2 ,

β̂0 =
∑

n
i=1 wiyi − β̂1 ∑

n
i=1 wizi

∑
n
i=1 wi

.

In the Gompertz model, the quadratic function of the error weighted for linear regression in the
natural logarithm transformation data is defined as

S(α∗,β ∗) =
n

∑
i=1

wi (ln µxi −α
∗−β

∗xi)
2 , (11)

where the weight wi is usually taken from the number of deaths dxi at the age xi.

Muhammad Rafael Andika Putra 548



Estimation of Gompertz Mortality Parameter Models. . .

By equating these variables to become

yi = ln µxi , zi = xi, β0 = α
∗, β1 = β

∗,

then the Gompertz parameter estimator is obtained by the WLS method

β̂
∗ =

(∑n
i=1 dxiyizi)∑

n
i=1 dxi − (∑n

i=1 dxiyi)(∑
n
i=1 dxizi)(

∑
n
i=1 dxiz

2
i

)
∑

n
i=1 dxi − (∑n

i=1 dxizi)
2 , (12)

α̂
∗ =

∑
n
i=1 dxiyi − β̂ ∗

∑
n
i=1 dxizi

∑
n
i=1 dxi

. (13)

The data in the mortality table is µxi and dxi can be directly used to calculate the parameter estima-
tion of the Gompertz model with the above equation.

3. Poisson Regression
According to Montgomery et al. [18], Poisson regression is one of the models used to explain the
relationship between observational data in the form of a count (number of events) with predictor
variables. In this model, it is assumed that the variable response yi in the form of chopped numbers,
that are yi = 0, 1, 2, . . .. Count is a statistical data type that describes the number of events that
can be calculated and have a non-negative integer value [19]. The Gompertz model in this case
can be written as

µx = αβ
x = elnα+x lnβ . (14)

Based on the Eq. 14, obtained

dx

lx
= elnα+x lnβ

dx = elnα+x lnβ+ln lx (15)

Eq. 15 can be considered a deterministic model. To enter stochastic aspects in accordance with
observation data, the model was developed into

dx = elnα+x lnβ+ln lx + ε,

with ε as an error. For example (α∗ = lnα) and β ∗ = lnβ and variable dxi is assumed to distribute
poisson with parameters λi, so

dxi = eα∗+β ∗xi+ln lxi + εi

λi = eα∗+β ∗xi+ln lxi .

Then, the Logarithmic Function for the data dxi is

lnL(α∗,β ∗) =
n

∑
i=1

(−λi +dxi lnλi − ln(dxi!))

lnL(α∗,β ∗) =
n

∑
i=1

(
−eα∗+β ∗xi+ln lxi +dxi(α

∗+β
∗xi + ln lxi)− ln(dxi!)

)
To find the values of α∗ and β ∗ which maximizes ln l, done by completing the equation

∂ lnL
∂α∗ =

n

∑
i=1

(
−eα∗+β ∗xi+ln lxi +dxi

)
= 0,

∂ lnL
∂β ∗ =

n

∑
i=1

xi

(
−eα∗+β ∗xi+ln lxi +dxi

)
= 0.

Because the equation is difficult to resolve analytically, the completion of the parameter estimation
α∗ and β ∗ are generally carried out using the help of programming software. In this study will be
assisted using Python.
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2.4 Calculating the Probability of Death (qx)

After obtaining the value of each parameter estimator, qx will be calculated for each of the resulting
Gompertz models.

FTx(t) = Pr(Tx ≤ t) = Pr(X ≤ x+ t|X > x)

FTx(t) = 1− Pr(X > x+ t)
Pr(X > x)

FTx(t) = 1− SX(x+ t)
SX(x)

. (16)

Calculation of qx requires the value of Sx(x), so that it will be calculated first using the Eq. 6.

2.5 Evaluating the Estimating Results

The process of evaluating predictive accuracy measurements is carried out for Gompertz parameters α

and β are obtained from each of the estimation methods. For the performance of the estimated model, it
will be measured using RMSE. As a model validation tool, RMSE can provide an overall error distribu-
tion picture [20].

RMSE =

√
1
n

n

∑
i=1

ei
2, (17)

with ei is error for i data, which is the difference between actual data and prediction results.

3 Results and Discussion

The results and analysis of this research will be explained in this section. Explanation of the results
and analysis will be divided into the results of the construction of the mortality table, the value of the
Gompertz Model estimator with each method, comparison of the value of qx based on the results of the
parameter estimates in each method, and the evaluation of the parameter estimates.

3.1 Construction of Indonesian Population Mortality Table 2023

The following are the results of the construction of the calculation of the functions in the TMPI 2023

Table 1: Construction results of Indonesian Population Mortality Table 2023
x qx px lx dx Lx mx
0 0,007880 0,992120 100000,00 788,00 99606,00 0,00791
1 0,002096 0,997904 99212,00 207,95 99108,03 0,00210
2 0,000900 0,999100 99004,05 89,10 98959,50 0,00090
...

...
...

...
...

...
...

109 0,518532 0,481468 187,24 97,09 138,70 0,70002
110 0,559684 0,440316 90,15 50,46 64,92 0,77717
111 1,000000 0,000000 39,70 39,70 19,85 2,00000

Table 1 as the construction results will be a reference in determining the value of the Gompertz mortality
parameter, especially the value of mx which will review the force of mortality based on age.

3.2 Estimation of Gompertz Parameters

Estimation of the parameters is done using four case group model that has been formed for each estima-
tion method using TMPI 2023 data in Table 1 as a calculated observation data.

1. Gompertz Model for male with age limitation from 35 to 100 years,
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2. Gompertz Model for female with age limitation from 35 to 100 years,
3. Gompertz Model for male with age limitation from 0 to 111 years, and
4. Gompertz Model for female with age limitation from 0 to 111 years.

For each case group of Gompertz model will be an estimation of parameters by the NLLS method through
the Gauss-Newton algorithm where the convergence limit is 10−6, WLS, and Poisson regression so that
as a whole produces twelve models of the estimated process. The following is a summary of values for
the α and β from each parameter in Table 2

Table 2: Gompertz Model Parameter Estimation Results based on case group

Group
α̂ β̂

NLLS WLS Poisson Regression NLLS WLS Poisson Regression
Male (35–100) 0,000025 0,000126 0,000200 1,099597 1,080947 1,073663

Female (35–100) 0,000007 0,000130 0,000151 1,110529 1,075340 1,072537
Male (0–111) 0,000037 0,000244 0,000247 1,095348 1,075315 1,070882

Female (0–111) 0,000003 0,000225 0,000170 1,119224 1,070744 1,071454

Table 2 displays the α̂ parameter represent the baseline hazard is consistently small across all groups
and methods. It tends to be lower in the elderly group (35–100 years), which aligns with theoretical
expectations that mortality accelerates at older age, reducing the need for a large initial hazard rate.
Meanwhile, the β̂ parameter shows more pronounced variation. NLLS generally estimates higher β̂ val-
ues compared to WLS and Poisson regression are contrast produces more moderate and stable parameter
values.

Notably, the estimates for female groups tend to have lower α̂ and higher β̂ indicating greater vari-
ability and acceleration in mortality risk. For example, the NLLS method estimates highest β̂ values
(1.099597 for male and 1.110529 for female) in the age group 35–100 years, where the Poisson re-
gression provides lowest values (1.073663 for male and 1.072537 for female). The results show that
NLLS estimates faster acceleration in death, especially in the elderly population. The extreme values
produced by NLLS for both parameters in this age group showed that Gompertz was more sensitive to
the exponential nature of the death of people at the age.

For the 0–111 years age group, the differences between methods become more moderate. For male,
the estimated β̂ range narrowly between 1.070882 and 1.095348 across methods. For female, the NLLS
method estimates β̂ are 1.119224, considerably higher than WLS (1.070744) and Poisson (1.071454).
This shows that the sensitivity of the parameter of the estimation method is greater in the female popula-
tion with broad age coverage.

Figure 1: Estimator α̂ and β̂ based on the method of estimating gompertz parameters

Figure 1 shows that Poisson regression generally produces the highest estimates, especially for the
age group 0–111 years which includes the effects of infant death in subfigure (a). NLLS consistently
reports the highest values for female 35–100 years in subfigure (b) which shows their sensitivity to expo-
nential growth of death in adulthood. The figures reinforces the findings previously that NLLS captured
the steep death curve in adulthood more effectively, while WLS and Poisson regression produced a more
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conservative and stable estimation. Thus, the choice of estimation methods affects not only the goodness
of compatibility but also the interpretation of death behavior throughout life.

This is in line with theoretical expectations that in old age where the probability of death increases
sharply, so that α as baseline hazard is lower. On the other hand, the β parameter shows a more signif-
icant variation between methods and groups where representing the level of mortality acceleration. The
estimated results show that NLLS approach tends to provide an estimated acceleration of death that is
higher than the WLS and Poisson regression methods while Poisson regression gives relatively stable
and moderate results. In addition, differences in the results of greater estimates in female groups than
male show the possibility of greater mortality distribution variability in female populations and deserve
a concern in the selection of actuarial or demographic models.

3.3 Probability of Death (qx) based on Gompertz Estimator

Sx(x) value are required in the calculation of qx. Therefore, it is necessary to calculate Sx(x) using the
Eq. 6 with the parameter values of α and β estimated results for each Gompertz model. For the male
Gompertz model with age limits from 0 to 111 years in the NLLS method, obtained

SX(0) = exp
[

0,0001002
ln(1,0826571)

(1− (1,0826571)0)

]
= 1.

Sx(1), Sx(2), and so on is calculated in the same way. Next, the qx is calculated based on the Eq. 16. For
the male Gompertz model with age limits from 0 to 111 years in the NLLS method, obtained

q0 = 1− SX(1)
SX(0)

= 1− 0,9998957
1

≈ 0,0001043.

q1, q2, and so on is calculated in the same way and also calculated for each other Gompertz model.
Overview of the value of the function qx each model is displayed with a graph in the Figure 2.

Figure 2: Function graph qx every Gompertz Model Estimated

Based from results of Figure 2, the NLLS curve is parallel to the empirical pattern of the TMPI, espe-
cially in the age range and the elderly prove that in line with the expected exponential growth in death.
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Meanwhile, Poisson regression tends to produce a more flat curve at an older age, especially the esca-
lation of death after the age of 60. In addition, the WLS curve sometimes deviates in young adult age
(20–40 years). This may be due to linear transformation which has an impact on decreased flexibility
and sensitivity. The main highlights that NLLS model not only gives a numerical compatibility that is
close to the value of the TMPI, but also follows the visual form of the development of death more ac-
curately. The upward curvature that is consistent under NLLS for the age of 35–100 years confirms that
this method is more sensitive to the dynamics of real life deaths in Indonesia’s data.

3.4 Evaluation of Estimation Results Performance

The RMSE value for each model is calculated by the Eq. 17. Defined the error for i data denoted with ei,
as a difference between the value of the function qx on TMPI 2023 and the function value of qx to i in
the estimated model, namely

ei = qxi TMPI 2023− qxi model. (18)

For the male Gompertz model with age limits from 0 to 111 years in the NLLS method, obtained

e1 = q0 TMPI 2023− q0 model = 0,00524−0,0001043 = 0,0051357.

For e2, e3,. . . , e112 is calculated in the same way. Furthermore, the RMSE value is calculated using the
Eq. 18, namely

RMSE =

√
1

112

112

∑
i=1

ei
2 =

√
0,00034029 ≈ 0,007461.

The ratio of RMSE values can be seen in the picture 3

Figure 3: Comparison of RMSE values for each estimated model

NLLS consistently produces the lowest RMSE in Figure 3 for all demographic scenarios based on gen-
der and age and confirmed as the most accurate approach methods. The difference in RMSE between
the more substantial methods in the age group 35–100 years. There is in line with the Gompertz law
assumptions where shows the model selection is very important when focusing on adult death. Poisson
regression tends to produce the highest RMSE perhaps due to overdispersion or underfitting in higher
age groups.

4 Conclusion

Across all demographic groups and age ranges, the results consistently demonstrated that the NLLS
method offered the best fit, both quantitatively and visually. First, it assumes the midpoint approximation
for the central exposure, which may introduce bias in younger age groups. Second, the model does not
incorporate confidence intervals or assess statistical uncertainty in the parameter estimates. Additionally,
the use of a fixed weighting scheme in WLS may not be optimal across all data conditions. For future
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research, it is recommended to estimate parameters directly from the probability of death function qx,
thereby avoiding assumptions related to the value of nax in mortality table calculations. In addition, the
value of dx used as weighted in this study can be explored further using other weighting methods, such
as Huber or Tukey. The results of this study hope can be applied to the calculation of actuarial modeling,
such as determining premium reserves and mortality assumption in life insurance.
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