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Abstract

Locating metric coloring is a variation of metric coloring in graphs that integrates vertex
coloring with the uniqueness of metric representations. In this coloring, each vertex in a
connected graph G = (V, E) is assigned a color such that the distance vectors to each color
class are distinct for every pair of different vertices. Let c : V (G) → {1, 2, . . . , k} be a coloring
function (not necessarily proper). The coloring c is called a locating metric coloring if, for any
two distinct vertices u, v ∈ V , their distance vectors r(u) = (d(u, V1), d(u, V2), . . . , d(u, Vk))
and r(v) = (d(v, V1), d(v, V2), . . . , d(v, Vk)) are distinct. So it is obtained Π = {C1, C2, . . . , Ck}
represents the partition of vertices by color classes. Thus, for every vertex, the distance
vector r(v|Π) = (d(V, C1), d(V, C2), . . . , d(V, Ck)) are different. Vertices may share the same
color, whether adjacent or not, as long as their metric representations are unique. The
smallest number of colors required for such a coloring is called the locating metric chromatic
number, denoted χlm(G). This study focuses on analyzing locating metric coloring for three
specific graphs: the Cherry Blossom graph CBn,n, the Sun Flower graph SFn,n, and the
Closed Dutch Windmill graph CDn. These graphs were chosen due to the absence of prior
research on their locating metric coloring properties. The research method combines pattern
recognition and a deductive-axiomatic approach. The proof process begins by determining
lower bounds, followed by the construction of upper bounds through coloring function analysis.
The resulting locating metric chromatic numbers for each graph are then established.

Keywords: Locating metric coloring; cherry blossom graph; sun flower graph; closed dutch
windmill graphs.
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1 Introduction
Graph theory is a fundamental branch of mathematics with applications in various fields, including
computer science, engineering, and network analysis [1]. One of the important developments in
graph coloring is Locating Metric Coloring (LMC), which not only assigns colors to vertices but
also ensures that each vertex has a unique metric representation based on its distances to vertices
of each color class [2]. Graph theory is divided into several topics, including graph coloring
and locating metric coloring [3]. Graph coloring is the assignment of colors to vertices, edges,
or regions so that neighbouring elements do not have the same color[4]. Graph coloring itself
includes 3 (three) types, namely vertex coloring, side coloring, and region coloring [5]. Meanwhile,
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Locating Metric Coloring is a concept in graph theory that introduces a new approach to vertex
coloring [6]. Unlike traditional graph coloring, where adjacent vertices in a connected graph
must receive different colors, locating metric coloring emphasizes the uniqueness of the metric
representation of each vertex [7] [8]. Let G = (V, E) be a graph consisting of a vertex set V (G)
and an edge set E(G). A locating metric coloring is a vertex coloring of the graph that must
satisfy two main conditions: first, each vertex v ∈ V (G) must have a unique metric representation;
and second, the vertex coloring, denoted as a function c : V (G) → {1, 2, . . . , k}, may assign
the same color to different vertices, as long as their metric representations remain distinct (the
coloring does not have to be proper) [9]. The metric representation of a vertex v is defined as a
distance vector r(v) = [d(v, u1), d(v, u2), . . . , d(v, uk)] where d(v, u) denotes the shortest distance
between vertex v and vertex u, and u1, u2, . . . , uk are the reference vertices[10] [11].

One of the main requirements in locating metric coloring is that the metric representation of
each vertex v must be unique [12] [13]. This means that if r(v1) = r(v2), then the vertices v1 and
v2 cannot be distinguished solely based on their distances to the reference vertices. Formally,
for every pair of vertices v1, v2 ∈ V , if r(v1) = r(v2), then v1 must be identical to v2, which
ensures that each vertex has a distinct metric representation. The coloring function c, which
maps the vertices in V (G) to a set of colors C, only needs to satisfy the condition that the
same color may be assigned to different vertices, as long as their metric representations remain
unique. Therefore, even if some vertices share the same color, the uniqueness of their metric
representations guarantees that they can be distinguished from each other based on their distances
to the reference vertices [14].

The uniqueness of locating metric coloring lies in the distinct distance representation for
each vertex, which enables the unique identification of every vertex without requiring a different
color for each one [15]. In large networks, it is often difficult to assign a unique color to every
vertex; therefore, locating metric coloring offers a more efficient solution while still ensuring
clear identification of each vertex [16] [17]. For example, in a communication or sensor network,
locating metric coloring allows each vertex to have a unique identity that can be recognized
through a combination of distance information and color classes[18]. This supports efficient
operations in identification and tracking. The purpose of studying locating metric coloring on
graphs is to analyze locating metric coloring, particularly on the Cherry Blossom, Sun Flower,
and Closed Dutch Windmill graphs, which have not been previously studied by other researchers.

This study aims to analyze the locating metric coloring on three specific graphs: the Cherry
Blossom, Sun Flower, and Closed Dutch Windmill graphs, which have not been previously
explored in this context. The method used involves assigning colors to vertices and calculating
the distance vectors (metric representations) to ensure that each vertex has a unique identification,
even if some colors are reused.

The results show that the locating chromatic number varies depending on the graph structure
and number of vertices. For example, in the Cherry Blossom and Sun Flower graphs, locating
metric coloring enables efficient vertex distinction with fewer colors than traditional identifying
colorings. This uniqueness supports applications such as sensor networks and communication
systems, where precise node identification is crucial.

The main contribution of this research is to expand the theory of locating metric coloring by
applying it to new graph families and demonstrating its potential for real-world applications in
network identification and optimization. Future research may explore algorithmic strategies for
automating the coloring process in larger and more complex graphs.

2 Preliminaries
In this section, we provide fundamental definitions, notations, and theoretical results that are
essential for the subsequent analysis in this paper. These concepts will form the basis for the
theorems and proofs discussed in the Results and Discussion section.
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2.1 Basic Definitions and Notations

We begin by defining some key concepts that are used throughout this paper.

Definition 1. Let G = (V, E) be a connected graph with vertex set V (G) and edge set E(G).
A locating metric coloring of the graph G is a vertex coloring function c : V (G) → {1, 2, . . . , k},
such that for any two distinct vertices u, v ∈ V (G), their distance vectors are distinct. Specifically,
the distance vectors of vertices u and v are given by:

r(u) = (d(u, V1), d(u, V2), . . . , d(u, Vk))

r(v) = (d(v, V1), d(v, V2), . . . , d(v, Vk))

where V1, V2, . . . , Vk represent the partition of V (G) into k color classes.

Definition 2. The locating metric chromatic number χlm(G) of a graph G is the smallest integer
k such that there exists a locating metric coloring of G using k colors.

In this study, we adopt the standard graph-theoretic notations. The following theorems, will
serve as the theoretical framework for determining the lower and upper bounds of χlm(G) for
the Cherry Blossom graph CBn,n, the Sun Flower graph SFn,n, and the Closed Dutch Windmill
graph CDn.

2.2 Theoretical Background

The following concepts and results from previous research are essential for the analysis of locating
metric coloring. These results will be used to establish the bounds and calculations in the
Results and Discussion section.

• Distance Vector: The distance vector for a vertex v with respect to the color classes
V1, V2, . . . , Vk is defined as the vector:

r(v) = (d(v, V1), d(v, V2), . . . , d(v, Vk))

where d(v, Vi) is the distance between vertex v and the set Vi.
• Metric Representation: In locating metric coloring, the metric representation of a vertex

is a function of the distances to each color class. It is crucial that the metric representations
of distinct vertices are unique to ensure the validity of the coloring.

• Axiomatic Deductive Approach: This paper employs an axiomatic deductive method,
where existing axioms, lemmas, and theorems from graph theory are applied to derive results
for the locating metric chromatic number. This approach ensures that the conclusions
drawn are logically consistent with the fundamental principles of graph theory.

3 Results and Discussion
This research produces three theorems about locating metric coloring on graphs. The following is
the result of the theorem and its proof regarding the locating metric coloring of Cherry Blossom
graph χlm(CBn,n), Sun Flower graph χlm(SFn,n), dan Closed Dutch Windmill Graph χlm(CDn).

Theorem 1. Let Cherry Blossom CBn,n be a graph that has n stems and n petals, then
χlm(CBn,n) = n + 1 for n ≥ 3.

Proof: The Cherry Blossom graph CBn,n has a vertex set V (CBn,n) = {x} ∪ {xi, yi, zi; 1 ≤
i ≤ n} and an edge set E(CBn,n) = {xxi, xiyi, xizi; 1 ≤ i ≤ n} ∪ {yizi; 1 ≤ i ≤ n}. Based on
the vertex and edge sets, the cardinalities of the vertex set and edge set of the graph CBn,n are
|V (CBn,n)| = 3n + 1 and |E(CBn,n)| = 4n, respectively.
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It will then be proven that χlm(CBn,n) = n + 1 by showing both the lower and upper bounds,
namely χlm(CBn,n) ≥ n+1 and χlm(CBn,n) ≤ n+1. First, the lower bound χlm(CBn,n) ≥ n+1
will be shown using a contradiction. Assume that χlm(CBn,n) < n + 1. Jika χlm(CBn,n) = n
then there will be two identical representations. For example, consider CB3,3, as a result, there
will be 2 pairs of identical representations, namely:

▷ For the representation (0, 2, 1) it is possessed by the vertices x1 and y2 with the same color.
▷ For the representation (2, 0, 1) it is possessed by the vertices x2 and y3 with the same color.
This condition is inconsistent with the definition of locating metric coloring, therefore a

contradiction arises if we assume that χlm(CBn,n) = n, thus, it is proven that χlm(CBn,n) ≥ n+1.
Next, the upper will be proven that χlm(CBn,n) ≤ n + 1 by showing a coloring function that
defines c : V (CBn,n) → {1, 2, 3, . . . , n + 1}, as follows:

c(xi) = i; 1 ≤ i ≤ n

c(yi) =
{

i; 1 ≤ i ≤ n − 1
n − i; i = n

c(zi) =
{

i + 1; 2 ≤ i ≤ n − 1
n; i = n

c(x) = n + 1
Based on the function above, it can be concluded that the representation of each vertex is distinct.
The representation of each vertex can be seen in Table 1.

Table 1: Representation of Each in the Graph CBn,n

n Representation Condition

x (1, 1, 1, ..., 0︸︷︷︸
n−1

) n = 3

x1 (0, 2, 2, ..., 1︸︷︷︸
n−2

) n = 3

x2 (2, 0, 2, ..., 1︸︷︷︸
n−3

) n = 4

x1 (2, 0, 2, 2, ..., 1︸︷︷︸
n−4

) n = 5

xi≥4 (2, 2, ..., 0︸︷︷︸
i−2

, 2, ..., 1︸︷︷︸
n−(i+1)

) n ≥ 6

y1 (0, 1, 2, 2, ..., 1︸︷︷︸
n−3

) n = 4

y2 (0, 2, 1, 2, ..., 1︸︷︷︸
n−4

) n = 5

y3 (0, 2, 2, 1, 2, ..., 1︸︷︷︸
n−5

) n = 6

yi≥4 (0, 2, 2, 1, 2 ..., 1︸︷︷︸
n−(i+1)

) n ≥ 7

z1 (1, 0, 2, 2, ..., 1︸︷︷︸
n−3

) n = 4

z2 (1, 2, 0, 2, ..., 1︸︷︷︸
n−4

) n = 5

z3 (1, 2, 2, 2, 0, 2, ..., 1︸︷︷︸
n−5

) n = 6

zi≥4 (1, 2, 2, 2, 0, 2, 2, ..., 1︸︷︷︸
n−(i+2)

) n ≥ 7
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The coloring function and Table 1 show that |c(V (CBn,n))| = n + 1, therefore χlm(CBn,n) ≤
n+1. Based on the lower and upper bounds of χlm(CBn,n), we obtain n+1 ≤ χlm(CBn,n) ≤ n+1.
Thus, it is proven that χlm(CBn,n) = n + 1 for n ≥ 3. ■
Example of a coloring of χlm(CBn,n) for n = 3

Figure 1: Cherry Blossom Graph for n = 3

Theorem 2. Let Sun Flower graph SFn,n be a graph consisting of n core vertices and n petals,
χlm(SFn,n) = n + 1 untuk n ≥ 3, χlm(SFn,n) = n for odd n, n ≥ 5 and χlm(SFn,n) = n − 1 for
even n, n ≥ 4.

Proof: The Sun Flower graph (SFn,n) has a vertex set V (SFn,n) = {x} ∪ {xi, yi; 1 ≤ i ≤ n}
and an edge set E(SFn,n) = {xxi; 1 ≤ i ≤ n} ∪ {xiyi; 1 ≤ i ≤ n}. Based on the vertex and edge
sets, we obtain the cardinality of the vertex and edge sets of the graph (SFn,n) respectively
|V (SFn,n)| = 2n + 1 and |E(SFn,n)| = 2n. Next, we will prove that:

χlm(SFn,n) =


n + 1, for n = 3
n, for even n, n ≥ 4
n − 1, for odd n, n ≥ 5

by establishing the lower and upper bounds, namely

χlm(SFn,n) ≥


n + 1, for n = 3
n, for even n, n ≥ 4
n − 1, for odd n, n ≥ 5

and χlm(SFn,n) ≤


n + 1, for n = 3
n, for even n, n ≥ 4
n − 1, for odd n, n ≥ 5

Case 1. For n = 3
First, we will show the lower bound of χlm(SFn,n) = n + 1 for n = 3 by using a contradiction.
Assume that χlm(SFn,n) < n + 1. If χlm(SFn,n) = n then there will be identical representations.
For example, take SF3,3, as a result, there will be one pair of vertices with the same code, namely:

• For representation (0,1,1) it is shared by the vertices x and x1 with the same color.
This condition does not satisfy the definition of a locating metric coloring. Therefore, there is
a contradiction if we assume that χlm(SFn,n) = n, which proves that χlm(SFn,n) = n + 1 for
n = 3. Next, we will prove the upper bound, that χlm(SFn,n) ≤ n + 1 by presenting a coloring
function that defines c : V (SFn,n) → {1, 2, 3} as follows:

c(xi) = c(yi) = i, 1 ≤ i ≤ n

c(x) = n + 1

= 3 + 1

= 4
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Based on the function above, it is obtained that the code for each vertex is distinct, satisfying
the locating metric coloring condition. Table 2 illustrates these locating metric representations
for each vertex in the graph SF3, 3. Each row displays a vertex, its corresponding code derived
from the distances to each color class, and the condition (in this case, n = 3) under which the
representation is valid. This table confirms that every vertex has a unique representation. The
code for each vertex can be seen in Table 2!

Table 2: Representation of Each Vertex in the Graph SF3,3

Vertex Representation Condition
x (1,1,1,0) n = 3
x1 (0,1,1,1) n = 3
x2 (1,0,1,1) n = 3
x3 (1,1,0,1) n = 3
y1 (0,1,2,2) n = 3
y2 (2,0,1,2) n = 3
y3 (1,2,0,2) n = 3

The coloring function and Table 2 show that |c(V (SFn,n))| = n + 1, so χlm(SFn,n) ≤ n + 1.
Based on the lower and upper bounds of χlm(SFn,n), we obtain:

n + 1 ≤ χlm(SFn,n) ≤ n + 1

Based on the lower and upper bounds of χlm(SFn,n) = n + 1 when n = 3. ■
Example of coloring for χlm(SFn,n) when n = 3.

Figure 2: Sun Flower Graph for n = 3

Case 2. For even n, n ≥ 4
First, we will show the lower bound of χlm(SFn,n) = n for even n in n ≥ 4 by using a contradiction.
Assume that χlm(SFn,n) < n. If χlm(SFn,n) = n − 1 then there will be identical representations.
For example, take SF4,4, as a result, there will be 3 pairs of identical representations, namely:

• For the representation (0, 1, 1) it is shared by the vertices x1 and y3 with the same color.
• For the representation (1, 0, 1) it is shared by the vertices x2 and y3 with the same color.
• For the representation (1, 1, 0) it is shared by the vertices x and y4 with the same color.

This condition does not satisfy the definition of a locating metric coloring. Therefore, there
is a contradiction if we assume that χlm(SFn,n) = n − 1, which proves that χlm(SFn,n) ≥ n.
Next, we will prove the upper bound, that χlm(SFn,n) ≤ n by presenting a coloring function
that defines c : V (SFn,n) → {1, 2, 3, . . . , n} as follows:
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c(xi) = i, 1 ≤ i ≤ n

c(yi) = 1, i ≡ 1 (mod 2), 1 ≤ i ≤ n

c(yi) = n

2 + 1, i ≡ 0 (mod 2), 2 ≤ i ≤ n

c(x) = n

Based on the function above, it is obtained that the code for each vertex is distinct, satisfying
the locating metric coloring condition. Table 2 illustrates these locating metric representations
for each vertex in the graph SF4,4. Each row displays a vertex, its corresponding code derived
from the distances to each color class, and the condition (in this case n = 3) under which the
representation is valid. This table confirms that every vertex has a unique representation.

Table 3: Representation of Each Vertex in the Graph SFn,n for even n

Vertex Representation Condition

x (1, 1, 1, ..., 0︸︷︷︸
n−2

) n ≥ 5, where n is even

x1 (0, 1, 1, 1) n = 4
(0, 1, 2, 2, 1) n = 6
(0, 1, 2, 2, 1, 2, 1) n = 8

x2 (1, 0, 1, 1) n = 4
(1, 0, 1, 2, ..., 1︸︷︷︸

n−5

) n ≥ 6

x3 (1, 1, 0, 1) n = 4
(1, 1, 0, 1, 2, 1) n = 6
(1, 1, 0, 1, 2, ..., 1︸︷︷︸

n−5

) n ≥ 8

y1 (0, 1, 2, 2) n = 4
(0, 1, 2, 2, 3, 2) n = 6
(0, 1, 2, 3, 3, 3, 3, 2) n = 8

y2 (2, 0, 1, 2) n = 4
(2, 0, 1, 2, 3, 2) n = 6
(2, 0, 1, 2, 3, 3, 3, 3, 2) n = 8

y3 (0, 2, 1, 1) n = 4
(0, 2, 1, 1, 2, 2) n = 6
(0, 2, 1, 1, 2, 3, 3, 2) n = 8

The coloring function and Table 3 show that |c(V (SFn,n))| = n, so χlm(SFn,n) ≤ n. Based
on the lower and upper bounds of χlm(SFn,n), we obtain n ≤ χlm(SFn,n) ≤ n. Thus, it is proven
that χlm(SFn,n) = n, when n is even, n ≥ 4. ■
Example of coloring for χlm(SFn,n) when n is even, n ≥ 4.
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Figure 3: Sun Flower Graph for even n, specifically n = 4

Case 3. For odd n, with n ≥ 5
First, we will show the lower bound of the locating metric chromatic number of the sunflower
graph χlm(SFn,n) = n − 1 for odd n ≥ 5 by using proof by contradiction. Assume the opposite
of what we want to prove. That is, suppose χlm(SFn,n) < n − 1. If χlm(SFn,n) = n − 2 then
there will exist vertices with the same color representations. For example, let us consider SFn,n

= 5. As a result, there will be 4 pairs of vertices with identical representations, namely:
• For the representation (0, 1, 1) it is shared by the vertices x1 and x4 with the same color.
• For the representation (0, 1, 2) it is shared by the vertices y1 and y4 with the same color.
• For the representation (0, 1, 0) it is shared by the vertices x2 and x5 with the same color.
• For the representation (1, 1, 0) dimiliki oleh titik x dan x3 dengan warna yang sama.
This condition does not satisfy the definition of a locating metric coloring. Therefore, a

contradiction arises from assuming χlm(SFn,n) = n − 2, and it follows that χlm(SFn,n) ≥ n − 1.
Next, we will prove the upper bound, that χlm(SFn,n) ≤ n−1 by constructing a coloring function
defined as c : V (SFn,n) → {1, 2, 3, . . . , n − 1} as follows:

c(xi) = c(yi) =


n if 1 ≤ n ≤ 5
5 if n = 6
n − 1 if i = n

c(x) = n − 1

Based on the function above, it is obtained that the code for each vertex is distinct, satisfying
the locating metric coloring condition. Table 4 illustrates these locating metric representations
for each vertex in the graph SF5,5. Each row displays a vertex, its corresponding code derived
from the distances to each color class, and the condition (in this case, n = 5) under which the
representation is valid. This table confirms that every vertex has a unique representation.
The coloring function and Table 4 show that |c(V (SFn,n))| = n − 1, so χlm(SFn,n) ≤ n − 1.
Based on the lower and upper bounds of χlm(SFn,n), we obtain n − 1 ≤ χlm(SFn,n) ≤ n − 1.
Thus, it is proven that χlm(SFn,n) = n − 1 for odd n ≥ 5. ■
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Table 4: Vertex Representations in the Graph SFn,n for odd n

n Representation Condition
x (1, 1, 1, ..., 0︸︷︷︸

n−5

) n ≥ 5, where n is odd

x1 (0,1,2,1) n = 5
(0, 1, 2, ..., 1︸︷︷︸

n−5

) n ≥ 7

x2 (1,0,1,1) n = 5
(1, 0, 1, 2, ..., 1︸︷︷︸

n−6

) n ≥ 7

x3 (2,1,0,1) n = 5
(2,1,0,1,2,1) n = 7

(1, 1, 0, 1, 2, ..., 1︸︷︷︸
n−7

) n ≥ 9

y1 (0,1,2,2) n = 5
(0, 1, 2, 3, ..., 2︸︷︷︸

n−6

) n ≥ 7

y2 (2,1,1,2) n = 5
(2,0,1,2,3,2) n = 7

(2, 0, 1, 2, 3, ..., 2︸︷︷︸
n−7

) n ≥ 9

y3 (3,2,0,2) n = 5
(3,2,0,1,2,2) n = 7

(3,2,0,1,2,3,3,2) n = 9

Example of a locating metric coloring χlm(SFn,n) for odd n, n ≥ 5.

Figure 4: Sun Flower Graph for odd n = 5

Theorem 3. Let the Closed Dutch Windmill Graph (CDn) be a graph with n blades, where
n ≥ 3. Then, χlm(CDn) = n + 1.

Proof: The Closed Dutch Windmill Graph (CDn) has the vertex set V (CDn) = {x}∪{xi, yi, zi :
1 ≤ i ≤ n} and the edge set E(CDn) = {xxi, xzi : 1 ≤ i ≤ n} ∪ {yixi, yizi : 1 ≤ i ≤ n}. Based on
the vertex set and the edge set, the cardinalities of the vertex set and the edge set of the graph
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(CDn) are |V (CDn)| = 3n + 1 and |E(CDn)| = 4n.
It will then be proved that χlm(CDn) = n + 1 by showing both the lower and upper bounds,

namely χlm(CDn) ≥ n + 1 and χlm(CDn) ≤ n + 1. First, we will show the lower bound
of χlm(CDn) ≥ n + 1 using proof by contradiction. Assume that χlm(CDn) < n + 1. If
χlm(CDn) = n then there will exist identical representations. As an example, consider CD3,
which results in 3 pairs of identical representations, namely:

• For the representation (0, 1, 1) it is shared by the vertices y1 and x2, with the same color.
• For the representation (0, 1, 0) it is shared by the vertices z1 and y2, with the same color.
• For the representation (1, 1, 1) it is shared by the vertices x and y3, with the same color.
This condition does not satisfy the definition of locating metric coloring, therefore a contradic-

tion arises from assuming χlm(CDn) = n, and it follows that χlm(CDn) ≥ n + 1. Next, we will
prove that χlm(CDn) ≤ n + 1 by defining a coloring function c : V (CDn) → {1, 2, 3, . . . , n + 1}
as follows:

c(xi) =
{

i ; 1 ≤ i ≤ n − 1
n − i ; i = n

c(yi) = i; 1 ≤ i ≤ n

c(zi) =
{

n + 1 ; 1 ≤ i ≤ n − 1
n ; i = n

The coloring function and Table 5 show that |c(V (CDn))| = n + 1, so χlm(CDn) ≤ n + 1.
Based on the lower and upper bounds of χlm(CDn), we obtain n + 1 ≤ χlm(CDn) ≤ n + 1.
Therefore, it is proven that χlm(CDn) = n + 1 for n ≥ 3. ■
Example of a locating metric coloring for χlm(CDn) when n = 3.

Figure 5. The Closed Dutch Windmill Graph

Based on the function above, it is obtained that the code for each vertex is distinct, satisfying
the locating metric coloring condition. Table 2 illustrates these locating metric representations
for each vertex in the graph CD3. Each row displays a vertex, its corresponding code derived
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from the distances to each color class, and the condition (in this case, n=3 n = 3) under which
the representation is valid. This table confirms that every vertex has a unique representation.

Table 5: Vertex Representations in the Graph CDn

n Representation Condition
x (1, 1, 1, ..., 0︸︷︷︸

n−5

) n ≥ 3

x1 (0, 2, 2, 2, ..., 0︸︷︷︸
n−5

) n ≥ 3

x2 (2, 0, 2, 2, ..., 0︸︷︷︸
n−4

) n ≥ 4

x3 (2, 2, 0, 2, ..., 1︸︷︷︸
n−4

) n ≥ 5

xi≥4 (2, ..., 0︸︷︷︸
i−2

, 2, ..., 1︸︷︷︸
n−(n−1)

) n ≥ 6

y1 (0, 1, 2, ..., 1︸︷︷︸
n−3

) n ≥ 4

y2 (0, 2, 1, 2, ..., 1︸︷︷︸
n−4

) n ≥ 5

y3 (0, 2, 2, 1, 2, ..., 1︸︷︷︸
n−5

) n ≥ 6

z1 (1, 0, 2, ..., 1︸︷︷︸
n−3

) n ≥ 4

z2 (2, 1, 0, 2, ..., 1︸︷︷︸
n−4

) n ≥ 5

z3 (2, 1, 0, 2, 2, ..., 1︸︷︷︸
n−3

) n ≥ 5

4 Conclusion
Based on the results of the research above, new theorems have been successfully formulated
regarding the locating metric coloring of three specific graph families: the Cherry Blossom graph
(CBn,n), the Sunflower graph (SFn,n), and the Closed Dutch Windmill graph (CDn). The main
findings demonstrate that each of these graphs satisfies locating metric coloring conditions under
specific parameters, and the exact locating chromatic number χlm(G) for each graph has been
determined or bounded accordingly.

These results contribute significantly to the advancement of graph theory, particularly in the
subfield of locating metric coloring. The study not only strengthens theoretical foundations but
also offers potential applications in areas such as network verification, chemical graph theory,
and information security, where unique identification of nodes based on distances is essential.

Furthermore, this research opens new directions for future studies. One potential area is
the exploration of locating metric coloring in dynamic or weighted graphs. Additionally, further
investigations can be conducted into algorithmic approaches for finding locating colorings, or
generalizing the current results to broader graph classes, such as multipartite or random graphs.

Overall, this work can serve as a valuable reference for other researchers conducting similar
studies, and as a guideline for extending the application of locating metric coloring in both
theoretical and practical contexts.

Open Problem: Based on previous studies, the topic of locating metric coloring is still
relatively new, and many types of graphs remain unexplored. Readers are encouraged to continue
research on this topic by using different types of graphs and analyzing the locating metric coloring
resulting from various graph operations.
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