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Abstract

Tuberculosis (TB) remains a major global health concern due to its complex transmission
dynamics and frequent treatment interruptions. This study utilizes a SEITR compartmental
model to quantitatively analyze the spread and control of TB. The model calculates the basic
reproduction number, disease-free equilibrium, and endemic equilibrium to evaluate system
stability. Sensitivity analysis identifies key parameters influencing the infected population:
effective contact rate, natural mortality rate, population recruitment rate, and treatment
rate. Among these, the effective contact rate and natural mortality rate significantly impact
disease persistence. The findings suggest that effective TB control can be achieved through
early detection and isolation of infectious individuals, timely and proper treatment, improved
indoor ventilation, and the consistent use of masks by active TB patients. This model-based
approach offers empirical evidence to inform public health policies, highlighting critical
intervention points to interrupt TB transmission and improve treatment outcomes.
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1. Introduction
Tuberculosis (TB) continues to pose a serious global public health threat, characterized by the
complexity of its transmission dynamics and persistent challenges in disease control, particularly
related to incomplete treatment and treatment default. Inadequate adherence to TB treatment
regimens can result in treatment failure, increased risk of transmission, and the emergence of
drug-resistant Mycobacterium tuberculosis strains, which significantly complicate TB eradication
efforts. To quantitatively investigate these complex processes, mathematical models such as the
SEITR (Susceptible–Exposed–Infected–Treated–Recovered) compartmental model have been
widely used as effective tools to describe population interactions and simulate disease dynamics
over time.

One of the most critical obstacles in TB control is the high prevalence of treatment non-
compliance, where patients discontinue therapy before completing the prescribed regimen. This
behavior not only increases the probability of relapse and drug resistance but also sustains
ongoing transmission within the community. Consequently, understanding how treatment-related
factors influence TB transmission is essential for designing effective intervention strategies. In this
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context, sensitivity analysis plays a fundamental role, as it allows researchers to systematically
identify which parameters exert the greatest influence on disease outcomes. Such information is
particularly valuable for public health decision-making, as it enables policymakers to prioritize
control efforts and allocate resources toward the most impactful intervention targets.

Numerous studies have examined TB transmission dynamics using compartmental models
that incorporate treatment mechanisms [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. These works primarily focus on equilibrium analysis and the local or global
stability of disease-free and endemic states. While such analyses are essential for understanding
long-term system behavior, they provide limited information regarding how uncertainties in
model parameters affect epidemiological predictions. In particular, the study by Ullah et al. [16]
proposed a TB model that accounts for treatment and default behavior but did not investigate
the sensitivity of model outputs to variations in parameter values.

In practical epidemiological settings, model parameters such as transmission rates, treatment
success rates, and default rates are often estimated from incomplete or uncertain data sources. As
a result, the reliability of model-based predictions strongly depends on how sensitive the outcomes
are to these parameters. Without sensitivity analysis, it is difficult to assess the robustness of
model conclusions or to identify which parameters should be targeted most urgently through
public health interventions.

The main novelty and scientific contribution of this study lie in conducting a comprehensive
parameter sensitivity analysis of the TB model proposed by Ullah et al. [16], with a specific
emphasis on treatment adherence and treatment default mechanisms. Unlike previous studies
that primarily addressed equilibrium properties and stability conditions, this work explicitly
quantifies the relative influence of key epidemiological and treatment-related parameters on critical
outcomes such as the basic reproduction number and endemic equilibrium levels. By identifying
the most influential parameters driving TB transmission dynamics, this study provides a direct
link between mathematical modeling and evidence-based policy design, offering actionable insights
for improving TB control strategies, particularly in populations with high rates of treatment
non-compliance.

2. Some Concepts
This section presents the fundamental concepts underlying the development of the SIETR model
of tuberculosis transmission with incomplete treatment. It introduces the key epidemiological
assumptions, compartmental structure, and mathematical framework used to describe the
dynamics of disease spread and treatment outcomes. These concepts provide the theoretical
basis for formulating the model and facilitate a clear understanding of the relationships among
the model components discussed in the subsequent subsections.

2.1. SIETR Model of Tuberculosis Transmission with Incomplete Treatment
According to [16], the spread of infectious diseases in a population can be mathematically modeled
using the SEITR model. In this model, the population is divided into five mutually exclusive
groups: susceptible (S), exposed (E), actively infected or infectious (I), under treatment (T),
and recovered (R). New individuals enter the population through the susceptible class with
a recruitment rate π. Transmission of infection occurs when a susceptible individual comes
into close contact with an infectious or on-treatment individual, with a transmission rate of
λS(t)(I(t) + βT (t)), where λ is the effective contact rate, and β (0 ≤ β < 1) describes the
decrease in infectiousness due to treatment. The natural mortality rate of the entire population
is expressed by η, while disease-induced mortality occurs in the infectious and treatment classes
at rates δ1 and δ2, respectively, where δ1 is greater than δ2. The movement of individuals from
the exposed class to the infectious class is controlled by the parameter α, while γ indicates the
treatment rate of infectious individuals. Individuals who have undergone treatment will leave
class T at a rate θ, where some (pθT ) successfully recover and enter class R, while the rest
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((1 − p)θT ) return to being exposed due to ineffective treatment. The value of p (0 < p ≤ 1)
indicates the treatment success rate. Individuals who are in the exposed stage cannot transmit
the disease, while individuals on treatment still have the potential to transmit based on the
WHO TB report.

The susceptible population increases through recruitment at a rate of π and decreases due to
infection following contact with infectious individuals (I) or those undergoing treatment (T ), the
latter having reduced infectivity, represented by the modification factor β. Additionally, natural
death among susceptible individuals occurs at a rate η. The exposed class (E) increases as
susceptible individuals become infected, and decreases due to progression to the infectious stage
at a rate α and natural death at a rate η. Furthermore, individuals from the treatment class (T )
who fail to recover (with probability 1 − p) may return to the exposed stage at a rate θ. The
infectious population (I) grows as exposed individuals transition into the infectious stage and
decreases due to natural mortality (η), disease-induced death (δ1), and movement into treatment
(γ). The treatment class (T ) increases as infectious individuals begin therapy, and decreases due
to natural death, TB-induced death (δ2), and treatment exit either due to success or failure at a
rate θ. Recovered individuals enter the R compartment following successful treatment, with a
proportion p exiting the treatment stage at rate θ. This class also decreases through natural
death at rate η. Based on these assumptions, a system of differential equations is developed that
represents the dynamics of disease spread in the population.

dS

dt
= π − λS(I + βT ) − ηS,

dE

dt
= λS(I + βT ) − (η + α)E + (1 − p)θT,

dI

dt
= αE − (η + δ1 + γ)I,

dT

dt
= γI − (η + δ2 + θ)T,

dR

dt
= pθT − ηR.

(1)

2.2. Fixed Point and Basic Reproduction Number
The disease-free fixed point of the proposed TB transmission model can be obtained by equating
the right-hand side of the model equation system to zero and E = I = T = 0. From this process,
according [16], the following results are obtained:

P0 = (S, E, I, T, R) =
(

π

η
, 0, 0, 0, 0

)
.

Furthermore, the value of the basic reproduction number will be found using the Next
Generation Matrix (NGM) method [17]. Based on model (eq:seitrsystem) and P0, the following
correspondence matrices are obtained:

F =

0 λπ
η

λβπ
η

0 0 0
0 0 0

 , V =

η + α 0 −(1 − p)θ
−α η + δ1 + γ 0
0 −γ η + δ2 + θ


The value of R0 is the spectral radius of FV −1, so the value of R0 is:

R0 = αλπ

η
· (η + δ2 + θ + βγ)

(η + α)(η + δ1 + γ)(η + δ2 + θ) − (1 − p)θαγ

The endemic fixed point of model (1) is obtained by equalizing the right-hand side of the
system, so that the fixed point value is obtained as follows

P1 = (S∗, E∗, I∗, T ∗, R∗)

Joko Harianto 281



Sensitivity Analysis of TB Model with Incomplete Treatment

where

S∗ = π

xI∗ + η
, E∗ = h2I∗

α
, T ∗ = γI∗

h3
, R∗ = pθγ

ηh3
I∗, I∗ = η

x
(R0 − 1),

and
x = λ(h3 + βγ)

h3
.

2.3. Sensitivity Analisys
According to [18], sensitivity analysis is conducted to assess the role of each parameter in
influencing the dynamics of the spread of a disease. To assess the influence of each parameter
on the spread of the disease, a sensitivity index is used. This index, known as the normalized
sensitivity index, is obtained by performing the derivative of variable A against parameter x,
then normalizing it. The index is defined as follows:

IA
x = ∂A

∂x
· x

A
(2)

where A is the variable to be analyzed while x is the parameter [19].

3. Result and Discussion
This section presents the results and discussion of the SIETR model of tuberculosis transmission
with incomplete treatment. The analysis begins with a sensitivity study of the basic reproduction
number to identify the most influential parameters affecting disease transmission. It is followed by
a sensitivity analysis of the infected population to further examine the impact of key parameters
on infection dynamics. Finally, numerical simulations are provided to illustrate the behavior of
the model and support the analytical findings.

3.1. Sensitivity Analysis for Basic Reproduction Number
The basic reproduction number, denoted as R0, describes the average number of new individuals
infected by a single infected person over the course of its transmission, in a population where all
members are still susceptible to infection [20], [21], [22], [23], [24].

Sensitivity analysis of R0 aims to identify the parameters that most influence the magnitude
of the R0 value, so that disease control efforts can be carried out more effectively and purposefully.
The sensitivity analysis is conducted using parameter values based on [16], as presented in Table 1.

Table 1: Parameter values used in the sensitivity analysis of R0 based on [16].

Parameter Value

π 0.2
λ 0.7
α 0.25
η 0.1
δ1 0.15
δ2 0.05
γ 0.2
θ 0.1
β 0.1
p 0.9

Furthermore, based on Table 1 and Eq. (2), the sensitivity index is illustrated in Fig. 1.
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Figure 1: Sensitivity index of the basic reproduction number

Next, we will look at the relationship between changes in parameter values and changes in
R0 values, as presented in Table 2.

Table 2: Comparison of parameter value changes to the basic reproduction number R0 = 2.4309.

Parameter +5% −5%

α 2.4648 2.3944
π 2.5524 2.3093
λ 2.5524 2.3093
η 2.2529 2.6306
δ1 2.3905 2.4726
δ2 2.4288 2.4330
γ 2.3877 2.4760
θ 2.4283 2.4336
β 2.4399 2.4219
p 2.4169 2.4450

Based on Table 2, it can be seen that a sensitivity index with a positive value indicates that
an increase in the parameter value will result in an increase in the basic reproduction number
R0. Conversely, a negative sensitivity index indicates that an increase in the parameter value
will lead to a decrease in R0. For example, the sensitivity index obtained for the parameter α is
0.2894, which means that if α increases (decreases) by 10%, it causes R0 to increase (decrease)
by 2.894%. Similarly, the parameter η has a sensitivity index of −1.5492, indicating that if η
increases (decreases) by 10%, R0 will decrease (increase) by 15.492%. This type of analysis also
applies to other parameters. Based on the sensitivity index values, the parameters that have the
most influence on R0 are π, λ, and η.

Furthermore, simulations are carried out to better visualize the effect of these parameters on
the value of R0 under varying conditions. In this simulation, the values λ = 0.5, λ = 0.6, and
λ = 0.7 are selected, while η is varied over the interval 0 ≤ η ≤ 0.2. The simulation results are
shown in Fig. 2. Based on the figure, it is observed that as the value of λ increases, the value of
R0 also increases, while as the value of η increases, R0 decreases. This behavior aligns with the
sensitivity indices, where λ has a positive sensitivity index and η has a negative one.
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Figure 2: Effect of λ variation on η and the basic reproduction number R0.

The simulations in Fig. 2 provide critical insight into how changes in the effective contact
rate (λ) and the natural mortality rate (η) affect the basic reproduction number (R0). As
observed, increases in λ lead to a higher R0, while increases in η correspond to a reduction in
R0. These findings highlight the pivotal role of contact reduction strategies, such as early case
detection, contact tracing, and isolation of infectious individuals, in lowering the transmission
potential. Furthermore, improving general health conditions and reducing comorbidities that
elevate mortality may indirectly contribute to a more favorable disease dynamic by altering η.

From a policy perspective, these results underscore the importance of targeted interventions
that modulate transmission and treatment pathways. For instance, public health programs
aimed at increasing awareness, reducing diagnostic delays, and ensuring treatment adherence
can significantly influence λ and, consequently, suppress R0 below the threshold level required
for sustained transmission. Incorporating these model insights into tuberculosis (TB) control
strategies can enable better resource optimization and support more effective intervention
planning.

3.2. Sensitivity Analisys for Infected Population
Sensitivity analysis of the infected population (I) was conducted to determine the parameters
that have the most influence on the size of the infected population, so that efforts to control the
spread of infection can be carried out more optimally. This analysis uses parameter values taken
from [16], as listed in Table 1.

Figure 3: Sensitivity index of the infected population
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Based on Fig. 3, it can be seen that the parameters π, η, and λ are the most influential factors
on changes in the number of infected individuals, both positively and negatively. The parameter
π has the greatest positive influence, indicating that an increase in π leads to a significant rise in
the number of infected individuals. In contrast, the parameter η shows the strongest negative
effect, suggesting that an increase in η has the potential to substantially reduce the size of the
infected population.

3.3. Simulation
In this section, we will simulate several parameters to see how the effect of parameter variation
affects the infected population.

3.3.1. Effect recruitment rate (π) to infected population
Fig. 4 shows that as the parameter value π increases, the number of infected individuals also
increases. Sensitivity analysis indicates that a 30% increase in π results in approximately a
49.8% increase in the infected population. The value of π itself is influenced by various factors,
including socio-cultural aspects, economic conditions, government policies, and health-related
factors. Therefore, government initiatives such as promoting family planning programs can be
considered as strategic efforts to reduce the number of infected individuals by controlling the
growth rate represented by π.

Figure 4: Effect of (π) variation on infected population

3.3.2. Effect effective contact rate (λ) to infected population.
Fig. 5 shows that an increase in the value of λ is directly proportional to the increase in the
number of infected individuals. Based on sensitivity analysis, a 30% increase in λ is estimated
to result in approximately a 19.8% increase in the number of infected cases. Therefore, it is
crucial to implement measures aimed at reducing λ, such as early detection and isolation of
active TB patients, effective and timely treatment, improving the quality of room ventilation,
and encouraging the use of masks by active TB patients. These efforts can significantly reduce λ
and help break the chain of transmission.
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Figure 5: Effect of (λ) variation on infected population

3.3.3. Effect treatment rate of infectious individuals (γ) to infected population
Fig. 6 shows that as the value of γ increases, the number of infected individuals decreases.
According to the sensitivity analysis results, a 30% increase in γ can reduce the infected
population by approximately 19.8%. This indicates that a faster or broader treatment rate plays
an important role in reducing the spread of infection. Therefore, accelerating case management
efforts can be achieved by improving access to healthcare services and promoting the more
widespread use of medical technology.

Figure 6: Effect of (γ) variation on infected population

4. Conclusion
This study presents a comprehensive parameter sensitivity analysis of a tuberculosis (TB)
transmission model with incomplete treatment, based on the SEITR framework. The main
scientific contribution of this work lies in the systematic application of sensitivity analysis to a
TB model that explicitly incorporates treatment default, which, to the best of our knowledge, has
not been sufficiently explored in previous studies. Unlike earlier research that primarily focused
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on equilibrium behavior and stability properties, this study quantifies the relative influence of
epidemiological and treatment-related parameters on key model outputs, thereby enhancing the
practical relevance of mathematical modeling for TB control.

The sensitivity analysis reveals that the parameters η, π, and λ exert the strongest influence on
the basic reproduction number (R0), while η, π, γ, and λ are the dominant drivers of the infected
population size. These results highlight the critical role of treatment adherence and effective
contact reduction in shaping TB transmission dynamics. From a public health perspective,
the findings suggest that interventions should prioritize reducing the effective contact rate (λ)
through early diagnosis, isolation of infectious individuals, improved ventilation in high-risk
environments, and consistent mask usage. In addition, strengthening treatment programs to
minimize treatment default (π) through patient education, digital adherence monitoring, and
community-based supervision can substantially reduce disease persistence. Improving treatment
rates (γ) by ensuring timely access to healthcare services and sufficient medical resources is also
essential for accelerating recovery and interrupting transmission.

Despite these contributions, this study has several limitations. The model relies on param-
eter values obtained from secondary sources and assumptions, which may not fully capture
the heterogeneity of real-world TB transmission. Moreover, the model does not account for
important factors such as HIV co-infection, drug resistance, socioeconomic conditions, or spatial
heterogeneity, all of which are known to significantly affect TB epidemiology.

Future research can extend this work in several directions. More accurate parameter estimation
can be achieved through primary data collection and advanced statistical inference techniques.
The model may also be expanded to incorporate additional epidemiological features such as HIV-
TB co-infection, multidrug-resistant TB, and healthcare system capacity. Furthermore, spatial
modeling and cost-effectiveness analysis of intervention strategies could provide deeper insights
into regional TB patterns and support evidence-based resource allocation. These extensions would
enhance the realism of the model and further strengthen its applicability as a decision-support
tool for TB control policies.

CRediT Authorship Contribution Statement
Joko Harianto: Introduction, SIETR Model of Tuberculosis Transmission with Incomplete
Treatment, Sensitivity Analysis for Basic Reproduction Number, Conclusion, Conceptualization,
Methodology, Writing–Original Draft, Supervision, Project Administration. Diki Fernandi:
Fixed Point and Basic Reproduction Number, Sensitivity Analysis, Sensitivity Analysis for
Infected Population, Simulation (Effect of recruitment rate π, effective contact rate λ, and
treatment rate γ to infected population), Data Curation, Formal Analysis, Writing–Review &
Editing, Software, Validation, Visualization.

Declaration of Generative AI and AI-assisted technologies
During the preparation of this work the authors used Generative AI in order to enhance language
clarity and readability, ensuring cautious and careful application. After using this tool/service,
the authors reviewed and edited the content as needed and takes full responsibility for the content
of the publication.

Declaration of Competing Interest
The authors declare no competing interests.

Funding and Acknowledgments
This research received no external funding.

Joko Harianto 287



Sensitivity Analysis of TB Model with Incomplete Treatment

Data and Code Availability
Data and code sharing are not applicable.

References
[1] J. Zhang and G. Feng, “Global stability for a tuberculosis model with isolation and

incomplete treatment,” Computational and Applied Mathematics, vol. 34, no. 3, pp. 1237–
1249, 2015. doi: 10.1007/s40314-014-0177-0.

[2] A. H. Permatasari and R. H. S. Utomo, “Analysis of tuberculosis dynamical model with
different effects of treatment,” Journal of Fundamental Mathematics and Applications,
vol. 4, no. 2, pp. 193–202, 2021. doi: 10.14710/jfma.v4i2.12049.

[3] Y. Yang, J. Li, Z. Ma, and L. Liu, “Global stability of two models with incomplete treatment
for tuberculosis,” Chaos, Solitons and Fractals, vol. 43, no. 1–12, pp. 79–85, 2010. doi:
10.1016/j.chaos.2010.09.002.

[4] A. U. Kalu and S. C. Inyama, “Mathematical model of the role of vaccination and treatment
on the transmission dynamics of tuberculosis,” General Mathematics Notes, vol. 11, no. 1,
pp. 11–23, 2012. doi: https://api.semanticscholar.org/CorpusID:86314955.

[5] L. K. Beay and N. Anggriani, “Dynamical analysis of a modified epidemic model with
saturated incidence rate and incomplete treatment,” Axioms, vol. 11, no. 6, pp. 1–21, 2022.
doi: 10.3390/axioms11060256.

[6] L. Wang, “Global dynamical analysis of hiv models with treatments,” International
Journal of Bifurcation and Chaos, vol. 22, no. 9, p. 1 250 213, 2012. doi: 10 . 1142 /
S0218127412502276.

[7] H. Guo and M. Y. Li, “Global stability of the endemic equilibrium of a tuberculosis model
with immigration and treatment,” Canadian Applied Mathematics Quarterly, vol. 19, no. 1,
pp. 185–197, 2011.

[8] X. Zhou, X. Shi, and H. Cheng, “Modelling and stability analysis for a tuberculosis model
with healthy education and treatment,” Computational and Applied Mathematics, vol. 32,
no. 2, pp. 245–260, 2013. doi: 10.1007/s40314-013-0008-8.

[9] W. Nur, M. Magfirah, D. Darmawati, and A. Ansar, “Stability analysis of tuberculosis sits
model,” Journal of Mathematical Theory and Applications, vol. 2, no. 2, pp. 33–36, 2021.
doi: 10.31605/jomta.v2i2.874.

[10] A. H. Permatasari and R. H. S. Utomo, “Local stability analysis of tuberculosis transmission
model with treatment effectiveness,” vol. 2738, AIP Publishing, 2023, p. 020 005. doi:
10.1063/5.0140433.

[11] P. Prakitsri, A. Rangsi, C. Nithijirawat, and N. Para, “A mathematical model of tuberculosis
transmission in thailand with vaccination and anti-drug treatment,” Journal of Applied
Sciences, vol. 18, no. 1, pp. 116–134, 2019. doi: 10.14416/j.appsci.2019.06.001.

[12] S. F. Abimbade, S. Olaniyi, O. A. Ajala, and M. O. Ibrahim, “Optimal control analysis of a
tuberculosis model with exogenous re-infection and incomplete treatment,” Optimal Control
Applications and Methods, vol. 41, no. 6, pp. 2349–2368, 2020. doi: 10.1002/oca.2658.

[13] H. F. Huo and L. X. Feng, “Global stability of an epidemic model with incomplete treatment
and vaccination,” Discrete Dynamics in Nature and Society, vol. 2012, p. 831 654, 2012.
doi: 10.1155/2012/530267.

[14] S. M. Garba, M. A. Safi, and S. Usaini, “Mathematical model for assessing the impact of
vaccination and treatment on measles transmission dynamics,” Mathematical Methods in
the Applied Sciences, vol. 40, no. 18, pp. 6371–6388, 2017. doi: 10.1002/mma.4462.

Joko Harianto 288

https://doi.org/10.1007/s40314-014-0177-0
https://doi.org/10.14710/jfma.v4i2.12049
https://doi.org/10.1016/j.chaos.2010.09.002
https://doi.org/https://api.semanticscholar.org/CorpusID:86314955
https://doi.org/10.3390/axioms11060256
https://doi.org/10.1142/S0218127412502276
https://doi.org/10.1142/S0218127412502276
https://doi.org/10.1007/s40314-013-0008-8
https://doi.org/10.31605/jomta.v2i2.874
https://doi.org/10.1063/5.0140433
https://doi.org/10.14416/j.appsci.2019.06.001
https://doi.org/10.1002/oca.2658
https://doi.org/10.1155/2012/530267
https://doi.org/10.1002/mma.4462


Sensitivity Analysis of TB Model with Incomplete Treatment

[15] N. A. Lestari, Sutimin, et al., “Local stability analysis for tuberculosis epidemic model with
different infection stages and treatments,” 1, vol. 1943, IOP Publishing, 2021, p. 012 021.
doi: 10.1088/1742-6596/1943/1/012120.

[16] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, and A. Khan, “Stability analysis
of a dynamical model of tuberculosis with incomplete treatment,” Advances in Difference
Equations, vol. 2020, no. 1, 2020. doi: 10.1186/s13662-020-02950-0.

[17] P. Van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission,” Mathematical Biosciences,
vol. 180, no. 1–2, pp. 29–48, 2002. doi: 10.1016/S0025-5564(02)00108-6.

[18] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, “A methodology for performing
global uncertainty and sensitivity analysis in systems biology,” Journal of Theoretical
Biology, vol. 254, no. 1, pp. 178–196, 2008. doi: 10.1016/j.jtbi.2008.04.011.

[19] N. R. Chitnis, “Using mathematical models in controlling the spread of malaria,” Ph.D.
dissertation, 2005.

[20] S. Dharmaratne, S. Sudaraka, I. Abeyagunawardena, K. Manchanayake, M. Kothalawala,
and W. Gunathunga, “Estimation of the basic reproduction number (r0) for the novel
coronavirus disease in sri lanka,” Virology Journal, vol. 17, no. 1, p. 144, 2020. doi:
10.1186/s12985-020-01411-0.

[21] P. Van den Driessche, “Reproduction numbers of infectious disease models,” Infectious
Disease Modelling, vol. 2, no. 3, pp. 288–303, 2017. doi: 10.1016/j.idm.2017.06.002.

[22] K. J. B. Villasin and A. R. E. M. R. Lao, “A dynamical analysis of tuberculosis in the
philippines,” Philippine Science Letters, vol. 10, no. 1, pp. 29–37, 2017.

[23] Q. Li and F. Wang, “An epidemiological model for tuberculosis considering environmen-
tal transmission and reinfection,” Mathematics, vol. 11, no. 11, 2023. doi: 10.3390/
math11112423.

[24] World Health Organization, Global Tuberculosis Report 2023. WHO Press, 2023.

Joko Harianto 289

https://doi.org/10.1088/1742-6596/1943/1/012120
https://doi.org/10.1186/s13662-020-02950-0
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1186/s12985-020-01411-0
https://doi.org/10.1016/j.idm.2017.06.002
https://doi.org/10.3390/math11112423
https://doi.org/10.3390/math11112423

	Introduction
	Some Concepts
	SIETR Model of Tuberculosis Transmission with Incomplete Treatment
	Fixed Point and Basic Reproduction Number
	Sensitivity Analisys

	Result and Discussion
	Sensitivity Analysis for Basic Reproduction Number
	Sensitivity Analisys for Infected Population
	Simulation
	Effect recruitment rate () to infected population
	 Effect effective contact rate () to infected population.
	Effect treatment rate of infectious individuals () to infected population


	Conclusion

