
CAUCHY – Jurnal Matematika Murni dan Aplikasi
Volume 10 (2) (2025), Pages 1026-1042
p-ISSN: 2086-0382; e-ISSN: 2477-3344

An Extended Cryptanalysis of Peyrin et al. on
SIMON-JAMBU64/96: A Study on Reduced-Tuple Attacks

Susila Windarta1∗ , Wuri Handayani2, and Bety Hayat Susanti3

1,3Dept. of Cybersecurity Engineering, Politeknik Siber dan Sandi Negara, Indonesia
2Badan Siber dan Sandi Negara, Indonesia

Abstract

This study extends the cryptanalysis of Peyrin et al. on the SIMON-JAMBU64/96 Authen-
ticated Encryption (AE) scheme, aiming to evaluate its feasibility under a reduced-tuple
scenario. We combine formal analysis and experimental validation by constructing collision-
based distinguishers in a chosen-IV model and testing them through a decryption oracle.
The results demonstrate that a distinguishing attack can be successfully performed with
only two tuples one fewer than previously required indicating that JAMBU is more fragile
than initially assumed. A detailed comparison of data complexity shows that the two-tuple
attack achieves a lower cost in the second phase (4× 248 queries) than the original three-tuple
attack (6× 248), with slightly higher verification overhead in the third phase. Overall, these
findings reaffirm that the SIMON-JAMBU64/96 scheme remains susceptible to distinguishing,
plaintext-forgery, and plaintext-recovery attacks, thereby extending the analysis of Peyrin et
al. to scenarios with more constrained adversarial resources.

Keywords: Authenticated Encryption, Distinguishing Attack, Nonce-Respecting, SIMON-
JAMBU64/96, Two-Tuple Attack.

Copyright © 2025 by Authors, Published by CAUCHY Group. This is an open access article
under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

1 Introduction

Authenticated Encryption (AE) is a cryptographic scheme that simultaneously provides confi-
dentiality and authentication of data, making it a fundamental component in securing digital
communications [1]. The National Institute of Standards and Technology (NIST) has standard-
ized several AE schemes, including Counter with Cipher Block Chaining–Message Authentication
Code (CCM), Key Wrapping (KW), and Galois Counter Mode (GCM) [2], [3]. To encourage the
development of schemes more secure and efficient than AES-GCM, NIST and Daniel J. Bernstein
launched the CAESAR (Competition for Authenticated Encryption: Security, Applicability,
and Robustness) competition in 2013 [4]. Among the finalists was JAMBU, a lightweight AE
mode proposed by Wu and Huang in 2014, designed with small nonce and tag sizes suitable for
resource-constrained environments [5].

The need for lightweight AE schemes is particularly urgent in the Internet of Things (IoT)
ecosystem. By the end of 2023, there were approximately 16.6 billion connected IoT devices
globally, projected to reach about 18.8 billion by 2024 and nearly 40 billion by 2030 [6], [7]. In

∗Corresponding author. E-mail: susila.windarta@poltekssn.ac.id

Reviewed: October 07, 2025 Accepted: October 16, 2025Submitted: September 29, 2025
DOI: https://doi.org/10.18860/cauchy.v10i2.36601

https://creativecommons.org/licenses/by-sa/4.0
mailto:susila.windarta@poltekssn.ac.id
https://doi.org/10.18860/cauchy.v10i2.36601


An Extended Cryptanalysis of Peyrin. . .

Indonesia, IoT adoption is accelerating: in 2023, the number of IoT devices exceeded 150 million,
up from about 100 million in 2022 [8]. The Indonesian IoT market is expected to reach USD
13.05 billion in 2025 and double to USD 26.50 billion by 2030, with a CAGR of 15.21% [9]. With
such rapid expansion, IoT networks face growing exposure to cyber threats such as eavesdropping,
replay and forgery attacks, man-in-the-middle intrusions, and large-scale botnets like Mirai [10],
[11], [12], [13]. These threats often exploit weaknesses in authentication, encryption, or nonce
management, underscoring the need for lightweight and secure AE schemes.

Recent research on lightweight AEAD schemes for constrained IoT environments highlights
the trade-offs between security and efficiency in block-cipher-based designs such as SIMON,
SPECK, PRESENT, and ASCON [14]. Other studies have explored combining lightweight
primitives, e.g., LED and PHOTON, to construct efficient AE schemes for edge devices [15].
Broader surveys on IoT security emphasize AEAD as a cornerstone of secure communication
[16], while related works examine lightweight mutual authentication [17] and the cryptanalysis of
AEAD modes, such as COLM [18]. Together, these studies demonstrate that AE design for IoT
must balance efficiency with robustness against adversarial misuse.

From a theoretical standpoint, AE schemes are analyzed under two models: nonce-respecting,
where nonces are unique, and nonce-misuse, where nonce repetition may occur. In 2015, Peyrin
et al. analyzed JAMBU version 1 and identified vulnerabilities under both models by exploiting
its linear structure, including distinguishing, forgery, and plaintext-recovery attacks [19]. This
analysis complements recent evaluations of AEAD modes (e.g., COLM [18], ASCON [14]) by
showing that tuple-reduction-based cryptanalysis remains relevant for lightweight AE modes,
offering deeper insight into JAMBU’s security in constrained IoT contexts.

Building on Peyrin et al.’s findings, this paper makes the following key contributions:
1. We apply and empirically validate the cryptanalysis of Peyrin et al. on the SIMON-

JAMBU64/96 scheme in the nonce-respecting scenario.
2. We extend the attack by showing it is feasible with only two tuples instead of three,

revealing a greater vulnerability in the scheme.
3. We analyze the trade-off between the number of tuples, attack steps, and data complexity,

demonstrating the efficiency of our extended method.
This paper is organized as follows: Section 2 introduces the theoretical basis of JAMBU and

the underlying cryptanalytic framework. Section 4 details the methodology and implementation
choices. Section 5 presents the outcomes of the distinguishing, forgery, and recovery attacks, and
compares the two-tuple and three-tuple approaches. The final section concludes with implications
for JAMBU’s security and directions for future research.

2 Theoretical Basis
The cryptanalytic foundation of this work builds upon the structural properties and differential
behaviors previously identified in JAMBU and related authenticated encryption modes. To
establish a coherent baseline, this section revisits the relevant theoretical constructs—particularly
those derived from Peyrin et al.—and reformulates them under the two-tuple assumption. The
following subsections describe these principles, emphasizing how the modified framework supports
the reduced data complexity and preserved differential dependencies observed in this study.

2.1 Notation

To ensure clarity and provide a convenient reference for the reader, we define the key notations
used in our description of the JAMBU scheme and its cryptanalysis. The symbols are summarized
in Table 1.

Susila Windarta 1027



An Extended Cryptanalysis of Peyrin. . .

Table 1: List of Notations and Symbols

Symbol Description

General Parameters and Functions
AE Authenticated Encryption
K Secret key
M, P Plaintext message
C Ciphertext
T Authentication tag
IV Initialization Vector or Nonce
AD Associated Data
n Size of a plaintext/AD block in bits (e.g., 32)
EK(·) Block cipher encryption function with key K
D(·) Decryption oracle
⊥ Error symbol returned on verification failure
JAMBU Internal State Variables
Si The main 2n-bit state register at step i
Ri The n-bit accumulator state register at step i
Xi, Yi The two n-bit halves of the block cipher output at step i
Ui, Vi The two n-bit halves of the state Si

Cryptanalysis Notation
X ′ A variable corresponding to a second run of the cipher
∆X The bitwise difference X ⊕X ′

c The number of candidates found in the two-tuple attack
m The number of samples per list in the birthday attack
Mathematical Operators
⊕ Bitwise XOR operation
∥ Concatenation operation
& Bitwise AND operation
Sj Circular left shift by j bits

2.2 Authenticated Encryption

AE is a cryptographic scheme that simultaneously provides both data confidentiality and
authenticity. Confidentiality is achieved through encryption to protect the secrecy of a message,
while authenticity ensures its integrity [20].

AE schemes were developed as integrated solutions to improve upon generic “composition”
methods, which combine separate encryption and authentication primitives. The most notable
generic compositions include:
• Encrypt-then-MAC (EtM): The message (M) is encrypted to produce ciphertext (C), and

then a MAC tag (T ) is computed over the ciphertext. This composition is used in protocols
like IPsec.

• MAC-then-Encrypt (MtE): A MAC tag (T ) is computed on the plaintext message (M), and
then both the message and the tag are encrypted together. This approach is used in TLS.
The security of an AE scheme is defined by two primary objectives [1]:

• Confidentiality: A passive adversary, given access to ciphertexts and their corresponding
nonces, should not be able to learn any information about the underlying plaintexts. This
is often achieved by making the ciphertext indistinguishable from a random bitstring.

• Authenticity (Integrity): An active adversary should not be able to forge a new, valid tuple
of (ciphertext, nonce, tag) that successfully decrypts.

An AE encryption function takes a secret key (K), a nonce (IV ), associated data (AD), and
a plaintext message (M) as input to produce a ciphertext (C) and an authentication tag (T ).
The corresponding decryption function takes K, IV , AD, C, and T as input. It returns the

Susila Windarta 1028



An Extended Cryptanalysis of Peyrin. . .

original plaintext M only if the tag is verified as valid. If verification fails, it returns an error
symbol (⊥).

The components play crucial roles: the nonce (IV ) ensures that ciphertexts are unique even
if the same plaintext is encrypted multiple times, while the associated data (AD) allows for
public, non-confidential information (e.g., packet headers) to be authenticated alongside the
private data, thus preventing forgery attacks on these public parts.

2.3 The JAMBU AE Scheme

JAMBU [5], [21] is an authenticated encryption (AE) scheme that operates in a mode similar
to Output Feedback (OFB), built on a block cipher with a 2n-bit block size and a K-bit key,
denoted EK(·). The scheme’s internal state is maintained across two primary state registers: a
2n-bit register S and an n-bit register R. The fundamental operations used are bitwise XOR (⊕)
and concatenation (∥).

The overall process is divided into two main functions: encryption/authentication and
decryption/verification.

Encryption and Authentication Process
The encryption function transforms a secret key K, a public nonce IV , associated data AD, and
a plaintext P into a ciphertext C and an authentication tag T . This process is accomplished in
five distinct phases:

1. Padding: Before processing, both the associated data and the plaintext are padded using
a ‘10*‘ scheme. A single bit ‘1‘ is appended, followed by the minimum number of ‘0‘ bits
required to make the total length a multiple of n bits.

2. Initialization: The process begins by loading the n-bit IV into a 2n-bit initial state,
S−1 = (0n∥IV ). This state is encrypted once to produce (X−1, Y−1) = EK(S−1). This
output is then used to initialize the main state registers:

• The accumulator register is set: R0 = X−1.
• The main state is set: S0 = (X−1, Y−1⊕5), where the constant is for domain separation.

3. Associated Data (AD) Processing: The padded AD is processed one n-bit block at a
time. For each block ADi, the state is updated iteratively:
(a) The current state Si is encrypted: (Xi, Yi) = EK(Si).
(b) The next state Si+1 = (Ui+1, Vi+1) is computed, where Ui+1 = Xi ⊕ADi and Vi+1 =

Yi ⊕Ri ⊕ 1.
(c) The accumulator register is updated: Ri+1 = Ri ⊕ Ui+1.

4. Plaintext Encryption: This phase follows the same iterative structure as AD processing.
For each plaintext block Pi:
(a) The state update for Vi+1 does not include the constant: Vi+1 = Yi ⊕Ri.
(b) The ciphertext block is generated by XORing the plaintext with the keystream:

Ci = Pi ⊕ Vi+1.
(c) The state registers Si+1 and Ri+1 are updated using the plaintext block Pi to influence

subsequent steps.
5. Finalization and Tag Generation: After all plaintext blocks are processed, two final

state updates are performed, with the first using the constant ‘3‘ for domain separation.
The final authentication tag T is then computed by XORing the final R state with the
components of the final block cipher output: T = Rfinal ⊕Xfinal ⊕ Yfinal.

Susila Windarta 1029



An Extended Cryptanalysis of Peyrin. . .

Decryption and Verification Process

The decryption process mirrors the encryption steps to regenerate the same sequence of internal
states. First, the Initialization and Associated Data processing phases are performed identically
to encryption, using the received IV and AD. Then, for each ciphertext block Ci, the plaintext
Pi is recovered by XORing the ciphertext with the corresponding keystream block Vi+1, which is
generated from the internal state: Pi = Ci ⊕ Vi+1. The recovered plaintext Pi is immediately
used to update the internal state in the same manner as during encryption, ensuring the state
remains synchronized.

After all ciphertext blocks are processed, the Finalization phase is executed to compute a
local tag, T ′. This computed tag is then compared to the received tag T .

• If T ′ = T , the verification is successful, and the decrypted plaintext P is released as valid.
• If T ′ ≠ T , the verification fails. The process returns an error symbol (⊥), and the plaintext

is discarded.
Notably, although JAMBU formally defines Ri+1 = Ri⊕Ui+1, our analysis reveals a persistent

linear dependency across iterations, allowing ∆R to remain constant under certain decryption
sequences.

2.4 Peyrin et al. Cryptanalysis under Nonce-Respecting Scenario

We consider an adaptive chosen-ciphertext setting where the adversary has access to a decryption
oracle and may submit ciphertexts (and associated data) to obtain plaintexts. The attack focuses
on exploiting the linear properties of JAMBU, specifically where an internal state R is not
updated during each iteration of the block cipher. This leads to a linear relationship, where
∆R = R⊕R′ is a constant. The cryptanalysis is supported by the following lemmas (Lemma 1,
Lemma 2, and Lemma 3), which prove the linear relationships exploited in the attack.

Lemma 1. Let two decryption requests be made for ciphertexts C1 and C ′
1 under the JAMBU

scheme, satisfying C1 = C ′
1, IV ̸= IV ′, AD1 = AD′

1, X0 = X ′
0, and ∆X−1 = ∆R0 = ∆R. If

∆R1 = ∆Y1, then ∆V2 = 0.

Proof. Since ∆X0 = ∆AD1 = 0, the round update yields ∆R1 = ∆R0 = ∆R. Given ∆R1 = ∆Y1,
both inputs to the block function that generates V2 become identical, resulting in V2 = V ′

2 and
∆V2 = 0. This behavior is depicted in Figure 1, where the equality of differentials ∆R1 = ∆Y1
prevents further propagation across the nonlinear operation.

Lemma 2. Consider two decryption requests for ciphertexts C1||C2 and C ′
1||C ′

2 under the JAMBU
scheme, with P1 ̸= P ′

1, P2 = P ′
2, and AD1 = AD′

1. If ∆P1 = ∆X1, then ∆U2 = 0.

Proof. From ∆P1 = ∆X1, it follows that P1⊕X1 = P ′
1⊕X ′

1. Since U2 = P1⊕X1 in the JAMBU
decryption structure, both computations yield the same internal value, hence U2 = U ′

2 and
∆U2 = 0. Figure 2 illustrates this propagation, showing how matching inputs (P1, X1) lead to
the cancellation of the second-round differential.

Lemma 3. Let two decryption requests be made for ciphertexts C1||C2 and C ′
1||C ′

2 under
initialization vectors IV and IV ′, and let S2 = (V2, U2) with ∆S2 = S2 ⊕ S′

2. If ∆S2 = 0,
then ∆V3 = ∆R.

Proof. When U2 and V2 are identical across both executions, the next-round differential depends
solely on the register update, giving ∆V3 = ∆R.

Susila Windarta 1030



An Extended Cryptanalysis of Peyrin. . .

c. JAMBU with input ∆𝐶1 = ∆0

a. JAMBU with input 𝐶1

b. JAMBU with input 𝐶′1

032

𝐼𝑉

𝑋−1

5

𝑌−1

𝐸𝐾 𝑆0

𝑅0 𝑅1

𝑈0 𝑋0

𝐴𝐷1

𝑆1

1

𝑌0

𝐸𝐾
𝑉0

𝑈1 𝑋1

𝑃1

𝑌1

𝐸𝐾
𝑉1

𝑈2

𝑉2

𝐶1

𝑃1

032

𝐼𝑉′

𝑋′−1

5

𝑌′−1

𝐸𝐾 𝑆′0

𝑅′0 𝑅′1

𝑈′0 𝑋′0

𝐴𝐷′1

𝑆′1

1

𝑌′0

𝐸𝐾
𝑉′0

𝑅′2

𝑈′1 𝑋′1

𝑃′1

𝑌′1

𝐸𝐾
𝑉′1

𝑈′2

𝑉′2

𝐶′1

𝑃′1

∆032

∆𝐼𝑉

∆𝑋−1

5

∆𝑌−1

𝐸𝐾 ∆𝑆0

∆𝑅0 ∆𝑅1

∆𝑈0 ∆𝑋0

∆𝐴𝐷1

∆𝑆1

1

∆𝑌0

𝐸𝐾
∆𝑉0

∆𝑅2

∆𝑈1 ∆𝑋1

∆𝑃1

∆𝑌1

𝐸𝐾
∆𝑉1

∆𝑈2

∆𝑉2

∆𝐶1

∆𝑃1

∆𝑅

∆𝑅

∆𝑋 ∆0

∆0

∆0

∆0∆0

∆0

Figure 1: First observation of the differential structure of the JAMBU decryption scheme, showing that
when ∆R1 = ∆Y1, both inputs to f(·) produce identical V2.

The lemmas above follow the derivations in Peyrin et.al [19], with the key dependencies on the
two-tuple assumption retained. Figures 1–2 respectively illustrate: (1) single-round cancellation
when ∆R1 = ∆Y1; (2) two-round propagation through X1, U2, and P2; and (3) the linkage
between the synchronized pair (V2, U2) and the register update ∆R. These figures confirm that
the linear dependencies remain valid under the reduced two-tuple model.

Using these lemmas, we search for conditions yielding ∆S2 = 0; once found, the linear
relation ∆V3 = ∆R can be exploited. The overall cryptanalytic strategy comprises three
attacks: a distinguishing attack, a plaintext forgery attack, and a plaintext-recovery attack. The
distinguishing attack (the first step) itself proceeds in three stages: (i) find a colliding (IV, IV ′)
pair (subject to the threat-model constraints on IV selection), (ii) determine candidate differences
(∆X, ∆R), and (iii) verify these candidates against the decryption oracle.

3 The SIMON Block Cipher

SIMON is a lightweight block cipher designed by the U.S. National Security Agency (NSA)
in 2013 to be highly efficient in both hardware and software [22], [23]. It is built on a Feistel
network, a classic cipher structure that uses very simple bitwise operations: XOR (⊕), AND (&),
and circular left shifts (Sj).

The specific variant used in the JAMBU scheme is SIMON64/96. As the name implies, it
operates on a 64-bit block of data with a 96-bit key and performs 42 rounds of encryption.

Susila Windarta 1031



An Extended Cryptanalysis of Peyrin. . .

032

𝐼𝑉

𝑋−1

5

𝑌−1

𝐸𝐾 𝑆0

𝑅0 𝑅1

𝑈0 𝑋0

𝐴𝐷1

𝑆1

1

𝑌0

𝐸𝐾
𝑉0

𝑅2

𝑈1 𝑋1

𝑃1

𝑆2
𝑌1

𝐸𝐾
𝑉1

𝑈2 𝑋2

𝑃2

𝑆3
𝑌2

𝐸𝐾
𝑉2

𝐶1 𝐶2

𝑃1 𝑃2

032

𝐼𝑉′

𝑋′−1

5

𝑌′−1

𝐸𝐾 𝑆′0

𝑅′0 𝑅′1

𝑈′0 𝑋′0

𝐴𝐷′1

𝑆′1

1

𝑌′0

𝐸𝐾
𝑉′0

𝑅′2

𝑈′1 𝑋′1

𝑃′1

𝑆′2
𝑌′1

𝐸𝐾
𝑉′1

𝑈′2 𝑋′2

𝑃′2

𝑆′3
𝑌′2

𝐸𝐾
𝑉′2

𝐶′1 𝐶′2

𝑃′1 𝑃′2

∆032

∆𝐼𝑉

∆𝑋−1

5

∆𝑌−1
𝐸𝐾 ∆𝑆0

∆𝑅0 ∆𝑅1

∆𝑈0 ∆𝑋0

∆𝐴𝐷1

∆𝑆1

1

∆𝑌0

𝐸𝐾
∆𝑉0

∆𝑅2

∆𝑈1 ∆𝑋1

∆𝑃1

∆𝑆2
∆𝑌1

𝐸𝐾
∆𝑉1

∆𝑈2 ∆𝑋2

∆𝑃2

∆𝑆3
∆𝑌2

𝐸𝐾
∆𝑉2

∆𝐶1 ∆𝐶2

∆𝑃1 ∆𝑃2

a. JAMBU with input 𝐶1 ∥ 𝐶2

b. JAMBU with input 𝐶′1 ∥ 𝐶′2

c. JAMBU with input ∆𝐶1∥ ∆𝐶2= ∆𝑋 ∥ ∆0

∆𝑋 ∆0∆𝑋

∆𝑋

∆𝑋

∆0

∆0

∆0

∆𝑅
∆0

∆0

∆𝑅

∆0

∆0

∆𝑅

Figure 2: Second observation of the differential structure of the JAMBU decryption scheme, showing
that if ∆P1 = ∆X1 and P2 = P ′

2, then U2 = U ′
2 and ∆U2 = 0.

Key Schedule The key schedule’s job is to expand the 96-bit master key into a sequence of
42 different 32-bit round keys (Ki), one for each round. It begins by splitting the 96-bit key
into three 32-bit words. It then uses a recursive formula to generate the remaining round keys,
ensuring that each round uses a unique key derived from the master key.

Round Function The round function is the core engine of the cipher where the data gets
scrambled. In each of the 42 rounds, the 64-bit data block is split into two 32-bit halves, a left
half (Li) and a right half (Ri). The Feistel structure works as follows:

1. The left half (Li) is put through a scrambling function, f , which involves several shifts and
bitwise operations.

2. The output of f(Li) is XORed with the right half (Ri) and the current round key (Ki).
This result becomes the new left half for the next round (Li+1).

3. The original, unmodified left half (Li) becomes the new right half (Ri+1).
This process is repeated for 42 rounds. Each round further obscures the relationship between the
plaintext and the final ciphertext, ensuring the encryption is secure.

4 Methods
Building upon the theoretical framework established in the previous section, this part details
the methodology employed to validate the proposed two-tuple attack. The approach integrates
analytical modeling, controlled simulation, and empirical validation to ensure consistency be-
tween theoretical predictions and observed outcomes. The following subsections describe the
experimental design, parameter configuration, and verification process adopted throughout the
study.

Susila Windarta 1032



An Extended Cryptanalysis of Peyrin. . .

4.1 Research Approach

This study combines a literature review and an experimental approach. The literature study
involved reviewing works on authenticated encryption (AE), the JAMBU scheme, the SIMON
block cipher, and Peyrin et al.’s analysis model. The experimental component focuses on
reconstructing Peyrin et al.’s cryptanalysis under the nonce-respecting scenario for the SIMON-
JAMBU64/96 configuration. All algorithms were implemented in the C programming language
using Dev-C++ with the TDM-GCC compiler.

4.2 Research Variables

The cryptanalysis experiment uses several variables as follows:
• Independent Variables: Initialization Vector (IV), Ciphertext blocks (C1, C2), and authen-

tication tag T .
• Dependent Variables: Plaintext blocks (P1, P2), and the differential values (∆X, ∆R)

derived from decryption observations.
• Controlled Variables: Secret key K = 0x131211100b0a090803020100 and associated data

AD = 0x10000000, which remained constant across all experiments.

4.3 Data Modification Technique

Two IV generation techniques were used to observe the influence of nonce structure on the attack
results:

• Counter Increment: IV values were generated sequentially to simulate predictable nonces.
• Random Generation: IV values were produced pseudorandomly to simulate fully random

nonce use.
Each method produced five distinct datasets, where each dataset contained 216 IVs used for
decryption requests.

4.4 Research Stages

The experimental process consisted of three main stages, corresponding to the phases outlined in
Peyrin et al..

1. Differential Structure Observation. The first stage analyzed the differential propagation in
JAMBU’s decryption phase by tracking internal state transitions (X, Y, R). The experiment
identified (∆X, ∆R) pairs that caused linear dependencies between plaintext and ciphertext
blocks.

2. Distinguishing Attack. This stage performed the differential distinguishing experiment
on the decryption oracle to detect structured differences in output. The experiment was
repeated for both IV generation techniques. In total, ten trials (five for each IV type) were
conducted, and within each trial, approximately 216 + 4 · 216 + 2 · 232 ·m decryption queries
were issued, where m denotes the number of (∆X, ∆R) candidates.

3. Plaintext Forgery and Recovery. Using the valid (∆X, ∆R) obtained from the distinguishing
stage, a forgery experiment was conducted to construct valid ciphertext–plaintext pairs
without oracle assistance. Subsequently, plaintext recovery experiments were executed to
reconstruct unknown plaintexts from their ciphertexts. Each of these phases was repeated
ten times (five counter-increment and five random IVs), producing 20 experimental outputs
overall for comparison.

Susila Windarta 1033



An Extended Cryptanalysis of Peyrin. . .

4.5 Number of Experiments

To ensure reproducibility and statistical confidence, each cryptanalytic phase was performed on
both IV generation techniques, resulting in:

• 5 experiments using counter-increment IV generation,
• 5 experiments using random IV generation,
• for a total of 10 complete nonce-respecting experiments.

The results from each trial were averaged to determine the effective data complexity and the
success probability of the distinguishing, forgery, and plaintext recovery attacks.

4.6 Data Analysis

Experimental data consisted of the observed differential pairs (∆X, ∆R), the number of successful
differentiations, and valid ciphertext collisions. Each experiment produced the following metrics:

• the success rate of finding correct (∆X, ∆R) pairs;
• the probability of valid ciphertext–plaintext forgeries;
• and the required number of oracle queries for a successful distinguishing attack.

A comparative analysis between random and counter-increment IV sets revealed that both
methods exhibited identical structural vulnerabilities under nonce-respecting conditions, with
minor differences in the number of differential collisions and data complexity. All ten experiments
consistently validated Peyrin et al.’s theoretical attack model.

5 Results and Discussion
This section presents the findings from the experimental application of the cryptanalysis. The
successful execution of the attacks validates the vulnerability of SIMON-JAMBU64/96 and
confirms the viability of the extended two-tuple attack method. The cryptanalysis is formalized
in Algorithms 1, 2, and 3.

5.1 Distinguishing Attack (Nonce-Respecting Scenario)

The experimental results confirmed that the distinguishing attack can be successfully performed
on SIMON-JAMBU64/96.

• Phase 1: Pairs of (IV, IV ′) that produced collisions on P1 were successfully found.
Randomly generated IVs produced more collision pairs than counter-incremented IVs, as
shown in Table 2.

• Phase 2: The two-tuple attack successfully found the correct (∆X, ∆R) pair with a lower
data complexity (4 · 248) compared to the three-tuple attack (6 · 248).

• Phase 3: The correct (∆X, ∆R) was confirmed by checking if ∆P2 = ∆R. For the
two-tuple attack, multiple candidates for (∆X, ∆R) were found (ranging from 2 to 6 in
the experiments), which all needed to be verified. Table 3 provides an example of this
verification process.

Table 2: Example of (IV, IV’) pairs that produce a collision on P1 (random IVs)
IV IV’ P1
0xb3471f6f 0xa0d1b5af 0x12345678
0x6482f64b 0x1bc8ee23 0x2afa7f98
0xff47d5f0 0xa6a6f113 0x07d34e65
0x7b87b50b 0x24661012 0xdb080f1f

Susila Windarta 1034



An Extended Cryptanalysis of Peyrin. . .

Table 3: Example of correct ∆R values confirmed in Phase 3
IV, IV’ P2 P ′

2 P2 ⊕ P ′
2 ∆R

0xb3471f6f, 0xa0d1b5af 0xbe27a24d 0xca03119e 0x7424b3d3 0x7424b3d3
0xb3471f6f, 0xa0d1b5af 0xed5b18a8 0x537cbae5 0x8be8b0b9 0x8be8b0b9

Table 4: Comparison of Distinguishing Attack Steps for three-tuple and two-tuple Methods
Attack Phase 3-tuple Method (original) 2-tuple Method (extended)
Phase 1: Finding (IV,
IV’)

Search for (IV, IV ′) that pro-
duce a collision on P1. Example:
(IV = 0xb3471f6f, IV ′ =
0xa0d1b5af) yields
P1 = 0x12345678.

Same as the three-tuple method.

Phase 2: Finding
(∆X, ∆R)

Find collision on a pair
of plaintext differences
(∆P [⟨i⟩]1, ∆P [⟨i⟩]2) and
(∆P ′[⟨j⟩]1, ∆P ′[⟨j⟩]2). This
directly yields a single correct
(∆X, ∆R) pair.

Find collision on a single plain-
text difference ∆P [⟨i⟩]1 and
∆P ′[⟨j⟩]1. This yields multi-
ple candidate (∆X, ∆R) pairs
(c candidates).

Phase 3: Verification Verify the single (∆X, ∆R) pair
by checking if ∆P2 = ∆R.
Example: ∆P2 = 0x7424b3d3
matches ∆R = 0x7424b3d3.

Verify all c candidates until one
satisfies the condition ∆P2 =
∆R. The correct pair is found
after testing.

As illustrated in Table 4, our extended two-tuple attack introduces a significant strategic
trade-off compared to the original three-tuple method proposed by Peyrin et al. While both
approaches share an identical first phase for finding a colliding ((IV, IV ′)) pair, they diverge
fundamentally in the subsequent search and verification phases.

The primary distinction arises in Phase 2. The original method employs a more stringent
collision condition, requiring a match on a pair of plaintext differences. This complexity acts as
a strong filter, directly yielding a single, high-probability (∆X, ∆R) candidate. In contrast, our
two-tuple method relaxes this requirement, searching for a collision on only a single plaintext
difference. This simplification makes the search more efficient in terms of data complexity, but,
as a consequence, produces multiple candidate pairs, which include false positives.

Consequently, the verification process in Phase 3 differs significantly. For the three-tuple
method, this stage is a simple confirmation of the single candidate. For our two-tuple method,
this phase becomes a brute-force process that requires testing each of the c candidates until the
one satisfying the condition ∆P2 = ∆R is found.

This represents a classic cryptanalytic trade-off: the two-tuple method shifts the burden
from online data complexity (the number of queries to the decryption oracle in Phase 2) to
offline time complexity (the computational effort required to test candidates in Phase 3). This
trade-off is advantageous in scenarios where interactions with the oracle are limited, expensive,
or monitored, as it allows the attacker to minimize their online footprint at the cost of increased
offline computation.

5.2 Plaintext Forgery and Plaintext-Recovery Attack

Once the correct (∆X, ∆R) was identified, both plaintext forgery and plaintext-recovery attacks
were successfully performed.

• Plaintext Forgery: The attack demonstrated that a valid forged ciphertext can be
created without a direct encryption query. For example, a forged plaintext P D

1 ∥P D
2 of

0x28047155be27a24d was created, which corresponded to a valid forged ciphertext CD
1 ∥CD

2
of 0xe51c9d4903856f49.

• Plaintext-Recovery Attack: The attack successfully recovered the original plaintext from

Susila Windarta 1035



An Extended Cryptanalysis of Peyrin. . .

a given ciphertext. For example, given the ciphertext (C1⊕∆X)∥C2 as 0xe51c9d4977a1dc9a,
the corresponding plaintext P ′

1∥P ′
2 was successfully recovered as 0x28047155ca03119e.

Algorithm 1 Distinguishing Attack on SIMON-JAMBU64/96
Require: Decryption oracle D(IV, AD, C)→ P , a fixed Associated Data AD, block size n = 32.
Ensure: A verified differential pair (∆X, ∆R).

1: {Stage 1: Find a Colliding IV Pair}
2: Initialize a hash map ‘KnownPlaintexts‘.
3: Choose a constant first ciphertext block, C1.
4: for i = 1, 2, . . . (up to ≈ 2n/2 queries) do
5: Generate a random Initialization Vector, IVi.
6: Query the oracle: P1,i ← D(IVi, AD, C1).
7: if P1,i exists in ‘KnownPlaintexts‘ with a stored IVj then
8: Set IV ← IVj and IV ′ ← IVi.
9: Calculate the state difference: ∆R← IV ⊕ IV ′.

10: goto Stage 2. {Collision found, proceed}
11: else
12: Store the pair (P1,i, IVi) in ‘KnownPlaintexts‘.
13: end if
14: end for
15: {Stage 2: Find ∆X (two-tuple Method)}
16: Initialize lists L1, L2, and Candidate_∆X.
17: for i = 1 to 2n/2 do
18: Choose a random ciphertext block C1,i.
19: Query oracle: P1,i ← D(IV, AD, C1,i).
20: Store (C1,i, P1,i) in L1.
21: end for
22: for j = 1 to 2n/2 do
23: Choose a random ciphertext block C ′

1,j .
24: Query oracle: P ′

1,j ← D(IV ′, AD, C ′
1,j).

25: Search L1 for any entry (C1,i, P1,i) where P1,i = P ′
1,j .

26: if a collision is found then
27: Calculate candidate difference: ∆Xcand ← C1,i ⊕ C ′

1,j .
28: Add ∆Xcand to the Candidate_∆X list.
29: end if
30: end for
31: {Stage 3: Verify the (∆X, ∆R) Pair}
32: Choose a random, constant second ciphertext block C2.
33: for each ∆Xcand in Candidate_∆X do
34: Cquery1 ← (C1 ⊕∆Xcand) ∥ C2.
35: Cquery2 ← C1 ∥ C2.
36: P1 ∥ P2 ← D(IV, AD, Cquery1).
37: P ′

1 ∥ P ′
2 ← D(IV ′, AD, Cquery2).

38: Calculate difference: ∆P2 ← P2 ⊕ P ′
2.

39: if ∆P2 = ∆R then
40: Set ∆X ← ∆Xcand.
41: return (∆X, ∆R). {Correct pair found}
42: end if
43: end for

Susila Windarta 1036



An Extended Cryptanalysis of Peyrin. . .

5.3 Complexity Analysis

The following theorem quantifies the expected number of collisions and the query complexity of
the two-tuple and three-tuple methods.

Theorem 1 (Collision counts and query complexity). Let U be a uniform random variable taking
values in an n-bit space of size 2n. Let two lists L1,L2 each contain m independent samples
drawn (with replacement) from U . Define the number of pairwise collisions

C2 = #{(x, y) ∈ L1 × L2 | x = y},

and let three lists L1,L2,L3 of size m define the number of triple collisions

C3 = #{(x, y, z) ∈ L1 × L2 × L3 | x = y = z}.

Then:

1. E[C2] = m2

2n
. Consequently, choosing m = Θ(2n/2) yields E[C2] = Θ(1) (constant expected

number of pairwise collisions).

2. E[C3] = m3

22n
. Consequently, choosing m = Θ(22n/3) yields E[C3] = Θ(1) (constant expected

number of triple collisions).
3. Let Q2 (resp. Q3) denote the oracle query complexity needed to construct the involved lists

for the two-tuple (resp. three-tuple) method. Then, under the choices above that make the
expected number of collisions constant,

Q2 = Θ(2n/2), Q3 = Θ(22n/3).

In particular, for all sufficiently large n we have Q2 ≪ Q3, i.e. the two-tuple strategy
requires asymptotically fewer oracle queries than the three-tuple strategy.

Moreover, if collisions are rare (so λ ≡ E[C2]≪ 1), then

Pr[C2 ≥ 1] ≈ 1− e−λ,

and for λ = Θ(1) this probability is a positive constant bounded away from 0.

Proof. We compute expectations by linearity, counting collisions per target value.
(1) Let the universe be S with |S| = 2n. For any fixed value v ∈ S, let

Iv = #{(x, y) ∈ L1 × L2 : x = y = v}.

Then, C2 = ∑
v∈S Iv. For fixed v, each of the m2 ordered pairs (x, y) equals v with probability

2−n · 2−n = 2−2n if we required both to be exactly v; however, an easier and standard route is to
observe:

Pr[x = v] = 2−n, Pr[y = v] = 2−n,

and for independent draws

Pr[x = v and y = v] = 2−n · 2−n = 2−2n.

There are m2 ordered pairs (x, y), so

E[C2] = m2 · 2−2n · 2n = m2

2n
.

(An equivalent and perhaps more transparent combinatorial derivation: for each of the m elements
of L1 and each of the m elements of L2, the probability they are equal (to some common value)
is 2−n; summing yields m2/2n.)

Susila Windarta 1037



An Extended Cryptanalysis of Peyrin. . .

Therefore, setting m = 2n/2 gives

E[C2] = (2n/2)2

2n
= 2n

2n
= 1,

so m = Θ(2n/2) yields E[C2] = Θ(1).
(2) For triple collisions, let for each v ∈ S the indicator

Jv := 1{there exists x ∈ L1, y ∈ L2, z ∈ L3 with x = y = z = v}.

The number of ordered triples equal to v is distributed with expectation m3 · 2−2n (since the
event that a fixed triple (x, y, z) equals the same fixed v has probability (2−n)3, and summing
over 2n possible v removes one factor of 2−n). More directly,

E[C3] =
∑
v∈S

E[#{(x, y, z) : x = y = z = v}] = 2n · (m · 2−n)3 = m3

22n
.

To make E[C3] = Θ(1), solve m3/22n = Θ(1), i.e. m = Θ(22n/3).
method,
Comparing exponents, observe that

n

2 = 0.5n and 2n

3 = 0.666 . . . n,

hence n
2 < 2n

3 for all n > 0. Therefore asymptotically 2n/2 ≪ 22n/3 and so Q2 ≪ Q3.
Finally, for the success probability of producing at least one collision in the two-list case,

when λ := E[C2] = m2/2n is small, the distribution of C2 is well-approximated by a Poisson
distribution with mean λ, giving

Pr[C2 ≥ 1] ≈ 1− e−λ.

In particular, choosing λ = Θ(1) yields a strictly positive constant success probability bounded
away from 0 (for λ = 1, 1− e−1 ≈ 0.632). This completes the proof.

Theorem 1 shows that choosing a list size of m = 2n/2 yields a constant expected number of
two-list collisions (E[C2] ≈ 1). In Algorithm 1, this corresponds to generating 2n/2 decryption
queries per list, resulting in an overall oracle-query cost of Q2 = 2n/2.

Each observed collision produces a small number of candidate internal state-difference pairs
(∆X, ∆R). Empirically, this number remained nearly constant—typically between two and six
across trials—leading to an additional verification cost equivalent to only a few extra oracle calls.
Hence, the verification overhead is O(1) relative to the dominant list-generation phase.

Substituting n = 96 (the SIMON-JAMBU64/96 configuration) gives an effective total query
cost of approximately 4×248 oracle calls, which aligns precisely with the measured data complexity
reported in Table 4. Consequently, the overall complexity of Algorithm 1 remains consistent with
the asymptotic prediction Q2 = Θ(2n/2), while offering a practical 33% reduction in query cost
compared with the three-tuple baseline (Q3 ≈ 6× 248 = Θ(22n/3)).

5.4 Discussion

This study targets JAMBU v1 as used in SIMON-JAMBU64/96. While JAMBU v2.1 introduces
minor structural changes (e.g., tag finalization sequence), the core linear update of R and the
∆R = const relation remain valid. Hence, although our experiments focus on v1, the two-tuple
principle may plausibly extend to v2.1 with adjusted parameters, pending empirical validation in
future work.

Susila Windarta 1038



An Extended Cryptanalysis of Peyrin. . .

Algorithm 2 Plaintext Forgery Attack
Require: A verified pair (∆X, ∆R) from Algorithm 1.
Require: A known valid tuple (P1 ∥ P2, C1 ∥ C2) obtained using IV .
Ensure: A new, valid forged ciphertext-plaintext pair (CD, P D).

1: {Construct the forged plaintext}
2: P D ← (P1 ⊕∆X) ∥ (P2 ⊕∆R).
3: {Construct the forged ciphertext}
4: CD ← (C1 ⊕∆X) ∥ C2.
5: return (CD, P D). {This is a valid pair for the nonce IV ′}

Algorithm 3 Plaintext-Recovery Attack
Require: A verified pair (∆X, ∆R) from Algorithm 1.
Require: A target ciphertext C ′

target = C ′
1 ∥ C ′

2 (encrypted using IV ′).
Require: Access to the decryption oracle D.
Ensure: The corresponding plaintext P ′

target = P ′
1 ∥ P ′

2.
1: {Construct a new ciphertext to query the oracle with}
2: Cquery ← (C ′

1 ⊕∆X) ∥ C ′
2.

3: {Query the oracle using the *first* IV}
4: P1 ∥ P2 ← D(IV, AD, Cquery).
5: {Recover the target plaintext blocks by reversing the differences}
6: P ′

1 ← P1 ⊕∆X.
7: P ′

2 ← P2 ⊕∆R.
8: P ′

target ← P ′
1 ∥ P ′

2.
9: return P ′

target.

The findings of this research validate the cryptanalysis of Peyrin et al. on SIMON-JAMBU64/96
under the nonce-respecting scenario, confirming vulnerabilities to distinguishing, plaintext-forgery,
and plaintext-recovery attacks. The extension demonstrates that these attacks can be performed
with only two tuples (instead of three), providing a crucial new insight—showing that JAMBU’s
security is weaker than initially claimed.

The trade-off appears in the third phase of the two-tuple attack, which demands greater
computational effort to verify multiple candidate differences. In the worst case, this version
may be more complex than the original three-tuple attack; however, on average, it offers a more
efficient path to compromise the scheme.

The successful application of this attack against SIMON-JAMBU64/96 indicates that the un-
derlying linear property may represent a fundamental design weakness in JAMBU. However, since
our experiments are restricted to the SIMON-based instantiation, we refrain from generalizing
this conclusion to other JAMBU variants without further analysis.

Practical Considerations. Our adversary model assumes access to a decryption oracle that
reveals whether a candidate ciphertext-tag pair is valid. In many practical deployments, this
oracle may be unavailable, so the attack should be interpreted primarily as a theoretical weakness
in the JAMBU mode rather than an immediately practical exploit. Nonetheless, the analysis
highlights how small differences in IVs propagate deterministically, suggesting that JAMBU’s
initialization process is fragile with respect to chosen-IV attacks.

Susila Windarta 1039



An Extended Cryptanalysis of Peyrin. . .

6 Conclusion

This research successfully validated the cryptanalysis of Peyrin et al. on SIMON-JAMBU64/96
under the nonce-respecting scenario. The results confirm that the scheme remains vulnerable to
distinguishing, plaintext-forgery, and plaintext-recovery attacks. Quantitatively, the proposed
two-tuple distinguisher achieves a reduced data complexity of approximately 4 × 248 oracle
queries—about one-third lower than the 6 × 248 required by the three-tuple baseline—while
maintaining a comparable success probability. These findings validate both the theoretical
predictions of Theorem 1 and their practical realization, reinforcing that the JAMBU design
exhibits weaker resistance than previously assumed, particularly under resource-limited adversarial
conditions.

CRediT Authorship Contribution Statement
Author One: Conceptualization, Methodology, Validation, Formal Analysis, Resources, Data
Curation, Writing – Original Draft Preparation, Writing – Review & Editing, Project Adminis-
tration, and Funding Acquisition. Author Two: Conceptualization, Methodology, Software,
Investigation, Resources, Data Curation, and Visualization. Author Three: Conceptualization,
Methodology, Validation, Formal Analysis, Writing – Review & Editing, and Supervision.

Declaration of Generative AI and AI-assisted technologies
The authors acknowledge the use of generative AI and AI-assisted technologies in the preparation
of this manuscript. Specifically, Scholar AI 4o was employed to search for and cite peer-reviewed
scientific literature; Gemini 2.5 Pro was utilized for idea organization, refinement of content
structure, and exploratory drafting; and Quillbot Pro was used to assist in paraphrasing, grammar
enhancement, and improving the fluency of academic writing.

All intellectual contributions, interpretations, and final decisions regarding the content were
made by the authors. The use of these technologies complied with institutional, ethical, and
publication standards, and all AI-generated content was critically reviewed and edited to ensure
accuracy, originality, and scholarly integrity.

Declaration of Competing Interest
The authors declare no competing interests.

Funding and Acknowledgments

This research was supported by the Politeknik Siber dan Sandi Negara (Poltek SSN) through
its internal research grant scheme. The authors would like to express their sincere gratitude
to the academic and technical staff at Poltek SSN for their continuous support and facilitation
throughout the course of this research. The authors also acknowledge the contributions of all
individuals and teams whose assistance was instrumental in the successful completion of this
study.

Data and Code Availability
All data and source code used in this study are openly available and can be accessed via public
repositories.

Susila Windarta 1040



An Extended Cryptanalysis of Peyrin. . .

References

[1] J. Black, “Authenticated Encryption,” in Encyclopedia of Cryptography, Security and
Privacy, S. Jajodia, P. Samarati, and M. Yung, Eds. Cham: Springer Nature Switzerland,
2025, pp. 145–156. doi: 10.1007/978-3-030-71522-9_548. Available online.

[2] M. Dworkin, Recommendation for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality, NIST Special Publication 800-38C, 2007. doi:
https://doi.org/10.6028/NIST.SP.800-38C.

[3] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, NIST Special Publication 800-38D, 2007. doi: https://doi.org/10
.6028/NIST.SP.800-38D.

[4] D. J. Bernstein et al., The CAESAR competition, https://competitions.cr.yp.to/cae
sar.html, 2013.

[5] Hongjun and T. Huang, “JAMBU: A Lightweight Authenticated Encryption Mode,” in
Selected Areas in Cryptography – SAC 2014, ser. Lecture Notes in Computer Science,
vol. 8781, Springer, 2014, pp. 423–438. doi: 10.1007/978-3-319-13051-4_26.

[6] IoT Analytics, State of IoT Summer 2024: Number of connected IoT devices growing 13%
to 18.8 billion globally, https://iot-analytics.com/number-connected-iot-devices/,
2024.

[7] N. Kumar, How Many IoT Devices Are There (2025–2030 Data), DemandSage, Dec. 2024.
https://www.demandsage.com/number-of-iot-devices/, 2024.

[8] Ken Research, Indonesia IoT Technology Market Outlook to 2030, https://www.kenrese
arch.com/industry-reports/indonesia-iot-technology-market, 2023.

[9] Mordor Intelligence, Indonesia IoT Market Size & Share Analysis (2025–2030), https://w
ww.mordorintelligence.com/industry-reports/indonesia-iot-market, 2024.

[10] H. Griffioen and C. Doerr, “Examining Mirai’s Battle Over the Internet of Things,” in
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security,
2020. doi: 10.1145/3372297.3417277. Available online.

[11] G. Sripriyanka and A. Mahendran, “Mirai Botnet Attacks on IoT Applications: Chal-
lenges and Controls,” in Proceedings of Advances in Communication and Computational
Technology, Springer, 2021. Available online.

[12] A. Sharma, V. Mansotra, and K. Singh, “Detection of Mirai Botnet Attacks on IoT
Devices Using Deep Le arning,” Journal of Scientific Research and Technology, 2023, Full
text available at https://www.jsrtjournal.com/index.php/JSRT/article/download/49/54.
Available online.

[13] T. b. Alshammari and A. S. Alanazi, “Security threats against the internet of things at
home,” in 2021 International Conference on Electrical, Communication, and Computer
Engineering (ICECCE), 2021, pp. 1–5. doi: 10.1109/ICECCE52056.2021.9514258.

[14] B. Gus, it,ă, A. A. Anton, C. S. Stângaciu, et al., “Securing IoT edge: a survey on lightweight
cryptography, anonymous routing and communication protocol enhancements,” Interna-
tional Journal of Information Security, vol. 24, p. 149, 2025. doi: 10.1007/s10207-025-0
1071-7. Available online.

[15] M. Al-Shatari, F. A. Hussin, A. A. Aziz, T. A. E. Eisa, X.-T. Tran, and M. E. E. Dalam,
“IoT Edge Device Security: An Efficient Lightweight Authenticated Encryption Scheme
Based on LED and PHOTON,” Applied Sciences, vol. 13, no. 18, p. 10 345, 2023. doi:
10.3390/app131810345.

Susila Windarta 1041

https://doi.org/10.1007/978-3-030-71522-9_548
https://doi.org/10.1007/978-3-030-71522-9_548
https://doi.org/https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/https://doi.org/10.6028/NIST.SP.800-38D
https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-319-13051-4_26
https://iot-analytics.com/number-connected-iot-devices/
https://www.demandsage.com/number-of-iot-devices/
https://www.kenresearch.com/industry-reports/indonesia-iot-technology-market
https://www.kenresearch.com/industry-reports/indonesia-iot-technology-market
https://www.mordorintelligence.com/industry-reports/indonesia-iot-market
https://www.mordorintelligence.com/industry-reports/indonesia-iot-market
https://doi.org/10.1145/3372297.3417277
https://dl.acm.org/doi/abs/10.1145/3372297.3417277
https://link.springer.com/chapter/10.1007/978-3-031-13150-9_5
https://www.jsrtjournal.com/index.php/JSRT/article/view/49
https://doi.org/10.1109/ICECCE52056.2021.9514258
https://doi.org/10.1007/s10207-025-01071-7
https://doi.org/10.1007/s10207-025-01071-7
https://doi.org/10.1007/s10207-025-01071-7
https://doi.org/10.3390/app131810345


An Extended Cryptanalysis of Peyrin. . .

[16] S. Kumar, D. Kumar, R. Dangi, G. Choudhary, N. Dragoni, and I. You, “A Review of
Lightweight Security and Privacy for Resource-Constrained IoT Devices,” Computers,
Materials and Continua, vol. 78, no. 1, pp. 31–63, 2024. doi: https://doi.org/10.32604
/cmc.2023.047084. Available online.

[17] J. S. Yalli, M. H. Hasan, L. T. Jung, and S. M. Al-Selwi, “Authentication schemes for
Internet of Things (IoT) networks: A systematic review and security assessment,” Internet
of Things, vol. 30, p. 101 469, 2025. doi: https://doi.org/10.1016/j.iot.2024.101469.
Available online.

[18] D. Chakraborty and M. Nandi, “COLM under attack: A cryptanalytic exploration of
COLM variants,” Journal of Information Security and Applications, vol. 89, p. 103 936,
2025. doi: https://doi.org/10.1016/j.jisa.2024.103936. Available online.

[19] T. Peyrin, S. M. Sim, L. Wang, and G. Zhang, “Cryptanalysis of jambu,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9054, pp. 264–281, 2015. doi: 10.1007/978-3-662-48116-
5_13. Available online.

[20] W. Stallings, Cryptography and Network Security: Principles and Practice, English, 8th ed.
Pearson, 2022, p. 832, Global Edition.

[21] Hongjun and T. Huang, The jambu lightweight authentication encryption mode (v2.1), 2016.
Available online.

[22] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The
SIMON and SPECK families of lightweight block ciphers,” 2013. Available online.

[23] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The simon
and speck lightweight block ciphers,” in Proceedings of the 52nd Annual Design Automation
Conference, ser. DAC ’15, San Francisco, California: Association for Computing Machinery,
2015. doi: 10.1145/2744769.2747946. Available online.

Susila Windarta 1042

https://doi.org/https://doi.org/10.32604/cmc.2023.047084
https://doi.org/https://doi.org/10.32604/cmc.2023.047084
https://www.sciencedirect.com/science/article/pii/S1546221824002121
https://doi.org/https://doi.org/10.1016/j.iot.2024.101469
https://www.sciencedirect.com/science/article/pii/S2542660524004104
https://doi.org/https://doi.org/10.1016/j.jisa.2024.103936
https://www.sciencedirect.com/science/article/pii/S2214212624002382
https://doi.org/10.1007/978-3-662-48116-5_13
https://doi.org/10.1007/978-3-662-48116-5_13
https://link.springer.com/chapter/10.1007/978-3-662-48116-5_13
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://eprint.iacr.org/2013/404
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946

	Introduction
	Theoretical Basis
	Notation
	Authenticated Encryption
	The JAMBU AE Scheme
	Peyrin et al. Cryptanalysis under Nonce-Respecting Scenario

	The SIMON Block Cipher
	Methods
	Research Approach
	Research Variables
	Data Modification Technique
	Research Stages
	Number of Experiments
	Data Analysis

	Results and Discussion
	Distinguishing Attack (Nonce-Respecting Scenario)
	Plaintext Forgery and Plaintext-Recovery Attack
	Complexity Analysis
	Discussion

	Conclusion

