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Abstract

Tuberculosis (TB) remains a major public health challenge in Indonesia and generates
significant mortality-related risk for the life insurance sector. This study develops an integrated
Susceptible–Infected–Recovered–Deceased (SIRD) model to analyze TB transmission dynamics
in Southeast Sulawesi and to estimate related life insurance claims. The model is calibrated
using regional TB data from 2021–2023 and validated against 2024 observations. Analytical
results include equilibrium analysis and the basic reproduction number, while long-term
dynamics are examined through scenario-based simulations. Epidemiological outcomes are
translated into actuarial projections by converting cumulative TB-related deaths into annual
incremental deaths and expected insurance claims under optimistic, baseline, and pessimistic
scenarios. Parameter sensitivity is assessed using Latin Hypercube Sampling and Partial Rank
Correlation Coefficients. The results show that the transmission rate is the most influential
determinant of the present value of TB-related insurance claims, followed by the recovery rate,
whereas TB-induced mortality has a smaller but significant effect. These findings highlight
that reducing transmission and improving treatment effectiveness can simultaneously mitigate
public health impacts and lower long-term insurance liabilities, demonstrating the relevance
of integrating epidemiological modeling with actuarial risk assessment.
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1 Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and transmitted
through the air. A single cough or sneeze from a TB patient can release approximately 3,000
germs into the air [1]. Tuberculosis remains one of the deadliest infectious diseases in the world.
According to the Global Tuberculosis Report 2023 [2] released by the World Health Organization
(WHO), Indonesia ranks second in the number of TB cases after India, with over 1 million new
cases and approximately 136,000 deaths each year [3].

In Southeast Sulawesi, surveys from the past three years show that the number of TB cases
continues to increase [4]. Additionally, TB patients with non-communicable comorbidities, such
as diabetes and heart disease, have a prevalence of up to 11.81% [5] and are more likely to
utilize inpatient services. This condition makes TB not only a public health problem but also an
economic burden, including for the health and life insurance industry.
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In this context, the SIRD (Susceptible–Infected–Recovered–Deceased) mathematical model
is relevant for describing the dynamics of TB spread and estimating the number of deaths [6],
making it useful for projecting potential life insurance claims.

Although tuberculosis exhibits a latent phase, the use of a SIRD model without an explicit
latent compartment remains appropriate at the population level. The limited empirical data on
the number of individuals in the latent or exposed phase is also an important consideration, as
this variable is rarely fully available in local health reports, making a model without a latent
compartment more realistic to implement with the existing actual data. Previous studies on
COVID-19 [7] [8] and TB-HIV [9] dynamics have shown that simplified SIRD-type models can
produce reliable epidemic projections when parameters are properly calibrated. In line with this,
Sirait et al. (2023) emphasize that SIR-type compartmental models remain widely used due
to their simplicity, stability, and ease of integration with economic and actuarial frameworks.
Since this study focuses on the cumulative death compartment as a proxy for tuberculosis-related
mortality risk in life insurance applications, the SIRD framework provides a parsimonious and
practically relevant modeling approach.

Research on mathematical modeling of infectious diseases has been developing for a long
time since it was introduced by Kermack and McKendrick in 1927 [10]. Basic models like SIR
and SEIR are used to predict disease dynamics by dividing the population into compartments
based on infection status. As it developed, this model was modified by adding compartments
and parameters, such as Vaccinated [11], [12], [13], [14], Deceased [15], [16], [17], and time delay
[18], [19]. On the other hand, several studies have conducted sensitivity analyses of parameters
[20], [21], [22], [23], research on life insurance projections [24], [25], [26], and the integration
of epidemiological models into actuarial science [27], [28], [29]. However, research specifically
linking infectious disease spread models with projections of life insurance claims in Indonesia is
still very limited, particularly for tuberculosis cases.

This research combines the analysis of TB epidemic dynamics with life insurance claim
projections within an integrated SIRD model framework. Unlike previous studies that generally
only highlighted either the spread of disease or financial calculations separately, this research
combines both to provide a more comprehensive picture of the epidemic’s impact. Additionally,
a sensitivity analysis was conducted on epidemiological parameters to identify the factors most
influential on the size of insurance claims so that the results could serve as a basis for decision-
making in the healthcare and insurance industries. Through this approach, this research presents
novelty by developing an SIRD model that not only describes the dynamics of tuberculosis but
also directly links it to the estimation of financial risk due to the death of the insured.

The content of this paper is organized as follows: Section 2 describes the methodology,
including model construction, simulation scenarios, and sensitivity analysis. Section 3 presents
the results and discussion, emphasizing model validation, projections for life insurance claims
based on data, and parameter sensitivity analysis. Finally, Section 4 provides conclusions and
outlines key policy implications.

2 Methods

This study employs a theoretical-computational approach by constructing an SIRD (Suscepti-
ble–Infected–Recovered–Deceased) mathematical model to simulate the dynamics of tuberculosis
spread in Southeast Sulawesi and its implications for life insurance claims.

The SIRD model is formulated as a system of differential equations with four main compart-
ments (S, I, R, D). The analysis was conducted by calculating the basic reproduction number (R0)
using the next generation matrix method [30] and by analysing the stability of the equilibrium
points using the Routh-Hurwitz criterion [31]. Model validation was performed by comparing
simulation results using initial value data from 2023 with actual case data from 2024.

All simulations and sensitivity analyses were performed in Python 3.12 using standard
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scientific libraries, under three epidemiological scenarios (optimistic, baseline, and pessimistic).
Sensitivity analysis was conducted employing the Latin Hypercube Sampling (LHS) method
and the Partial Rank Correlation Coefficient (PRCC) [32] using the SciPy.stats package. The
analytical findings are used to determine the most significant factors for claim forecasts, thereby
establishing a foundation for policy suggestions in the health and life insurance sectors.

3 Results and Discussion
This section presents the key results and their interpretation in relation to the study objectives.
The discussion begins with the construction and analysis of the SIRD model, including equilibrium
and stability properties. It then proceeds to simulation results, scenario-based projections, and
sensitivity analysis. Comparisons with observed data are provided to validate the model, while
scenario analysis illustrates the range of potential epidemiological and financial outcomes. Overall,
the results demonstrate how variations in TB transmission dynamics directly affect projected life
insurance claims and highlight the critical role of parameter sensitivity in risk evaluation.

3.1 Model Construction

This study extends the classical SIR model for infectious disease transmission into an SIRD
model specifically formulated for tuberculosis (TB) [1]. The population is divided into four
mutually exclusive compartments: Susceptible (S), Infected (I), Recovered (R), and Deceased
(D). The total population is denoted by N = S + I + R + D, with each compartment expressed
as a proportion of the total population.

It is assumed that susceptible individuals become infected through contact with infectious
individuals, infected individuals can either recover or die from TB, and natural deaths occur
uniformly across all living compartments. Births are included at a constant rate µ, maintaining
population balance. The deceased compartment D(t) represents the cumulative number of
TB-related deaths and does not feed back into the other compartments.

The compartmental flow is illustrated in Fig. 1, and the description of all variables and
parameters is summarized in Table 1.

Figure 1: Compartmental diagram for the transmission dynamics of TB.

This model partitions the compartment into four sections. Susceptible individuals (S) may be
infected with tuberculosis. Infected individuals (I) are those afflicted with tuberculosis. Recovered
individuals (R) are those who have successfully overcome TB. Individuals who have succumbed
to tuberculosis are classified under category D. Fig. 1 and Table 1 illustrate the compartment
diagram and associated variables.

For numerical stability and generalization, the system was transformed into proportional
form by dividing each compartment by N , yielding s = S/N, i = I/N, r = R/N, and D/N .
During simulation, population conservation was maintained, and for interpretative clarity, the
results were normalized relative to the living population (s + i + r = 1), while d(t) was tracked
separately as cumulative mortality. This normalization allows the model to describe changes in
the internal composition of the surviving population without distortion from cumulative deaths.
Considering these assumptions, the dynamics of tuberculosis transmission are governed by the
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Table 1: Variables and parameters

Symbol Description Unit/Interpretation

(N) Total population -
(S(t)) Number (or proportion) of susceptible individuals persons or proportion
(I(t)) Number (or proportion) of infected individuals with active TB persons or proportion
(R(t)) Number (or proportion) of recovered individuals persons or proportion
(D(t)) Cumulative deaths due to TB persons
(α) Transmission (infection) rate per person per year
(β) Recovery rate per year
(γ) TB-induced mortality rate per year
(µ) Natural birth and death rate per year

following system of nonlinear ordinary differential equations:
ds

dt
= µ − αsi − µs (1)

di

dt
= αsi − βi − γi − µi (2)

dr

dt
= βi − µr (3)

dd

dt
= γi. (4)

subject to the initial condition: s(0) + i(0) + r(0) = 1.

3.2 Equilibrium Points and Basic Reproduction Number (R0)
The equilibrium points of the proportional SIRD model are obtained by setting all time derivatives
to zero in the system of Eqs. (1)–(4).

µ − αsi − µs = 0 (5)
αsi − (β + γ + µ)i = 0 (6)

βi − µr = 0 (7)

Because D(t) represents the cumulative number of deaths and does not feed back into the
system, it is excluded from the equilibrium analysis. Setting the derivatives equal to zero yields
two equilibrium points.

3.2.1 Disease-Free Equilibrium

When there are no TB-infected people in the community, this is known as the disease-free
equilibrium point (E0) [33]. This state implies that there are no infections in the population.

E0 = (s, i, r) = (1, 0, 0). (8)

3.2.2 Endemic Equilibrium (EE)
The endemic equilibrium point (E1) refers to the condition in which individuals within the
population are afflicted with tuberculosis [33]. When i ≠ 0, solving the steady-state equations
gives

E1 = (s∗, i∗, r∗)

=
(

β + γ + µ

α
,
µ(α − (β + γ + µ))

α(β + γ + µ) ,
β(α − (β + γ + µ))

α(β + γ + µ)

)
. (9)

The endemic equilibrium exists only when α > β + γ + µ.
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3.2.3 Basic Reproduction Number (R0)

To ascertain whether the transmission of TB within a community will cease or endure throughout
time, it is essential to calculate the fundamental reproduction number R0. This statistic denotes
the mean number of new infections caused by a single infected individual in a completely
susceptible group. The R0 equation in the SIRD model was formulated utilizing the Next
Generation Matrix (NGM) method [34], taking into account the infection rate, recovery rate,
and mortality rate associated with tuberculosis. Let,

F = αsi, V = (β + γ + µ)i (10)

The Jacobi matrix was derived from the two matrices, F and V, so

K = FV −1

= αs

( 1
β + γ + µ

)
= αs

β + γ + µ
.

By substituting s = 1 by E0, the fundamental reproduction number is determined.

R0 = α

(β + γ + µ) . (11)

The value of R0 reflects the transmission potential of tuberculosis (TB). A reduction in the
transmission rate α, or an increase in the recovery (β) or TB mortality (γ) rates, decreases
R0, which indicates effective disease control. Therefore, interventions focusing on treatment
adherence and early detection can significantly reduce R0 below unity. If R0 < 1 , each infectious
individual generates less than one new infection and the disease will eventually die out. If R0 > 1
, the infection can invade the population and persist at the endemic equilibrium [33].

3.3 Stability Analysis

The stability of the disease-free equilibrium (E0) and the endemic equilibrium (E1) was analyzed
using the Jacobian matrix [31] and the Routh–Hurwitz criteria. From Eqs. (1)–(3) the resultant
Jacobian matrix is derived as follows:

Jf(x) =

−(αi + µ) −αs 0
αi αs − (β + γ + µ) 0
0 β −µ.

 (12)

At the DFE by Eq. (8), the Jacobian matrix of the SIRD system is derived as:

J(E0) =

−µ −α 0
0 α − (β + γ + µ) 0
0 β −µ

 (13)

The characteristic equation is obtained as:

(λ + µ)2(λ − α + β + γ + µ) = 0. (14)

We acquire λ = −µ, λ = −µ and λ = α − (β + γ + µ), then we get

λ = α − (β + γ + µ)
= R0(β + γ + µ) − (β + γ + µ)
= (β + γ + µ)(R0 − 1). (15)
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If λ < 0, then R0 < 1. E0 will exhibit local asymptotic stability if R0 is less than 1. Therefore,
E0 is locally asymptotically stable if R0 < 1; otherwise, it is unstable [35].

For the endemic equilibrium E1 = (s∗, i∗, r∗), the Jacobian matrix of the SIRD system is
derived as:

J(E1) =

λ + (αi + µ) αs 0
−αi λ − (αs − (β + γ + µ)) 0

0 β −µ

 . (16)

The characteristic equation is obtained as:

(λ + µ)(λ2 + aλ + b) = 0, (17)

where

a = −αs + αi + β + γ + 2µ (18)
b = αi(β + γ + µ) − αsµ − µ(β + γ + µ). (19)

Let

H1 = |a| = −αs + αi + λ + µ

= x + αi + x + µ

= αi + µ > 0, (20)

Now please be advise that

s∗ = β + γ + µ

α
(21)

αs∗ = β + γ + µ (22)

So we get

H2 =
∣∣∣∣∣
[
a 0
1 b

]∣∣∣∣∣ = ab

= (αi + µ)(αi(β + γ + µ)) > 0. (23)

According to the Routh–Hurwitz [31] stability criterion, the EE is locally asymptotically
stable if and only if H1 > 0 and H2 > 0, which occurs when the basic reproduction number
R0 = α

β+γ+µ > 1.
Hence, the stability analysis indicates a transcritical bifurcation at R0 = 1, marking the

transition from a disease-free state to a persistent endemic state as the transmission potential
exceeds the critical threshold.

3.4 Simulation

A simulation of the SIRD model was performed to gain a quantitative understanding of the
dynamics of tuberculosis transmission and its effects on life insurance claims, utilizing published
epidemiological data. This simulation seeks to illustrate the interactions across compartments
(Susceptible, Infected, Recovered, and Deceased) during a designated timeframe, while also
providing a foundation for estimating mortality rates and assessing the potential financial impact
of insurance.
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3.4.1 Parameter Estimation

The aim of this section is to estimate the unknown parameters of the SIRD model Eqs. (1)-(3)
using annual tuberculosis case data for Southeast Sulawesi. The demographic parameters such
as the natural mortality rate (µ) is derived from regional population statistics. The natural
mortality rate is approximated as the inverse of the average life expectancy of the Indonesian
population in 2021 (71.36 years)1, resulting in µ ≈ 0.014013453 per year.

The SIRD model parameters were calibrated using the Nonlinear Least Squares (NLS) [36]
approach to ensure that the model accurately represents the transmission dynamics of tuberculosis
(TB) in Southeast Sulawesi. The estimation was conducted by minimizing the sum of squared
residuals between the observed and simulated trajectories of the infected (I) and recovered (R)
compartments. The estimation is based on cumulative TB cases from 2021 to 2023, compiled
from the Indonesian Ministry of Health’s Data and Information Center2 3 4. The parameters
estimated in this process include the transmission rate (α), recovery rate (β), and TB-induced
mortality rate (γ), while the natural mortality rate (µ = 0.0140) and birth rate (Λ = µN0) were
fixed according to demographic assumptions.

Parameter uncertainty was quantified using bootstrap resampling (1000 iterations), from which
95% confidence intervals were derived. All simulations were conducted using proportional data
to maintain population consistency and numerical stability, following methodologies described
by [37] and [38] , which demonstrated the effectiveness of bootstrap techniques in quantifying
parameter uncertainty in non-linear models.

The final estimated parameters are presented in Table 2. The basic reproduction number
was calculated as R0 = 2.763, indicating that, on average, a single infectious individual could
generate approximately 2.76 secondary infections under baseline conditions.

Table 2: Calibrated Parameters and 95% Confidence Intervals

Parameter Value 95% Confidence Interval Remark

α 0.34734 0.3130 – 0.3762 Fitted
β 0.09860 0.0924 – 0.0986 Fitted
γ 0.01312 0.0105 – 0.0131 Fitted
µ 1

71.36 - Demographic assumption

The model demonstrated excellent agreement with the observed data, with the Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) [39] for the infected
compartment being 0.000112 and 4.18%, respectively. The overall model performance metrics
are summarized in Table 3.

Table 3: Goodness-of-fit metrics

Variable RMSE MAE MAPE (%) R2 Interpretation

Infected 0.000112 0.000081 4.18 0.98 Excellent fit
Recovered 0.000086 0.000070 16.73 0.95 Acceptable fit
Deceased 0.000011 0.000008 9.82 0.96 Excellent fit

External validation using 2024 data further confirmed the model’s reliability. The predicted
number of infected individuals for 2024 (Ipred = 7132) was close to the actual reported value
(Iobs = 6524), corresponding to an absolute difference of 608 cases and a prediction error (MAPE)
of 9.32%. Fig. 2 illustrates this validation, where the model projection (dashed line) closely

1https://www.bps.go.id/id/statistics-table/2/NTAxIzI=/angka-harapan-hidup-ahh-menurut-provins
i-dan-jenis-kelamin.html

2https://repository.kemkes.go.id/book/1288
3https://kemkes.go.id/id/profil-kesehatan-indonesia-2022
4https://kemkes.go.id/id/profil-kesehatan-indonesia-2023
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follows the observed epidemic trajectory (blue line), confirming the robustness of the calibrated
model for subsequent scenario simulations and actuarial applications.

Figure 2: Validation of the SIRD Model Prediction against 2024 Data.

3.4.2 Baseline and Scenario Simulation

The simulation commences with data sourced from the official repository of Statistics of South-
east Sulawesi Province (BPS-Statistics Indonesia)5, indicating a population of 2,749,010 (N)
individuals distributed across four compartments. Using the year 2021 [c] as a baseline for the
model, we write the initial conditions as S(0) = N − 3678 − 759 − 191, I(0) = 3678, R(0) = 759,
and D(0) = 191. The baseline simulation was conducted using the calibrated parameters listed
in Table 2 to describe the long-term TB dynamics in the population. Fig. 3 shows the baseline
SIRD trajectories expressed in normalized proportions relative to the living population.

Figure 3: Validation of the SIRD Model Prediction against 2024 Data Normalized baseline dynamics of
the SIRD model (2021–2080) relative to the living population.

Fig. 3 presents the normalized baseline dynamics of the calibrated SIRD model for the period
2021–2080. The trajectories exhibit a typical epidemic pattern, where the susceptible proportion
s(t) declines steadily as infection spreads, the infected proportion i(t) increases to a single peak
before subsiding, and the recovered proportion r(t) rises monotonically. The model preserves
population balance throughout the simulation, with the total proportion of all compartments
(s + i + r + d) remaining close to 1 (minimum = 1.000, maximum = 1.028).

By 2080, the compartmental proportions reach s = 0.223, i = 0.094, r = 0.603, and d = 0.109,
indicating that roughly 60% of the population has recovered and about 11% has died from TB by

5https://sultra.bps.go.id/id/statistics-table/1/NDU5NSMx/penduduk--laju-pertumbuhan-pendudu
k--distribusi-persentase-penduduk--kepadatan-penduduk--dan-rasio-jenis-kelamin-menurut-kabupat
en-kota-di-provinsi-sulawesi-tenggara--2020--2023--dan-2024.html
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the end of the horizon. When normalized relative to the living population (s+ i+r = 1), the final
distribution becomes srel = 0.243, irel = 0.102, and rrel = 0.655. This implies that among the
surviving population, approximately two-thirds are recovered and immune, one-quarter remain
susceptible, and about 10% are still infected.

Overall, the baseline simulation suggests that TB transmission stabilizes after mid-century
as the susceptible pool becomes depleted, leading the system toward an endemic equilibrium
characterized by R0 > 1 and a persistent but declining infection prevalence.

To evaluate the effect of parameter uncertainty on TB transmission dynamics, three scenarios
were simulated by varying the key epidemiological parameters by ±20% [33] from their calibrated
baseline values, while keeping the natural death rate (µ) constant. The parameter settings and
the resulting basic reproduction numbers (R0) are summarized in Table 4.

Table 4: Scenario settings and resulting basic reproduction numbers (R0)

Scenario α β γ µ Parameter change R0

Optimistic 0.277872 0.118320 0.010496 0.014013 α − 20%, β + 20%, γ − 20% 1.945
Baseline 0.347340 0.098600 0.013120 0.014013 - 2.763
Pessimistic 0.416808 0.078880 0.015744 0.014013 α + 20%, β − 20%, γ − 20% 3.873

The results show that the basic reproduction number decreases from R0 = 3.837 in the
pessimistic scenario to R0 = 1.945 in the optimistic case, with a baseline value of R0 = 2.763
(Figure 4). Although all values remain greater than one, indicating that TB transmission persists
endemically, the magnitude of R0 directly reflects the potential for epidemic intensity and
duration under varying epidemiological conditions

Fig. 4 compares the infected trajectories across the three scenarios. In the pessimistic scenario,
characterized by higher transmission (+20%) and lower recovery (−20%), the infected proportion
rises rapidly, peaking near 0.42 of the population around 2045 before declining. The baseline
scenario exhibits a moderate peak (∼ 0.30) around 2053, while the optimistic scenario, with
reduced transmission and improved recovery, shows a delayed and flattened peak (∼ 0.16) near
2068. These patterns demonstrate that strengthening recovery and reducing transmission can
significantly postpone and reduce the infection burden over time.

Figure 4: Comparison of infection trajectories (i(t)) across scenarios during 2021–2080.) relative to the
living population.

Figs. 5–7 collectively show that improved recovery and reduced transmission substantially
delay the epidemic peak and lower cumulative TB mortality, while adverse parameter shifts
accelerate infection spread and increase long-term deaths.
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Figure 5: SIRD compartmental dynamics in the optimistic scenario (2021–2080).

Figure 6: SIRD compartmental dynamics in the baseline scenario (2021–2080).

Asriani Arsita Asni 115



Sensitivity Analysis of the SIRD Model for TB-Related Life Insurance Claims

Figure 7: SIRD compartmental dynamics in the baseline scenario (2021–2080).

Overall, this sensitivity analysis confirms that modest changes (±20%) in key parameters
can substantially alter TB progression, affecting both peak magnitude and timing. Hence,
interventions that effectively reduce transmission and increase recovery rates are crucial to
suppressing long-term TB persistence and minimizing its demographic impact.

3.4.3 Actuarial Translation of Model Outcomes
The epidemiological outcomes generated by the SIRD model are translated into life insurance
claim projections using fundamental actuarial principles. In particular, the cumulative number
of tuberculosis-related deaths D(t) is transformed into annual incremental deaths ∆Dt =
D(t) − D(t − 1), which represent the number of new death events occurring in year t. This
transformation is essential to avoid double counting and to ensure that insurance claims are
associated only with newly mortality events in each period, consistent with standard actuarial
practice.

The expected life insurance claims arising from TB-related mortality in year tare calculated
using the following formulation:

Ct = ρ × B × ∆Dt × vt. (24)

where ρ denotes the insurance coverage rate (the proportion of TB-related deaths that result in
an insurance claim), Brepresents the average benefit paid per death claim (in nominal terms),
v = (1 + i)( − 1) is the annual discount factor, and is the discount rate. Claims are assumed
to be paid at the end of each year in which TB-related deaths occur, which is consistent with
annual reporting and settlement conventions in the life insurance industry.

This formulation is grounded in the actuarial principle of expected present value for contingent
payments and aligns with existing literature that integrates epidemic models with insurance risk
assessment.[40] developed an actuarial framework linking pandemic-driven mortality to insurance
liabilities, while [41] and [42] demonstrated how compartmental epidemic models can be combined
with actuarial valuation techniques to project claims and reserves under time-varying mortality
conditions. In this study, the actuarial framework is adapted by directly incorporating the
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annual incremental deaths ∆Dt obtained from the calibrated SIRD model, thereby ensuring that
projected claims reflect the dynamic evolution of disease-induced mortality rather than static or
cumulative measures.

The base-case actuarial parameters employed in this study are as follows. The coverage rate
ρ is set to 0.29 based on data reported by the Indonesian Life Insurance Association (AAJI)6,
which indicates approximately 81.76 million insured individuals out of a national population of
around 281 million. Due to the unavailability of insurance penetration data specific to Southeast
Sulawesi, this national estimate is adopted as the most reasonable proxy. The average death
benefit per claim B is set at IDR 17, 628, 855, derived from official AAJI ,statistics that report
total claims and benefits paid relative to the number of beneficiaries. This value reflects actual
claim payments rather than maximum sums assured and therefore provides a realistic measure
of the financial burden borne by the life insurance industry.

To maintain analytical tractability and to emphasize epidemiological dynamics rather than
financial market volatility, a fixed annual discount rate of 6.2% is applied. This rate corresponds
to the yield on 10-year Indonesian government bonds according to market data7 and is used as a
risk-free reference rate in line with actuarial valuation practices and IFRS 17 guidance. While
stochastic interest rate modelling may further refine claim valuation, the fixed-rate assumption
is sufficient for isolating the impact of TB transmission dynamics on insurance liabilities.

The actuarial translation is conducted under three epidemiological scenarios. This scenario-
based approach ensures that projected life insurance claims do not rely on a single set of
assumptions and allows for a realistic assessment of downside and upside risk. The resulting
total nominal claims and their present values are summarized in Table 5.

Table 5: Projected Total Life Insurance Claims

Scenario Total Nominal Claim (IDR) Total Present Value (PV) (IDR)

Optimistic 632,813,107,154 60,964,536,091
Baseline 1,475,187,463,787 206,994,910,293

Pessimistic 2,347,952,335,089 430,697,480,924

Table 5 indicates that projected life insurance claims increase markedly from the optimistic
to the pessimistic scenario, consistent with higher tuberculosis transmission and mortality in
the SIRD model. The baseline scenario results in total nominal claims of IDR 1.48 trillion with
a present value of IDR 207.0 billion, representing the expected actuarial impact under current
conditions in Southeast Sulawesi. These findings confirm that variations in TB epidemiological
parameters translate directly into significant differences in life insurance claim projections,
supporting the relevance of sensitivity analysis for actuarial risk assessment.

It should be emphasized that the actuarial translation presented in this study focuses on
aggregate claim projections at the population level rather than individual policy pricing or
reserve valuation. Nevertheless, the framework provides a robust quantitative bridge between
epidemiological modeling and actuarial risk assessment, offering valuable insights for insurers
and policymakers in evaluating the financial consequences of infectious disease dynamics.

3.4.4 Sensitivity Analysis

The PRCC results in Table 6 indicate that the transmission rate (α) is the most influential
parameter affecting the present value of tuberculosis-related life insurance claims, exhibiting
a strong positive correlation (PRCC = 0.86, p < 0.001) . This finding implies that increases
in TB transmission intensity lead to a substantial rise in projected insurance liabilities. The

6https://www.antaranews.com/berita/4126605/aaji-total-tertanggung-industri-asuransi-jiwa-cap
ai-8176-juta-orang?utm

7https://tradingeconomics.com/indonesia/government-bond-yield
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recovery rate (β) shows a significant negative correlation with projected claims (PRCC =-
0.37, p < 0.001), confirming that improved treatment outcomes reduce mortality-driven insurance
risk. Meanwhile, the TB-induced mortality rate (γ) has a positive but weaker correlation
(PRCC = 0.26, p < 0.001), indicating that disease severity contributes to claim growth, although
its impact is less dominant than transmission dynamics. Overall, the sensitivity analysis
demonstrates that parameters governing disease spread are the primary drivers of actuarial risk
in tuberculosis-related life insurance claims.

Table 6: PRCC Results

Scenario Total Nominal Claim (IDR) Total Present Value (PV) (IDR)

Optimistic 632,813,107,154 60,964,536,091
Baseline 1,475,187,463,787 206,994,910,293

Pessimistic 2,347,952,335,089 430,697,480,924

4 Conclusion
This study develops an integrated SIRD-based framework to analyze the sensitivity of tuberculosis
transmission dynamics and its implications for life insurance claim projections in Southeast
Sulawesi. By calibrating the model using regional epidemiological data and validating it against
observed cases, the proposed approach demonstrates that the SIRD model is capable of reliably
capturing long-term TB dynamics and cumulative mortality patterns relevant for actuarial
applications. Scenario simulations further show that variations in key epidemiological parameters
substantially affect both the timing and magnitude of infections, as well as the projected number
of TB-related deaths.

From an actuarial perspective, the translation of epidemiological outcomes into expected life
insurance claims provides a quantitative link between public health dynamics and financial risk.
The sensitivity analysis using PRCC reveals that the transmission rate is the most influential
determinant of the present value of TB-related insurance claims, followed by the recovery rate,
while TB-induced mortality plays a comparatively smaller but still significant role. These
findings highlight that interventions aimed at reducing transmission and improving treatment
effectiveness not only mitigate public health impacts but also substantially lower long-term
insurance liabilities. Consequently, the proposed framework offers practical insights for insurers
in assessing epidemic-driven mortality risk and for policymakers in prioritizing disease control
strategies with broader economic implications.

Several limitations should be acknowledged. The model does not explicitly incorporate a
latent or exposed compartment, and insurance coverage rates are approximated using national-
level data due to limited regional information. In addition, a fixed discount rate is assumed to
isolate epidemiological effects from financial market uncertainty. Future research may extend
this framework by incorporating latent-stage dynamics, heterogeneous population structures,
stochastic interest rates, or region-specific insurance penetration data. Despite these limitations,
the present study provides a parsimonious and robust foundation for integrating infectious disease
modeling with actuarial risk assessment, particularly in the context of tuberculosis-related life
insurance claims in Indonesia.
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