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Abstract

Rainfall forecasting is crucial in meteorological studies due to its significant impact on sectors
such as agriculture, which is the main livelihood on Madura Island. This study aims to
forecast rainfall on Madura Island using a hybrid approach that combines the Generalized
Space-Time Autoregressive-X (GSTARX) model and Neural Network (NN). The data used
consist of daily rainfall records from Bangkalan, Sampang, Pamekasan, and Sumenep, covering
the period from January 2013 to December 2023. Data from January 2013 to September 2023
were used for training, while data from October to December 2023 were used for testing. The
GSTARX model was employed to capture spatio-temporal patterns, while the NN was applied
to learn the non-linear relationships in the residuals. The results show that the GSTARX
model effectively captures rainfall patterns, though some differences remain compared to the
actual data, with RMSE values of Bangkalan (1.514), Sampang (0.256), Pamekasan (0.477),
and Sumenep (0.127). Meanwhile, the hybrid GSTARX-FFNN model achieved improved
forecasting performance in Sampang (0.392), Pamekasan (0.679), and Sumenep (0.412),
although Bangkalan recorded a higher RMSE (1.359). Overall, the GSTARX model proved
more effective in forecasting rainfall on Madura Island, delivering smaller and more consistent
prediction errors.
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1 Introduction
Rainfall is one of the key weather parameters that plays a crucial role in natural resource
management, agriculture, and disaster mitigation. The uncertainty in rainfall patterns due to
global climate change demands the development of forecasting methods that are adaptive to both
spatial [1], [2]. In regions such as Madura Island, where the majority of the population relies on
the agricultural sector, accurate rainfall prediction is essential to support productivity and food
security. The complexity of weather dynamics in this area including geographical influences and
seasonal wind patterns—makes rainfall forecasting a challenge that requires more advanced and
flexible computational approaches [3].
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Spatio-temporal approaches have been extensively applied in meteorological forecasting,
owing to their capability to integrate spatial and temporal dimensions concurrently [4]. The
Generalized Spatio-Temporal Autoregressive with Exogenous variables (GSTARX) model serves
as an effective method for capturing spatial interdependencies among observation sites and
modeling the linear effects of environmental variables [5]. However, the limitation of this model
lies in its inability to capture non-linear patterns that are commonly found in weather data.
Therefore, integrating it with artificial intelligence methods such as the Feed Forward Neural
Network (FFNN) is considered to enhance the model’s performance in predicting complex and
non-linear patterns [6], [7].

The hybrid GSTARX-FFNN model integrates the advantages of both methods—namely, the
ability of GSTARX to capture spatial and temporal dynamics, and the strength of FFNN in
modeling non-linear patterns [8]. Numerous prior studies have demonstrated that this hybrid
approach can significantly reduce forecasting errors compared to conventional models, especially
in the context of rainfall prediction [9], [10]. The inclusion of environmental variables such as
temperature, humidity, and wind speed as additional inputs has also been proven to enhance
model accuracy, particularly in tropical regions characterized by diverse microclimates [11], [12].

This study also adopts the transfer function approach, in which the transfer function is a
forecasting method that combines ARIMA and multiple regression, predicting the output yt

based on its past values and the influence of input variable xt [13], [14].The transfer function is a
key component of dynamic regression modeling, where time-lagged input variables are explicitly
incorporated to capture the temporal influence of external factors on the target variable [15], [16].
This formulation enables a more accurate representation of the dynamic relationship between
inputs and outputs, which is critical before further processing within a hybrid modeling structure.
The integration of hybrid machine learning frameworks has recently proven effective in boosting
the accuracy of rainfall forecasting, primarily by utilizing robust data pre-processing, parameter
optimization techniques, and ensemble modeling architectures [17], [18].

This research aims to develop a hybrid GSTARX-FFNN model for daily rainfall forecasting
on Madura Island by utilizing meteorological data collected between 2013 and 2023. Observations
were taken from one station in each regency, with the study limited to the local setting of
Madura Island, excluding broader regional generalizations. The novelty of this study lies in its
localized application of the hybrid GSTARX-FFNN approach, which integrates spatio-temporal
linear modeling with nonlinear neural networks specifically tailored to regional-scale rainfall
dynamics. Unlike previous studies that often focus on national or global settings, this research
highlights the value of hybrid models in capturing complex weather behavior within a limited
geographical context. The main contribution of this work is the implementation and evaluation of
a hybrid spatio-temporal and neural network framework that improves rainfall forecast accuracy
in data-scarce, agriculture-dependent regions.

The remainder of this paper is organized as follows: Section 2 presents the methodology,
including the data description, the modeling framework of GSTARX, and the neural network
model based on the Feed Forward Neural Network (FFNN) architecture, followed by the hybrid
integration approach. In the proposed hybrid structure, the GSTARX model first captures
linear spatio-temporal patterns using a transfer function, whose residuals are computed and
modeled accordingly. Meanwhile, the FFNN-based neural network is employed independently
to learn non-linear patterns from the original data. Section 3 discusses the results of model
implementation and evaluation, including a comparative analysis of forecasting performance.
Finally, Section 4 concludes the study by summarizing the findings and offering directions for
future research.
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2 Methods

The data used in this study consist of daily rainfall records from four locations (based on
administrative regencies) on Madura Island, namely Bangkalan, Sampang, Pamekasan, and
Sumenep, as shown in Figure 1 and Table 1. The dataset covers the period from January 2013 to
December 2023. In this study, data from January 2013 to September 2023 were used for training,
while data from October 2023 to December 2023 were used for testing. The data were obtained
from the open-source NASA POWER (Prediction of Worldwide Energy Resources) platform.

Figure 1: Map of Four Locations
Source: Personal Processing Data

Table 1: Coordinates of Rainfall Observation Locations
Location Latitude Longitude
Bangkalan -7.0284 112.7431
Sampang -7.1919 113.2512
Pamekasan -7.1620 113.4847
Sumenep -6.9139 113.9173

The stages in the research are as follows:

Figure 2: Research Flowchart

2.1 Transfer Function

The stages carried out in transfer function modeling are:
1. Stationarity testing on the input variables (RH2M, T2M, and WS2M) was conducted

using the Augmented Dickey-Fuller (ADF) test to ensure suitability for ARIMA-based
pre-whitening. First-order differencing was applied when necessary to achieve stationarity.

2. Perform pre-whitening on the input time series (wind speed, temperature, humidity) and
the output time series (rainfall).

3. Calculate the cross-correlation between the input and output series to examine the dynamic
relationships among variables.

4. Determine the impulse response weights (b, r, s) linking each input series to the rainfall
output series, and conduct initial estimation of the error series ut.
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5. Construct a preliminary transfer function model based on the identified orders (b, r, s), and
fit an ARIMA model to the error term ut.

6. Estimate the parameters of the multi-input transfer function model, as shown in Equation
1, which is formulated as follows:

yt =
H∑

h=1

ωsh(B)Bbh

δrh(B) xt + θq(B)
ϕp(B)at (1)

where:
• yt = output series at time t,
• xht = input series for the h-th variable,
• ωsh(B) = a polynomial operator of order s representing the influence of past values of

xht on yt,
• δrh(B) = a polynomial operator of order r representing the dynamics of the output

series in relation to the h-th input,
• vh(B) = v0h + v1hB + v2hB2 + . . . = transfer function weights or impulse response

coefficients for the h-th input series,
• ut = error term assumed to follow a certain ARIMA process.

7. Perform diagnostic checking to obtain a valid model by examining the residuals to ensure
that the assumptions of white noise and normality are satisfied.

8. Forecast rainfall using the best-fitting model and calculate the RMSE on the testing data
to evaluate the model’s accuracy.

2.2 Generalized Space-Time Autoregressive with Exogenous Variables (GSTARX)

In general, this stage involves the identification process of a multi-input transfer function model
to obtain residuals from the initial model. The residuals resulting from the transfer function
forecasting will then be used in the modeling process to examine the influence of location on
rainfall across the four regencies on Madura Island using the GSTARX approach. The steps of
the GSTARX model in this study include:

1. The first stage consists of the following steps:
(a) Identifying the transfer function model for each regency in Madura Island (Bangkalan,

Sampang, Pamekasan, and Sumenep) based on input variables including wind speed,
temperature, and humidity in relation to rainfall as the output.

(b) Estimating the parameters of the transfer function model for each regency without
modeling the noise series ut using ARIMA, resulting in an initial model as represented
in Equation (2):

yt =
H∑

h=1
νh(B)xt + ut (2)

or

yt =
H∑

h=1

ωsh(B)Bbh

δrh(B) xt + ut (3)

(c) Forecasting yt based on model (3) to obtain the residual ut at location i, denoted as
ui,t.

2. The second stage consists of the following steps:
(a) Examining the stationarity of the residual series ui,t in terms of its mean using the

Multiple Cross-Correlation Function (MCCF) diagram.
(b) Determining the autoregressive order p of the stationary residual series ui,t using the

MPCCF scheme and the minimum AIC criterion.
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(c) Defining the type of spatial weight matrix W to be used, either based on spatial
adjacency or distance.

(d) Calculating the spatial weight matrix W (1). The spatial weights used in this study
are based on the inverse of the distance between locations. These weights quantify
spatial influence, where closer locations exert stronger effects. The weighting scheme
is defined in Equation (4):

wij = 1
dij

(4)

where dij is the distance between location i and j.
To standardize influence across locations, the weights are row-normalized, ensuring
that the sum of each row equals 1. The normalized form is given in Equation (5):

wij =
1

dij∑n
j=1

1
dij

, i ̸= j (5)

To avoid self-influence, diagonal elements are set to zero (wij = 0). Hence, the
resulting weight matrix is row-normalized and asymmetric, as shown in Table 2:

Table 2: Inverse Distance Weights Between Four Locations on Madura Island
Location Bangkalan Sampang Pamekasan Sumenep
Bangkalan 0 d12 = 59.45 d13 = 83.93 d14 = 124.13
Sampang d21 = 59.45 0 d23 = 26.15 d24 = 70.58

Pamekasan d31 = 83.93 d32 = 26.15 0 d34 = 44.96
Sumenep d41 = 124.13 d42 = 70.58 d43 = 44.96 0

The spatial weight between the four locations is calculated using equation (5) as
follows:

w12 =
1

d12
1

d12
+ 1

d13
+ 1

d14

=
1

59.45
1

59.45 + 1
83.93 + 1

124.13
= 0.4571

w13 =
1

d13
1

d12
+ 1

d13
+ 1

d14

=
1

83.93
1

59.45 + 1
83.93 + 1

124.13
= 0.3238

w14 =
1

d14
1

d12
+ 1

d13
+ 1

d14

=
1

124.13
1

59.45 + 1
83.93 + 1

124.13
= 0.2189 and so on.

Thus, the resulting spatial weight matrix W for the four observation locations is as
follows:

W =


0 0.4571 0.3238 0.2189

0.2429 0 0.5523 0.2046
0.1645 0.5282 0 0.3072
0.1811 0.3186 0.5001 0


(e) Estimating the parameters of the model using the selected order p from step (b) in

the GSTAR-GLS model, as defined in Equation (6), involves capturing both temporal
and spatial dependencies in the residual series. The model is formulated as follows:

u(t) =
p∑

k=1

[
Φk0u(t − k) + Φk1W (1)u(t − k)

]
+ e(t) (6)
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(f) Testing the significance of the parameters in the GSTARX-GLS model. If any
parameters are found to be insignificant, a restricted model is applied using only the
significant parameters.

(g) The final model was selected based on the lowest RMSE, and the GSTARX model
with parameters estimated using GLS was then employed to generate forecasts of the
residual series ûi,t.

(h) Forecasting rainfall data at the four locations using the GSTARX model, as represented
as represented in Equation (7) following:

Ŷi,t = ŷi,t + ûi,t (7)

where:
Ŷi,t = forecasted value at time t and location i from the GSTARX model
ŷi,t = forecasted value at time t and location i from Stage I
ûi,t = forecasted residual at time t and location i

2.3 Hybrid GSTARX-FFNN

The stages of the GSTARX-FFNN hybrid modeling in this study include:
1. Determining the input variables for the hybrid GSTARX-FFNN model based on the

residuals from the GSTARX model.
2. Hybrid modeling using the GSTARX-FFNN approach is performed with a neural network

consisting of one hidden layer with 2-10 neurons and using the ReLU activation function
defined in (8).

f(x) = max(0, x) (8)

A linear activation function was used in the output layer, as shown in (9).

f(x) = x (9)

The model was trained using the Adam optimizer with Mean Squared Error (MSE) as the
loss function, formulated in (10).

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (10)

Here, n is the number of observations, yi is the actual value, and ŷi is the predicted value.
Forward propagation in the neural network is represented by (11):

a(l) = f(W (l)a(l−1) + b(l)) (11)

where a(l) is the output of layer l, W (l) is the weight matrix, b(l) is the bias vector, and f
is the activation function. The model was trained for 50 epochs to ensure convergence.
As illustrated in Figure 3.

3. Selecting the best hybrid (GSTARX-FFNN) model based on the RMSE value on the testing
data.

The modeling flow illustrated in the GSTARX-FFNN hybrid architecture is presented in
Figure 3 below:

3 Results and Discussion
To systematically evaluate the performance of each modeling stage, this section is divided into
several parts. It begins with the results of the multi-input transfer function model that captures
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(i)
t

Ŷ
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Figure 3: Hybrid GSTARX-FFNN Modeling Architecture

linear input-output relationships. Then, it proceeds to the GSTARX model to incorporate spatial
and temporal dependencies using the residuals. Finally, the hybrid GSTARX-FFNN model is
implemented to address non-linear patterns and improve forecasting accuracy. Each stage is
evaluated using Root Mean Square Error (RMSE) as the primary performance metric.

3.1 Multi-Input Transfer Function Modeling

The initial stage of modeling involves constructing a multi-input transfer function model to capture
the linear relationship between rainfall (output) and exogenous variables: relative humidity
(RH2M), air temperature (T2M), and wind speed (WS2M). Prior to model construction, a
stationarity test was conducted on each exogenous variable using the Augmented Dickey-Fuller
(ADF) test, a widely accepted method to assess the presence of unit roots in time series data.
The test indicated that the original input variables were non-stationary at level, but became
stationary after first-order differencing, as shown by p-values below 0.05 and ADF test statistics
exceeding the critical threshold at the 5% significance level.

This stationarity step is critical to avoid spurious regression results and to ensure that the
linear modeling assumptions are met. Subsequently, a pre-whitening process was applied to both
the input and output series. This step involves fitting ARIMA models to remove autocorrelation
and seasonal trends, thereby enabling valid cross-correlation analysis. This process removes
autocorrelation and seasonal effects, allowing for more accurate identification of genuine lag
relationships in the cross-correlation function (CCF) [5].

After differencing and pre-whitening, cross-correlation analysis (CCF) was performed to
determine the optimal lag for each input variable at each location. Table 3 presents the ARIMA
model and the temporary estimated parameters of the transfer function.
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Table 3: ARIMA Model Orders and Transfer Function Parameters for Each Input Variable
Location Input Variable ARIMA Model b s r

Bangkalan
RH2M (2,1,0) 1 0 0
T2M (1,1,0) 1 0 0
WS2M (3,1,0) 1 0 0

Sampang
RH2M (2,1,0) 2 0 0
T2M (1,1,1) 0 2 0
WS2M (2,1,0) 1 0 0

Pamekasan
RH2M (0,1,1) 1 0 0
T2M (1,1,1) 0 2 0
WS2M (2,1,0) 2 0 0

Sumenep
RH2M (0,1,1) 0 9 0
T2M (3,1,0) 0 2 0
WS2M (1,1,0) 1 0 0

The parameter estimation results at each location, with a significance level of α = 0.05, show
that all input variables are statistically significant since p-values were less than 0.0001. The
resulting forecast from the transfer function model on the testing set for all input variables across
all locations is presented in Figure 4 with RMSE values in 4.

Figure 4: Forecasting Using Multi-Input Transfer Function

The transfer function model effectively captured most of the linear relationships between
input and output. However, the results also indicated the presence of significant non-linear
patterns and spatial dependencies. Therefore, the residuals from the transfer function model
were used as inputs in the GSTARX model.
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Table 4: RMSE Evaluation of FTMI Model at Four Locations on Madura Island
Location RMSE
Bangkalan 30.413
Sampang 17.649
Pamekasan 14.741
Sumenep 14.871

3.2 GSTARX Modeling

The initial step in the GSTARX modeling process involved checking the stationarity of the
rainfall data using residual analysis. Once the data were confirmed to be stationary, model order
selection was conducted by setting the spatial order q = 1 for interpretability, and the temporal
order p = 1 was selected based on the MPCCF method and minimum AIC criterion. Hence, the
model used was GSTARX(1, 1).

Based on Table 5, the smallest AIC value was obtained for the AR(6) and MA(6) model,
indicating that a longer lag structure provides a better fit to the data. However, the MPCCF
analysis in Figure 5 revealed that the strongest temporal dependence occurs at lag 1. This
suggests that the relationship between consecutive days is more significant, leading to the selection
of a temporal order of p = 1. Together with the previously identified spatial order of 1, the
resulting GSTARX model is GSTARX(1, 1).

Figure 5: MPCCF residual model plot of rainfall data

Table 5: Minimum Information Criterion Based on AICC
Lag MA 0 MA 1 MA 2 MA 3 MA 4 MA 5 MA 6
AR 0 8.4686 8.3223 8.3140 8.2859 8.2820 8.2651 8.2065
AR 1 8.3732 8.3068 8.2920 8.2602 8.2510 8.2310 8.1906
AR 2 8.3561 8.2967 8.2847 8.2480 8.2346 8.2190 8.1909
AR 3 8.3355 8.2668 8.2561 8.2376 8.2286 8.2121 8.1840
AR 4 8.3265 8.2426 8.2305 8.2236 8.2198 8.1990 8.1741
AR 5 8.3067 8.2270 8.2173 8.2108 8.1971 8.1885 8.1729
AR 6 8.2398 8.1857 8.1845 8.1788 8.1732 8.1726 8.1705

The spatial weights used in the GSTARX(1, 1) model were inverse-distance weights, assuming
that rainfall at each location on Madura Island is influenced by the distance to other locations.
Greater distances between locations result in smaller weights compared to closer distances.
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Figure 6: Comparison Between Actual and Forecasted Rainfall Using the GSTARX Model at Four
Locations on Madura Island

Table 6: RMSE Evaluation of GSTARX Model at Four Locations on Madura Island
Location RMSE
Bangkalan 1.514
Sampang 0.256
Pamekasan 0.477
Sumenep 0.127

Table 6 presents the RMSE values of the GSTARX model. The GSTARX(1, 1) model
demonstrates excellent performance in predicting rainfall across the four locations, with low
RMSE values: Bangkalan (1.514), Sampang (0.256), Pamekasan (0.477), and Sumenep (0.127).
These small RMSE values indicate that the predictions are very close to the actual data. Supported
by the comparison graphs, this model effectively captures spatio-temporal patterns, making it a
suitable choice for weather data analysis involving both temporal and spatial influences.

3.3 Hybrid GSTARX-FFNN Modeling

The input variables for the hybrid GSTARX-FFNN model were derived from the GSTARX
model output, consisting of eight variables, including lagged residuals and spatial weights. The
hidden layer used the ReLU (Rectified Linear Unit) activation function, which enables the model
to capture non-linear relationships among input variables. Meanwhile, the output layer used a
linear activation function, as the goal was to produce continuous outputs in the form of rainfall
forecasts. The FFNN architecture is illustrated in the following figure:
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Figure 7: Neural Network Model Architecture

Based on the architecture in Figure 7, the hybrid GSTARX-FFNN model was developed and
evaluated through a comparison between the actual and forecasted data, as shown in Figure 8.

Figure 8: Comparison Between Actual and Forecasted Rainfall Using the Hybrid GSTARX-FFNN Model
at Four Locations on Madura Island

These results demonstrate that the hybrid model improved forecasting accuracy at all four
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locations on Madura Island.
The graph shows that the hybrid GSTARX-FFNN model successfully captures the non-linear

patterns that could not be modeled by GSTARX alone. The RMSE values of the hybrid model
for each location are as follows:

Table 7: RMSE Evaluation of the Hybrid GSTARX-FFNN Model at Four Locations on Madura Island
Location RMSE
Bangkalan 1.359
Sampang 0.392
Pamekasan 0.679
Sumenep 0.412

3.4 Best Model Selection

The best model was selected based on the lowest RMSE value on the testing data (October 2023
– December 2023), which reflects the model’s predictive performance. The model comparison
plot and evaluation table are presented below:

Figure 9: Comparison Between Actual and Forecasted Values from GSTARX and Hybrid GSTARX-FFNN
Models at Four Locations on Madura Island
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Table 8: Comparison of RMSE Values
Location GSTARX Hybrid GSTARX-FFNN
Bangkalan 1.514 1.359
Sampang 0.256 0.392
Pamekasan 0.477 0.679
Sumenep 0.127 0.412

Based on Table Table 8 and Figure 9, the GSTARX model demonstrates better rainfall
prediction performance compared to the Hybrid GSTARX-FFNN, with lower RMSE values
across all locations. This indicates that GSTARX is more accurate and consistent in producing
rainfall predictions with smaller errors.

4 Conclusion
Rainfall patterns in Madura Island exhibit significant fluctuations influenced by seasonal factors
and extreme weather events. Although the average rainfall across the four locations (Bangkalan,
Sampang, Pamekasan, and Sumenep) is relatively similar, there are substantial differences in
variability, as indicated by high standard deviation values. The peak of rainfall typically occurs
in December–January, while the driest period is observed from March to August, reflecting the
region’s characteristic rainy and dry seasons.

The results of this study indicate that rainfall in Madura Island exhibits a clear seasonal
pattern with significant interannual fluctuations, influenced by extreme weather events. The
GSTARX model proved effective in capturing the spatio-temporal patterns of rainfall, yielding
low RMSE values across all locations and demonstrating strong linear predictive capability.
Meanwhile, the hybrid GSTARX-FFNN model enhanced accuracy, particularly in capturing
complex non-linear patterns, as observed in the regions of Sampang, Pamekasan, and Sumenep.
Although the hybrid model showed a slight decrease in performance in Bangkalan, overall, this
combined approach provided more accurate forecasting results. Therefore, the GSTARX-FFNN
model can serve as a promising alternative for rainfall forecasting in regions characterized by
spatio-temporal and non-linear data patterns.
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