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Abstract

The application of machine learning (ML) in actuarial science and life insurance has driven the
digital transformation in mortality risk prediction. This article conducts research using the
systematic review methodology (SLR) with the PRISMA approach to evaluate the performance
comparison between ML methods and traditional actuarial models in predicting mortality
risk. This study analyzed publication trends, geographic and institutional distribution, and
methodologies used in the literature published between 2019 and 2025. The SLR results
show that ML methods, especially Random Forest and XGBoost, have superior predictive
accuracy compared to traditional actuarial models such as Traditional Logistic Regression
and Cox Proportional Hazards. However, despite the obvious accuracy advantage, issues of
interpretability and long-term stability remain a major challenge in implementing ML in the
actuarial industry. This study also highlights the need for a hybrid approach that combines
the strengths of both methodologies to enhance prediction accuracy while maintaining high
interpretability. This study suggests the need for further development in the application of
ML through the regulation and compliance of the insurance industry. The findings provide
insights for actuarial practitioners, regulators, and academics on the potential and challenges
of using ML in the prediction of mortality risk.
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1 Introduction

Machine learning (ML) in the current digital era encourages digital transformation in various
areas of life, including actuarial science and life insurance [1]. In life insurance, predicting the risk
of death is the primary factor in calculating premiums, which are traditionally modeled using
mortality tables and the Lee-Carter model [2], but this model has shortcomings. To address these
shortcomings, the machine learning (ML) method offers the advantage of improved prediction
accuracy in dealing with the complexity of modern mortality, which is influenced by several
factors, including the risk of the COVID-19 pandemic [3]. In addition, machine learning (ML)
methods, such as deep learning, random forest, and neural networks, can also overcome the
challenges of capturing complex interactions and non-linear relationships between risk variables
in traditional models with a strong mathematical foundation and good interpretability [4].
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Machine learning (ML) methods offer several advantages in terms of predictions required
by the actuarial industry; however, applying these methods still presents significant challenges.
These challenges are interpretability in the context of actuarial and insurance, which is difficult
to use because many algorithms in machine learning (ML) methods function as "black boxes"
[5]. Not only that, but limitations in long-term validation of insurance products, regulatory
compliance with government regulations, and ethical considerations toward customers are also
challenges that need to be resolved before machine learning (ML) methods are fully implemented
[6]. Several studies have compared the performance of various machine learning (ML) methods
with simple actuarial models in certain contexts in actuarial science. For example, the Lee-Carter
model and recurrent neural networks (RNN) methods can be compared to predict mortality
rates. However, few studies integrate the findings of various comparison studies related to the
performance of machine learning (ML) methods with traditional techniques to predict mortality
risk.

This study was conducted to fill the gap using a systematic review (SLR) research method,
which employed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) methodology for the review. The objectives of this SLR research are to analyze the
performance trends of ML methods compared to the performance of traditional actuarial models
in predicting mortality risk, identify patterns present in publications from year to year at specific
publication year boundaries, analyze the geographic and institutional distribution of relevant
publications, identify key journals that publish on this topic, explore the most frequently used
methodologies for comparison, and identify any research gaps for future studies. Thus, through
the results of this SLR, actuarial practitioners, regulators, and researchers or academics gain
important insights into the development of the application of machine learning (ML) methods
in the actuarial industry to reduce the gaps that traditional actuarial models have in mortality
risk prediction—not forgetting while maintaining a strong mathematical basis and implementing
good interpretability for mortality risk management in the current era.

2 Methods

2.1 Research Design

This research employs a Systematic Literature Review (SLR), which utilises the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology [7] to
conduct a comparative analysis of the performance of machine learning (ML) methods with
traditional actuarial models in predicting mortality risk. The purpose of choosing this method
is to obtain a comprehensive overview of the research status on this topic at a specified time
interval, as SLR can systematically organize and synthesize research evidence.

2.2 Search Strategy

Specifically, this study used the Scopus database as a platform in the literature search conducted
in February 2025. The search string used was (("machine learning" OR "artificial intelligence" OR
"deep learning" OR "predictive modelling") AND ("mortality prediction" OR "life insurance" OR
"insurance risk" OR "actuarial science" OR "actuarial models" OR "mortality tables")). The search
string was developed based on the PICOS (Population, Intervention, Comparison, Outcomes,
and Study Design) framework to identify literature relevant to this study’s research question.

Scopus was deliberately chosen for this study due to its broad multidisciplinary coverage,
encompassing journals and conference proceedings in healthcare, actuarial science, finance, and
computational modeling. Scopus integrates indexed content from major repositories, including
IEEE, Springer, and Elsevier, thereby covering the vast majority of relevant literature on this
topic. We used only Scopus to avoid overlap with other databases. Furthermore, using a single,
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high-quality database ensures methodological consistency, reproducibility, and transparent data
management throughout the review process.

2.3 Inclusion and Exclusion Criteria

Articles selected for further review were determined based on inclusion and exclusion criteria.
The inclusion criteria included publication years between 2019 and 2025, peer-reviewed articles
in English journals, and studies that directly compared machine learning (ML) methods with
traditional actuarial models in the context of mortality risk prediction. Only open access articles
were selected to ensure complete transparency, reproducibility, and accessibility of the reviewed
literature. This approach allows other researchers to verify independently included studies and
replicate the systematic review process without institutional access restrictions. Furthermore,
initial screening revealed substantial thematic overlap between open-access and subscription-
based publications in Scopus, confirming that this restriction did not materially impact the
representativeness or validity of the findings. Inclusion and exclusion criteria were chosen to
define the boundaries of this study, although they may introduce bias in selecting articles for the
study. The specific range of years, from 2019 to 2025, was also chosen because recent bibliometric
analyses have shown a marked increase in machine learning publications and applications since
2019. For example, research from Alzoubi, et al. [8] shows that in the last five to six years, since
2019, there has been a significant growth in the number of articles using ML in cloud security,
and research from Ayanwale, et.al. [9] which states the same thing , making it a suitable range
to look at trends. Language restriction was also imposed, and English was chosen because it is
an international language that can unify understanding and avoid terminology inequality. Other
criteria were determined in accordance with this research topic to enhance the homogeneity of
the sample to be studied.

2.4 Study Selection Process

The study selection is conducted in three stages, following the recommendations of the PRISMA
methodology. The first stage involves selection, which is performed by applying several filters
to the Scopus database using a predetermined search string. The filters applied in this study
selection are the year of publication (2019–2025), the type of document (article), the stage of
publication that has been finalized, and the type of source (journals, English-language studies,
and open-access). Based on the entire application of the filter, 634 articles were identified from
1,404 studies. From these 634 articles, the second stage of selection was carried out. Namely,
the selection was carried out by the predetermined inclusion and exclusion criteria, resulting in
25 articles that directly discussed the comparison of the performance of the ML method with
traditional actuarial models in predicting mortality risk.

2.5 Data Extraction

The 25 selected articles from the study selection exercise were extracted using a structured
template that included publication information (author, year, title, journal, citations), methodol-
ogy (dataset, sample size, observation period), methods compared (types of ML methods and
traditional actuarial models), comparison results (performance metrics and values), application
context (medical, insurance), interpretability and implementation aspects, and main conclusions.
This structured template was implemented to make it easier to obtain a comprehensive overview
of the research status of this topic.

2.6 Quality Assessment

This study employed the STROBE (Strengthening the Reporting of Observational Studies in
Epidemiology) criteria [10] to evaluate the quality of 25 articles that had passed the study
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selection process. With a total of 22 STROBE criteria, namely title and abstract, introduction
(background/rationale and objectives), methods (study design, setting, participants, variables,
data sources/measurement, bias, study size, quantitative variables, and statistical methods),
results (participants, descriptive data, outcome data, main results, and other analyses), discussion
(key results, limitations, interpretation, generalisability), and other information (funding), the
study results were divided into three categories. Categorisation is performed using a specific
value standard, namely high-quality category studies (≥ 80%), medium (60%–79%), or low
(< 60%), based on 22 STROBE criteria relevant to research in this topic. Table 1 shows examples
of 5 articles assessed based on the STROBE criteria, and Figure 1 shows the STROBE score
distribution.

Table 1: Example of Article Assessment based on STROBE Criteria
No STROBE Criteria Article 1 Article 5 Article 15 Article 20 Article 25

Title and abstract
1. Title and abstract ✓ ✓ ✓ ✓ ✓

Introduction
2. Background/rationale ✓ ✓ ✓ ✓ ✓
3. Objectives ✓ ✓ ✓ ✓ ✓

Methods
4. Study Design ✓ ✓ ✓ ✓ ✓
5. Setting ✓ - ✓ ✓ ✓
6. Participants ✓ - ✓ ✓ ✓
7. Variables ✓ ✓ ✓ ✓ ✓
8. Data sources/ measurement ✓ ✓ ✓ ✓ ✓
9. Bias - - - - -
10. Study size ✓ - ✓ - ✓
11. Quantitative variables ✓ ✓ ✓ ✓ ✓
12. Statistical Methods ✓ ✓ ✓ ✓ ✓

Results
13. Participants ✓ - ✓ - ✓
14. Descriptive Data ✓ - ✓ ✓ ✓
15. Outcome data ✓ ✓ ✓ ✓ ✓
16. Main results ✓ ✓ ✓ ✓ ✓
17. Other analyses - - ✓ ✓ ✓

Discussion
18. Key results ✓ ✓ ✓ ✓ ✓
19. Limitations ✓ ✓ ✓ ✓ -
20. Interpretation ✓ ✓ ✓ ✓ ✓
21. Generalizability ✓ ✓ ✓ ✓ -

Other Information
22. Funding ✓ ✓ ✓ ✓ -

Total 91% 68% 95% 86% 82%

2.7 Data Analysis and Synthesis

Data analysis was conducted with several approaches. The first approach was to analyze
the performance comparison between ML methods and traditional actuarial models based on
various metrics, including AUC, accuracy, and C-Index. The second approach is bibliometric
analysis, which includes publication trends, geographical and institutional distribution of research,
citation patterns, and major journals based on the collected study data. The third analysis
is a methodological analysis to determine the distribution of the number of ML methods and
traditional actuarial models often used in comparison, as well as their application context. Based
on these three analyses, research gaps will be identified, and the existing gaps in the literature
on this topic will be analyzed to provide a clearer direction for future research. All analysis
results are visualized in graphs and diagrams to facilitate the interpretation and communication
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of the findings, ranging from PRISMA diagrams and publication trend charts to other visual
representations relevant to this research.

Figure 1: STROBE Score Distribution of 25 Selected Articles

2.8 Data Visualization

Data visualization is applied in this research to facilitate the more effective interpretation and
communication of findings. The data visualization carried out in this study is a PRISMA diagram
in the form of a flow chart describing the entire study selection process, a temporary trend graph
related to the publication of the comparison of the ML method with the actuarial model in the
form of a bar graph, heat maps that visualize the geographical distribution of the most productive
countries contributing articles, data tables that present a comparison of the methods used for
each article, bar graphs as visualizations comparing ML methods with traditional actuarial
models, line graphs showing the results of methodological evolution analysis, performance metrics
between methods in the form of dot plots, spider charts visualizing the strengths and weaknesses
of ML methods and traditional actuarial models on various dimensions, and plots of identified
research gaps in the form of bar graph visualizations.

2.9 Limitations of the Methodology

Applying the SLR research method, along with the PRISMA methodology, to this study aimed
to employ a comprehensive and systematic approach. However, there are still some limitations
that need to be recognized. These limitations are that the studies used for research only come
from the Scopus database, examining English-language articles, methodological heterogeneity
between studies that limits the ability to make direct comparisons, potential selection bias in
the inclusion or exclusion criteria set, temporal limitations on publishing articles from 2019 –
2025, and the possibility of dominance of certain authors or institutions. To overcome these
limitations, the researchers ensured maximum transparency in the methodology documentation
and carefully interpreted the results.

3 Results and Discussion

3.1 Research Results

3.1.1 Selection Process and Study Characteristics
According to the Scopus database, a search string determined using the PICOS framework
identified 1,404 relevant studies. From the 1,404 studies, screening was then carried out by
applying several filters, namely year of publication (2019 – 2025), the type of document, namely
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the article, the final publication stage, the type of source in the form of journals, English-language
studies, and open access, which resulted in 634 articles. Next, a selection was made based on
the established inclusion and exclusion criteria. This selection process resulted in 25 articles
comparing the ML method with traditional actuarial models. A flowchart illustrating the
application of the PRISMA methodology for study selection is presented in Figure 2.

Figure 2: PRISMA Diagram of the Study Selection Process

The publication time trend shows a steady increase in research on this topic. From no explicit
comparison of ML methods with traditional actuarial models in 2019, it increased to four articles
in both medical and insurance contexts in 2020. And again experienced an up-and-down pattern
in the interval 2021 – 2024 with a total of six articles in 2021, then decreased in 2022 to a total of
five articles, and increased again in 2023 with six articles, followed by a decrease in the number
to three articles in 2024 and no relevant research in 2025 when data collection was carried out
in this study for both medical and insurance contexts. This trend is visualized as a line chart
according to context (medical or insurance), presented in Figure 3. It can be seen that the
medical context excels with 19 articles compared to the insurance context, which has published
only six articles. Nonetheless, this trend still indicated an increasing interest in comparative
analysis of this topic over the past five years.

Figure 3: Publication Trend of ML Method Comparison with Actuarial Model

For the STROBE quality assessment, several important findings emerged. The first important
finding was the variation in the studies’ quality. There are 96% of articles used in this study
that showed good methodological quality according to the 22 STROBE criteria set, this quality
assessment was not only decriptive but also served to guide the interpretation of findings. In
synthesizing the results, greater attention was given to studies with higher methodological rigor.
Conversely, findings from studies with weaker reporting of bias or limited generalizability were
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interpreted more cautiously. In addition, temporal trends were also a finding that influenced this
STROBE assessment, as recent studies have shown a polarization in article strength, balancing an
increasing number of high-quality studies with a decreasing number of low-quality studies. Finally,
there are findings related to methodological limitations in addressing bias and generalizability
that influence the selection of models to apply in practice. Based on the findings and assessment
of these various aspects, three categories can be concluded, with each category comprising a
specific number of articles: 24 high-quality articles, one medium-quality article, and no low-quality
articles.

There is a dominance of European (44%) and international collaboration (36%), with a
high percentage for geographical distribution. Followed by Asia, North America, and Africa
with a fairly low rate of 12%, 8%, and 4%, respectively. The most productive institution
contributing articles on this topic is Seoul National University, with two published articles.
The other articles came from various leading universities, including the University of Oxford,
the University of Cambridge, and the National University of Singapore, each contributing 1
article. This geographical distribution is presented in Figure 4. The journal that most frequently
publishes on this topic is BioMed Central (BMC), with four articles published, although these
articles span different branches of health science. Based on the data, 68% of the journals that
published this topic focused on healthcare, followed by 12% in insurance and 20% in other fields.

Figure 4: Geographic Distribution of the Most Productive Institutions Contributing Articles

3.1.2 Method Comparison

Table 2 presents the distribution of methods compared to the 25 articles that have passed the
selection process. The most frequently used ML methods for comparison are Random Forest
(20%) and Extreme Gradient Boosting (XGBoost) (13%). Other methods that can be considered
to be used as a comparison are the Decision Tree method (7%), Recurrent Neural Networks
(RNN) (7%), Gradient Boosting Model (GBM) (7%), Support Vector Machine (SVM) (6%),
and developed methods such as Elastic Net, TabNet, GT-A Model, and AutoML (2%). As for
traditional actuarial models, the most frequently used model is Traditional Logistic Regression
(31%). Several other models can be considered for use in comparing with ML methods, namely
the Cox Proportional Hazards (19%), Generalized Linear Model (GLM) (16%), Lee-Carter Model
(6%), and other prediction models specifically used in the medical field, including Lung Allocation
Score (LAS) and Clinical Risk Index for Babies II (CRIB-11) (3%). The most frequently used
methods for comparison, depending on the context, produce different results. In the medical
context, Random Forest (58%) and Traditional Logistic Regression (47%) were the most dominant,
whereas in the insurance context, Gradient Boosting Machine (GBM) (33%) and Generalized
Linear Models (GLM) (50%) were the most used. The results of this context-based method
comparison are presented in Figure 5.
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Table 2: Distribution of Methods in the 25 Articles Examined

No Author (Year) Citation
Number

Machine Learning
Method

Traditional Actuarial
Model

1 Boo, Y & Choi, Y
(2020) [11]

17 Multilayer Perceptron
(MLP), Decision Tree

Traditional Logistic
Regression

2 Bithew et al.
(2020) [12]

22 Random Forest, Logistic
Regression, K-Nearest

Neighbors (KNN)

Traditional Logistic
Regression

3 Maier et al. (2020)
[13]

15 Random Survival Forest
(RSF)

Cox Proportional Hazards
Model

4 Lee et al. (2021)
[14]

30 LASSO, Ridge Regression,
Elastic Net, Random

Forest, SVM, XGBoost

TIMI, GRACE, ACTION

5 Li et al. (2021) [15] 18 Random Survival Forest
(RSF)

Cox Proportional Hazards

6 Lee et al. (2021)
[16]

16 Random Forest CRIB-II, Traditional
Logistic Regression

7 Brahmbhatt et al.
(2022) [17]

15 LASSO, Random Forest LAS Model (clinical
model)

8 Garcia-
Montemayor et al.

(2020) [18]

12 Random Forest Traditional Logistic
Regression

9 Sinha et al. (2023)
[19]

10 Random Forest, Neural
Networks, XGBoost,

Weighted SVM

EuroSCORE II,
Traditional Logistic

Regression
10 McDonnell et al.

(2023) [20]
35 TabNet, XGBoost Traditional Logistic

Regression
11 Shen et al. (2024)

[21]
3 GT-A (GNN +

Transformer)
Lee-Carter Model

12 Chen & Khaliq
(2022) [22]

7 RNN (LSTM, BiLSTM,
GRU)

Lee-Carter Model

13 Clemente et al.
(2023) [23]

6 Gradient Boosting Model
(GBM)

Generalized Linear Model
(GLM)

14 Vagliano et al.
(2022) [24]

5 AutoML Traditional Logistic
Regression

15 Nakamura et al.
(2022) [25]

4 RNNSurv, DeepSurv Cox Proportional Hazard

16 Nistal-Nuño (2022)
[26]

11 TE, Random Forest,
XGBoost, Naïve Bayes,

Bayesian Network

Traditional Logistic
Regression

17 Chia et al. (2021)
[27]

9 Decision Tree Cox Proportional Hazards,
Traditional Logistic

Regression
18 Chou & Ghimire

(2021) [28]
8 Random Forest Linear Regression

19 Lopes et al. (2023)
[29]

4 XGBoost Traditional Logistic
Regression

20 Andrade &
Valencia (2023) [30]

4 Fuzzy Random Survival
Forest (FRSF)

Cox Proportional Hazards

21 Kovacs et al. (2021)
[31]

3 Decision Tree Generalized Linear Model
(GLM)

22 Penny-Dimri et al.
(2023) [32]

3 Decision Tree, Random
Forest, GBM

Cox Proportional Hazards

Vita Nuraini 1005



Transformation of Traditional Models to AI . . .

No Author (Year) Citation
Number

Machine Learning
Method

Traditional Actuarial
Model

23 Huber et al. (2023)
[33]

2 Random Forest, SVM,
XGBoost

Traditional Logistic
Regression

24 Wilson et al. (2024)
[34]

1 GBM, Artificial Neural
Networks (ANN)

Generalized Linear Model
(GLM)

25 Kagerbauer et al.
(2024) [35]

1 Random Forest, GBM,
XGBoost, Deep Learning,

Stacked Ensembles

Generalized Linear Model
(GLM)

Figure 5: Comparison of Methods Based on Context

The methodological evolution analysis in this study identified three phases of development.
The initial research, conducted between 2019 and 2021, involved more comparisons between the
Random Forest and traditional logistic regression. Then, there was a change in the second phase,
from 2022 to 2023, which showed an increase in the Traditional Logistic Regression and the Cox
Proportional Hazards used as a comparison. The last phase, spanning 2024–2025, marks the
emergence of the Generalized Linear Model (GLM), which is beginning to be used and compared
with the Gradient Boosting Machine (GBM), particularly in the insurance context. In addition,
a hybrid approach uses two methods at once by integrating the strengths of ML methods and
traditional actuarial models starting in 2022. A visualization of the results of the methodological
evolution analysis in this study is presented in Figure 6.

Figure 6: Methodological Evolution Analysis Results
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3.1.3 Performance Comparison

Of the 25 articles that have gone through the selection process, 60% of the total articles state
that the machine learning method is far superior. While 16% of the 25 articles show the opposite
result, namely, the traditional actuarial model is far superior, the remaining 4% show that there
is no difference in mortality prediction results between ML methods and conventional actuarial
models. Based on the visualization in Figure 7, it can be seen that, in general, the ML method
is far superior based on the accuracy (59.2%), sensitivity (35.8%), mean absolute error (MAE)
(22.2%), Area Under the Curve (AUC) (17%) values, which are more significant. However, if
focused on the context, the results will vary. In the medical context, the ML method excels due
to the increase in accuracy (59.2%) in the death rate scenario. Another aspect of the insurance
context that yields varied results is that the ML method is far superior for short-term mortality
projections, which is inversely proportional to the traditional actuarial model. In contrast, the
latter is superior for long-term mortality projections.

Figure 7: Performance Metrics in Medical Studies (top) and Insurance Studies (bottom)

3.1.4 Relative Strengths and Limitations
To review this section, several aspects are compared between the ML method and traditional
actuarial models: data requirements, interpretability, predictive accuracy, adaptability, regulatory
compliance, long-term stability, capturing non-linearities, and computational complexity. ML
methods and traditional actuarial models have different relative strengths and limitations. The
ML method has advantages in terms of predictive accuracy (85/100), computational complexity
(60/100), capturing non-linearity (90/100), data requirements (70/100), and adaptability (80/100).
These advantages are offset by weaknesses in interpretability (35/100), regulatory compliance
(45/100), and long-term stability (60/100)—the advantages and disadvantages of the traditional
actuarial model. The strengths of the traditional actuarial model were long-term stability
(85/100), regulatory compliance (85/100), and interpretability (90/100), while the weaknesses
were computational complexity (15/100), data requirements (30/100), capturing non-linearity
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(20/100), adaptability (50/100), and precision accuracy (65/100). The relative strengths and
limitations were visualized using spider charts presented in Figure 8.

Figure 8: Comparison of Relative Strengths and Weaknesses

3.1.5 Research Gaps
Of the 25 articles examined, some areas have underdeveloped research analyses, commonly
referred to as gaps. Methodological gaps refer to limited comprehensive external validation in
68% of the articles, limited predictive evaluation in homogeneous populations in 72% of the
articles, and limited testing in homogeneous populations in 64% of the articles. The technical side
of the gap refers to the need for a systematic hybrid approach (88%), improved bias reduction
methods (20%), and model calibration to mitigate the risk of tail events in predictions (32%). The
implementation gap refers to an insufficient regulatory framework for ML methods in actuarial
science (32%) and limited cost-benefit analysis due to specific factors (40%). The interpretability
gap refers only to the methods used to interpret complex ML models (60%). All of these gaps
are presented in Figure 9, which concludes that there is a significant need for further research on
this topic.

3.2 Discussion

3.2.1 Interpretation of Main Findings
Based on the identification using the SLR method, several consistent patterns were found in
comparing the performance of the ML method with traditional actuarial models in predicting
mortality risk. The most significant finding in this study is that the ML method is significantly
superior to the conventional actuarial model in 60% of cases. This result suggests good potential
for this methodology to improve the accuracy of predicting mortality risk. However, when
narrowed down by context (medical or actuarial), the results suggest that the superiority of ML
methods is uneven for each context. In particular, ML methods consistently excel in the medical
context, especially for Random Forest and Extreme Gradient Boosting (XGBoost) methods,
which can effectively capture the complexity and non-linearity of medical data well. In contrast,
the more moderate and variable superiority in the insurance context, especially for long-term
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projections, makes the traditional actuarial model the winner, with the Cox Proportional Hazards
model as the representative in predicting mortality risk.

Figure 9: Plot of Identified Research Gaps

An interesting result of this comparative study is the dominance of Random Forest over
Traditional Logistic Regression and Gradient Boosting Machine (GBM) over Generalized Linear
Model (GLM), especially in 2024. The advantage of the Random Forest lies in its inherent balance
between high prediction accuracy and reasonably good interpretability. These advantages are
compared with those of Traditional Logistic Regression, which remains the standard in survival
analysis because it involves fairly complex computations, making the comparison between the
two interesting.

3.2.2 Accuracy and Interpretability Challenges
When selecting a methodological approach, an actuarial practitioner considers both predictive
accuracy and interpretability. Based on this research, ML methods excel in accuracy but have
poor interpretability scores, especially for Deep Learning methods, due to their "black box"
nature. Interpretability is an important aspect of actuarial analysis. That is why only a few
ML methods can be used in the actuarial industry. It cannot be denied that in the context of
the insurance industry, transparent decisions that can be explained and defended objectively
are needed. Thus, traditional actuarial models are still maintained today. This is due to the
relatively higher level of interpretability in predicting mortality risk. Additionally, conventional
actuarial models continue to ensure regulatory compliance. However, based on the methodological
evolution results identified, many researchers are trying to resolve this gap and realize that in the
future, predictions can be made not only with one methodology but by combining the strengths
of both.

3.2.3 Implications for Practice and Research

The results of this study have important implications for various stakeholders in the actuarial
and insurance world in predicting mortality risk. For actuarial practitioners, the results indicate
that ML methods significantly enhance prediction accuracy, although they must still consider
specific needs, such as short-term predictions or contexts involving complex data. For long-term
applications that require high interpretability, traditional actuarial models are a better choice.
However, it is interesting that 88% of the articles identified the need for a systematic hybrid
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approach to improve the quality of mortality risk prediction. Thus, actuarial practitioners must
master programming and AI to use ML methods that align with the times.

For regulators, it is essential to consider that technological developments will continue to
advance. Therefore, it is necessary to develop new standards for the interpretability and stability
policies of machine learning methods in the actuarial industry, given the strength of these
methods. This process should not overlook the importance of conducting a thorough review of
the method to be applied. For researchers or academics, significant research gaps are identified
through the SLR. Starting from the need for more comprehensive external validation, to better
long-term evaluation. Additionally, there are limitations to the interpretation of ML methods in
the insurance industry, which is a significant highlight for the development of future innovations.

3.2.4 Strengths and Limitations of the Review

The main strength of this SLR is that it is a comprehensive search strategy with an in-depth
analysis of 25 articles specifically comparing ML methods with traditional actuarial models. Other
strengths include quality assessment using the STROBE instrument and systematic identification
of research gaps. Behind these advantages, some limitations need to be recognized, namely the
use of databases only from Scopus, the focus on English-language articles, the potential bias
of publications that support the results of ML methods positively, and the relatively recent
emergence of this research domain, which limits the long-term perspective.

3.2.5 Future Research Directions
Based on the research conducted using the SLR method, with several gaps identified, several
promising research directions will be explored in the future. These research directions are the
development of a hybrid approach that integrates the theoretical basis of traditional actuarial
models with the predictive accuracy capabilities of the ML method in predicting mortality
risk. Additionally, a multi-institutional external validation study assesses the generalizability of
performance comparisons for each article published on this topic, ensuring that they adhere to
the same standards. Another research direction is the development of XAI (Explainable Artificial
Intelligence) techniques in actuarial science to overcome the gap between the advantages of
ML methods and traditional actuarial models, thereby enabling the use of ML methods in the
actuarial industry. Finally, an important research direction is to comprehensively analyze the
adoption of ML methods in actuarial practice to take advantage of technological developments
and improve accuracy in mortality risk prediction.

4 Conclusion

This study compares machine learning (ML) methods and traditional actuarial models in
predicting mortality risk through a Systematic Literature Review (SLR) approach with the
PRISMA methodology. Based on the analysis of 25 selected articles, it was found that ML
methods, especially Random Forest and XGBoost, have superior prediction accuracy compared
to traditional actuarial models such as Traditional Logistic Regression and Cox Proportional
Hazards. However, the main challenges in applying machine learning (ML) methods are the
low level of interpretability, difficulty in long-term validation, and compliance with insurance
regulations, which are still obstacles to fully adopting this technology in the actuarial industry.

This study also found that while machine learning (ML) methods have shown advantages in the
medical context, their application in the insurance industry still has limitations, especially in more
accurate long-term mortality projections using traditional actuarial models. Therefore, a hybrid
approach is needed that combines the strengths of machine learning (ML) methods in improving
prediction accuracy with the advantages of traditional actuarial models in interpretability and
regulatory compliance.
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In addition, this study identified various research gaps that need to be further explored,
such as the need for more comprehensive external validation, the development of bias reduction
methods in prediction, and the use of Explainable Artificial Intelligence (XAI) techniques to
improve the transparency of machine learning (ML) methods in life insurance. The implications
of these findings highlight the need for clearer regulatory standards and the development of more
adaptive prediction models to meet the needs of the actuarial industry in the digital era.

As a recommendation, future research could explore hybrid approaches that combine the
interpretability of traditional actuarial models and regulatory elements with the higher predictive
accuracy of machine learning (ML) methods. Furthermore, additional studies are required to
evaluate the effectiveness of the XAI approach in enhancing transparency and trust in ML models
within the actuarial industry.
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