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Abstract

This study develops a mechanism design-based mathematical model to induce a decoy effect
in housing selection, shifting consumer preferences from small to large house types. Using an
area-per-price utility function and dominance constraints, two optimal decoy configurations
(adjacent and strong) are derived analytically. We consider a developer offering a small house
(500,000,000 IDR; 40 m2 building; 100 m2 land) and a large house (1,000,000,000 IDR; 100 m2

building; 200 m2 land), and design an additional decoy alternative. By imposing dominance
and feasibility constraints, we derive closed-form conditions on the decoy’s building area Ad

and land area Ld for two price levels, 750,000,000 IDR and 850,000,000 IDR. The resulting
“adjacent” (∆ = 0.002) and “strong” (∆ = 0.010) decoys ensure that the large house weakly
dominates the decoy while maintaining internal consistency of preferences. Sensitivity analysis
shows that the advantage margin increases linearly with proximity and context intensity
parameters. The proposed framework provides developers with an operational and auditable
mechanism for housing portfolio design.
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mathematical modeling.
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1 Introduction
In many housing projects, small homes account for a large portion of sales because they are
more affordable, while large homes, which are often more attractive to developers in terms of
profit margins, have a relatively small market share. This situation raises a key question: how to
design a portfolio of options that encourages consumers who initially lean toward small homes to
switch to large homes [1], without compromising product integrity and without changing the
specifications of the large homes themselves. One relevant behavioral approach is the decoy effect
(asymmetric dominance), which is a strategy of inserting a comparison option that is slightly
worse on certain attributes but close enough to the target option, so that the comparison becomes
more favorable to the target [2]. On the other hand, from the perspective of Microeconomic
theory, this issue can be viewed as a Mechanism Design problem: developers act as menu
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designers who determine the attributes of options under the constraints of consumer behavior
and rationality [3], [4].

In the context of housing, the most basic set of attributes includes building area, land area,
and price [5]. Consumers generally weigh the trade-off between “space” and “cost,” with varying
sensitivity to buildings and land [6]. To capture this in a concise yet informative manner,
this study created a deterministic consumer utility mathematical model using area-per-price
measures, namely building area and land area per unit price [7]. The weight of preference for
each component is represented by the parameters α for buildings and β for land, with α, β ≥ 0
and α + β = 1, following the practice of weighted additive utility functions [8]. In this way, a
rational metric can be obtained that is transparent, interpretable, and easy to evaluate in various
price and size scenarios.

While previous studies have examined the behavioral mechanism of asymmetric dominance,
few have combined it with an explicit optimization framework based on mechanism design. This
research bridges that gap by formulating a mathematical model that operationalizes consumer
choice bias into parameterized utility functions. This study positions the decoy house as an
additional option with specifications between small and large houses. The price of the decoy is
set between the prices of the two types, while the decision variables are the building area Ad and
land area Ld. The desired target is a decoy configuration that makes large houses appear “clearly
superior” when compared directly, while keeping the decoy credible as a real option within the
physical limits of the product [9]. Intuitively, the ideal decoy is “very close” to the large house
but slightly lower on one or two value ratios so that the dominance of the large house is easily
visible [10], [11].

A case study was taken to illustrate the operational and computational steps of the model.
Large houses are priced at Pb = 1 billion IDR, with a building area of Ab = 100 m2 and a land
area of Lb = 200 m2; small houses are priced at Ps = 500 million IDR, with a building area of
As = 40 m2 and a land area of Ls = 100 m2. Thus, the building-to-price ratio of large houses is
higher than that of small houses, while the land-to-price ratio of both is the same. Two decoy
price alternatives are set at Pd1 = 750 million IDR and Pd2 = 850 million IDR. The design task
is to determine the optimal (Ad, Ld) for each decoy price so that direct comparison tends to
increase the attractiveness of large houses.

Methodologically, this article presents two layers of mathematical models. First, a general
model that expresses the utility function Ui = αAi

Pi
+ β Li

Pi
for each option i ∈ {s, d, b} and

formulates the decoy design problem as an optimization program based on “attribute proximity”
with large houses under physical limits and dominance logic [9], [10]. Second, a case study
application that fills in the parameters with real numbers, derives a closed-form solution (Ad, Ld)
for two decoy prices, and calculates and discusses sensitivity analysis on the proximity parameter
∆ and context intensity κ that represent the strength of the comparison effect in decision-making
[12]. This sensitivity analysis is important from a managerial perspective because it shows
how small changes in decoy specifications or consumer preference segmentation (α, β) can affect
relative utility margins and, ultimately, choice behavior [4].

Existing research on the decoy (attraction) effect in consumer choice ([13], [14], [15]) has
three key limitations: it is dominated by experimental and empirical studies that do not
yield explicit design rules; it rarely incorporates binding physical and pricing constraints as
in real housing portfolios; and it does not systematically connect behavioural context effects
with mechanism design principles for incentive-compatible product structuring. As a result,
developers lack a transparent, closed-form framework for specifying decoy alternatives that are
both behaviourally effective and operationally auditable. This study addresses these gaps by
proposing a mechanism design-based mathematical model for housing selection that embeds the
decoy effect in an area-per-price utility with explicit dominance and feasibility constraints. The
first contribution is a concise and replicable framework for designing decoy houses, yielding clear
analytical conditions for (Ad, Ld). The second is the derivation of closed-form “adjacent” and
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“strong” decoy configurations at realistic price points, providing directly implementable parameter
settings for practitioners. The third is a sensitivity analysis that integrates rational valuation
(area-per-price) with behavioral salience parameters, enabling risk-weighted design decisions.
Throughout, decoys will be framed as ethical choice architecture that clarifies attribute trade-offs
for consumers [16]. The next section describes the methodology in detail, followed by results and
discussion containing the optimal design and its implications, before concluding with conclusions
and directions for further research.

2 Methods
This section describes the research design, mathematical model, optimization formulation,
computational procedures, and evaluation and sensitivity analysis plans. The focus is on
determining the attributes of decoy houses, namely the building area Ad and land area Ld, at a
specific decoy price Pd ∈ {Ps, Pb} in order to encourage consumers to shift their preferences to
larger houses.

The research is quantitative-theoretical with four steps. First, it formulates a concise yet
informative utility function for house area per price [8]. Second, it defines asymmetric dominance
criteria that make the decoy house "appear worse" than the large house (big) but not dominated
by the small house (small) [9], [10]. third, developing an optimization program to select (Ad, Ld)
that is closest to big in the value ratio space (so that the comparison favors big) [4]; fourth,
conducting a sensitivity analysis of preference parameters (α, β), proximity levels (∆a, ∆l), and
decoy prices Pd [10]. Parameters α and β are building and land preference weights, respectively.

For each option i ∈ {s, d, b} (where s for small, d for decoy, and b for big house), the following
are defined: Pi as the house price, Ai as the house floor area, and Li as the house land area.
Furthermore, the floor area-to-price ratio is set as ai = Ai/Pi and the land area-to-price ratio
as li = Li/Pi. The consumer preference type is defined as θ = (α, β) with weights α, β ≥ 0 and
α + β = 1.

The utility function is defined as [8]:

Ui(θ) = αai + βli = α
Ai

Pi
+ β

Li

Pi
where i = {s, d, b} (1)

Assuming: first, consumers choose the option with the highest utility (self-selection) [17];
second, there is no individual price discrimination [4]; third, the decoy house is a viable product
and meets physical constraints [10] As ≤ Ad ≤ Ab, Ls ≤ Ld ≤ Lb.

As a case study to clarify the Mathematical Model, the following parameters were set: a
large house with a price of Pb = 1 billion IDR, building area Ab = 100 m2, and land area
Lb = 200 m2 ⇒ ab = 0.10, lb = 0.20. A small house with a price of Ps = 500 million IDR, building
area As = 40 m2, and land area Ls = 100 m2 ⇒ as = 0.08, ls = 0.20. Furthermore, a decoy house
with a price of Pd1 = 750 million IDR and Pd2 = 850 million IDR.

The initial implication is that the big house has an advantage in terms of building area per
price, i.e., ab > as, and is on par in terms of land area per price, lb = ls. This situation opens up
the possibility of a classic asymmetric decoy by selecting ad ∈ (as, ab] and ld ≤ lb.

Determination of asymmetric dominance criteria and feasible sets. In order for big to dominate
decoy, but small not to dominate decoy house, big is defined as dominating decoy if ad ≤ ab

and ld ≤ lb (at least one strict condition). Small does not dominate decoy if it is not true that
ad ≤ as and ld ≤ ls simultaneously. Since ls = lb, it is sufficient to ensure that ad > as.

The next physical and price constraints yield a feasible set, namely
As ≤ Ad ≤ Ab, Ls ≤ Ld ≤ Lb, Ps < Pd < Pb (2)

In the ratio space, the boundary (2) becomes:
As

Pd
≤ ad ≤ min

{
Ab

Pd
, ab

}
,

Ls

Pd
≤ ld ≤ min

{
Lb

Pd
, lb

}
(3)
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For the first decoy price case, Pd1 = 750, we obtain ad ∈ [0.053, 0.100] and ld ∈ [0.133, 0.200].
Meanwhile, for the second decoy price case, Pd2 = 850, we obtain ad ∈ [0.047, 0.100] and
ld ∈ [0.118, 0.200]. The main anti-domination condition for small requires that ad > as = 0.08.

Optimization formulation or "adjacent" decoy. The decoy house will be very close to the big
house so that the advantages of the big house are easily visible in a direct comparison [10]. The
distance is measured in space (a, l). Define the degree of "controlled regression" of the decoy
from the big house as [9]:

∆a = ab − ad (≥ 0), ∆l = lb − ld (≥ 0) (4)

The optimization problem can be formulated as

min
∆a,∆l

wa∆2
a + wl∆2

l (5)

subject to the constraints:

∆a ≥ 0, ∆l ≥ 0 neither 0, big dominance (6)
ad = ab − ∆a > as, anti-domination small (7)
As ≤ Ad ≤ Ab, Ls ≤ Ld ≤ Lb, physical boundaries (8)
Ad = ad, Pd = (ab − ∆a)Pd, Ld = ldPd = (lb − ∆l)Pd, by definition (9)

with weight wa, wl > 0 allows emphasis on proximity to one ratio (default where wa = wl = 1).
The solution to the optimization model (objective 5 with constraints 6-9) is closed-form [18].

Since the objective function is convex and the constraints are linear, the optimal solution always
lies on the constraint boundary (corner) [19]. With wa = wl, the minimal choice is the one that
makes ∆a, ∆l as small as possible while satisfying the condition:

∆a ≥ 0, ∆l ≥ 0 and (∆a > 0) ∨ (∆l > 0) (10)

ab − ∆a > as ⇒ ∆a < ab − as (in this case < 0.02) (11)

As ≤ (ab − ∆a)Pd ⇒ ∆a ≤ ab − As

Pd
(12)

Ls ≤ (lb − ∆l)Pd ⇒ ∆l ≤ lb − Ls

Pd
(13)

Thus, for each Pd, the smallest feasible and non-simultaneously zero ∆a and ∆l can be
selected. In practice, two patterns are often used, namely the balanced adjacent design, which is
a small ∆a ≡ ∆l (making the decoy "almost" big in two ratios). The weighted design is ∆a ̸= ∆l

to adjust the segment (for example, β is large → make ∆l slightly larger so that the dominance
of big on the land is more apparent) [9], [10]. Furthermore, the physical decision value is:

Ad = (ab − ∆a)Pd, Ld = (lb − ∆l)Pd (14)

Adding context utility (attraction/salience). The comparison effect often increases the
attractiveness of the target option when the target appears better on the same attribute [20],
[10]. To capture this parsimoniously, big utility is extended [12]:

U tk
b = Ub + κ(α∆a + β∆l), κ ≥ 0 (15)

so that the margin relative to small becomes:
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U tk
b − Us = α(ab − as)︸ ︷︷ ︸

base margin

+κ(α∆a + β∆l) (16)

In the case study, the baseline margin is 0.02, because lb = ls. The context component is
proportional to the "controlled distance" between the big and decoy houses on the dimension
relevant to preference weight (α, β) [9], [10].

For each decoy price Pd ∈ {Pd1, Pd2}, the calculation steps can be determined, namely:
Step 1. Calculate the base ratio: ab, lb, as, ls.
Step 2. Calculate the ∆ limit of the physical product:

∆max
a = ab − max

(
as,

As

Pd

)
, ∆max

l = lb − Ls

Pd
(17)

Step 3. Select the proximity scheme, namely balanced adjacent, i.e., choose a small ∆ (> 0) then
set ∆a = min(∆, ∆max

a ), ∆l = min(∆, ∆max
l ). Set the small ∆a, ∆l weights differently according

to the target segment (e.g., high β → increase ∆l relative to ∆a). Ensure that ∆a < ab − as so
that ad > as (anti-domination of small) [9], [10].
Step 4. Calculate the physical decision, namely

Ad = (ab − ∆a)Pd, Ld = (lb − ∆l)Pd (18)

Step 5. Verify feasibility: As ≤ Ad ≤ Ab and Ls ≤ Ld ≤ Lb. If violated, reduce ∆ or adjust
∆a/∆l.
Step 6. (Optional) Evaluate the margin U ctx

b − Us in the scenario (α, β, κ) to assess the strength
of the effect [12].

Set performance metrics, proximity ratio, namely ∆a, ∆l (the smaller the better). Utility
margin, namely U ctx

b − Us on the grid (α, β) and κ representative. Dominance compliance,
check big > decoy and small ̸> decoy. As well as physical feasibility, namely Ad, Ld within
[As, Ab] × [Ls, Lb]. The Utility Margin formula as follows:

∆U = Ubig − Usmall = α
Ab

Pb
+ β

Lb

Pb
−

(
α

As

Ps
+ β

Ls

Ps

)
(19)

Mechanism-design linkage: Individual Rationality (IR) and Incentive Compatibility (IC).
The Individual Rationality (participation) requirement is that, for every type θ,

max
i∈{s,d,b}

Ui(θ) ≥ U0(θ) = 0. (20)

Under the present specification, all ratios ai, li are nonnegative (strictly positive in the case
study), and the preference weights satisfy α, β ≥ 0 and α + β = 1. Hence

Ui(θ) = αai + βli ≥ 0 ∀ i ∈ {s, d, b}, θ ∈ Θ, (21)

so that IR constraint (20)–(21) is automatically satisfied for every consumer type as soon as
at least one house is under consideration. In other words, the IR constraint does not restrict
the decoy-design problem beyond the physical feasibility conditions already imposed in (2)–(3):
consumers can always decline to purchase if all utilities were too low, and the case-study
calibration focuses on segments for which buying a house is already individually attractive.

Incentive Compatibility (IC) and self-selection. For a posted-menu mechanism with no
type-dependent pricing, Incentive Compatibility reduces to rational self-selection: each consumer
simply chooses the option in M that yields the highest utility given their type θ. Formally, the
IC condition can be written as choice rule:

i∗(θ) ∈ arg max
i∈{s,d,b}

Ui(θ), ∀θ ∈ Θ (IC-general) (22)
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There is no informational misreporting in this environment, because consumers do not
communicate their type to the developer; they only pick from the publicly offered menu. Thus
(22) is satisfied by construction whenever consumers behave according to utility maximization
(self-selection assumption).

For the specific segment of interest, denoted Θbig ⊂ Θ, the developer aims to implement the
big house as the preferred alternative. The corresponding segment-wise IC requirements are

Ub(θ) ≥ Us(θ), Ub(θ) ≥ Ud(θ), ∀θ ∈ Θbig (IC-big) (23)

Using the linear utility Ui(θ) = αai + βli and nonnegative weights α, β, a sufficient condition
for (23) is that the big house weakly dominates the decoy in both ratios (with at least one strict
inequality),

ab ≥ ad, lb ≥ ld, and (ab > ad or lb > ld) big-dominance (24)

while the small house does not dominate the decoy, e.g.

not(as ≥ ad and ls ≥ ld) (small-anti) (25)

Conditions (24)–(25) are exactly the dominance and anti-domination constraints (6)–(7)
expressed in ratio space. Under these constraints, any type θ ∈ Θbig that already finds the big
house at least as attractive as the small one in terms of area-per-price will weakly prefer b to d
and s, so that (IC-big) holds automatically.

The IR and IC conditions of mechanism design can be written for this setting as (20)–(22),
with the segment-specific IC inequalities (23). Given the monotone, additive utility structure and
the feasibility region defined by (2)–(3), the IR constraint is non-binding and the IC requirements
are enforced through the dominance and anti-domination constraints (6)–(7). Therefore, explicit
IR/IC terms do not alter the optimization program (5); instead, they provide an interpretive
mechanism-design lens on the existing constraints.

From a managerial standpoint, IR means that the housing menu must remain attractive
enough that buyers still feel they are getting “sufficient space for the price” compared with the
outside option. The model incorporates this by working with positive area-per-price utilities and
realistic physical bounds, so that all three units (small, decoy, big) remain credible purchase
options. IC reflects voluntary self-selection: given the advertised specifications and prices, each
buyer freely chooses the alternative that best matches their own trade-off between building area
and land. The role of the decoy design is not to force anyone into the big house, but to structure
the menu so that, for the targeted segment, the large unit transparently appears as the best-value
choice: it dominates the decoy on the same attributes and remains sufficiently differentiated
from the small unit. In this sense, the decoy specification derived from (5) can be interpreted as
an incentive-compatible “choice architecture” those nudges, rather than coerces, buyers toward
larger houses while preserving product feasibility and transparency.

Sensitivity analysis was first conducted on the decoy price of million price Pd, which affects
the feasibility threshold ∆max

a , ∆max
l through As

Pd
and Ls

Pd
[4]. Second, the proximity (∆a, ∆l),

which linearly affects the margin context (α∆a + β∆l) but is constrained by physical feasibility
[20]. Third, the preference (α, β), which alters the contribution of each ratio to utility. Segments
with high β tend to respond to ∆l [8], [17]. Fourth, the strength of context κ, which increases
the influence of proximity on margins, is relevant to information presentation strategies [12].
For the case study [18], this article presents margins on a grid at α ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
∆ ∈ {0.002, 0.005, 0.010, 0.015, 0.020}, and κ representative (e.g., κ = 1 as normalization), for
both Pd.

The robustness and validity of the model were tested using construct and physical robustness
test as well as validity tests. Construct robustness was tested using a weighted scenario test
wa ̸= wl on the objective function; selecting ∆ at the upper limit of feasibility when one dimension
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was to be emphasized [21], [22], [23], [19]. Physical robustness was tested using sensitivity tests
on the limits As, Ab, Ls, and Lb [22], [21]. Meanwhile, the validity of the model was evaluated
using the area-per-price metric, which was chosen for its transparency and ease of auditing [8],
[7].

3 Results and Discussion
This section presents numerical implications of the proposed mechanism design-based model
and their interpretation for housing portfolio planning. First, the Result subsection reports the
case-study outcomes, including feasible ranges for the decoy specifications and the closed-form
adjacent and strong designs for two price levels. The subsequent Discussion subsection then
interprets these findings in terms of behavioural decoy effects, mechanism-design principles
(IR/IC), and managerial implications such as pricing, segmentation, and ethical use of choice
architecture.

3.1 Result

As an explanation of the Mathematical Model that has been developed, here is a case study, with
the following case settings. A large house type with a price of Pb = 1,000 million, building area
Ab = 100 m2, and land area Lb = 200 m2 so that ab = 0.10 and lb = 0.20. A small house type
with a price of Ps = 500 million, building area As = 40 m2, and land area Ls = 100 m2 so that
as = 0.08 and ls = 0.20. Two decoy prices are set at Pd1 = 750 million and Pd2 = 850 million.
The base margin of big over small in the general model is Ub − Us = α(ab − as) + β(lb − ls) = 0.02,
because lb = ls. This means that even without the decoy, big already leads in the building-per-
price dimension when α > 0, but it is not yet prominent in the land-per-price dimension.

Feasible set and dominance implications. Physical constraints As ≤ Ad ≤ Ab, Ls ≤ Ld ≤ Lb

and big dominance (ad ≤ ab, ld ≤ lb) give a range of ratios that can be selected, namely
• For Pd1 = 750 million, we obtain ad ∈ [40/750, 0.10] = [0.0533, 0.10], ld ∈ [100/750, 0.20] =

[0.1333, 0.20].
• For Pd2 = 850 million, we obtain ad ∈ [40/850, 0.10] = [0.0471, 0.10], ld ∈ [100/850, 0.20] =

[0.1176, 0.20].

To prevent the small from dominating the decoy, simply require ad > as = 0.08 (since ls = lb).
Thus, the classical asymmetric decoy construction is possible, i.e., choose ad ∈ (0.08, 0.10] m2

and ld ≤ 0.20. Closed-form solutions and two operational designs. With the objective of squared
proximity (ab − ad)2 + (lb − ld)2, the solution lies within the constraint boundaries. For balanced
proximity weights, this article identifies two practical proximity levels that can be used in the
field, namely

• Adjacent (very close): ∆a = ∆l = 0.002 ⇒ ad = 0.098, ld = 0.198.
• Strong (more stringent): ∆a = ∆l = 0.010 ⇒ ad = 0.090, ld = 0.190.

The physical dimensions of the decoy (Ad, Ld) are obtained from Ad = (ab − ∆a)Pd and
Ld = (lb − ∆l)Pd. For the decoy price of Pd1 = 750 million, the solutions for the building area
and land area of the decoy house are:

• Adjacent: Ad = 0.098 × 750 = 73.5 m2, Ld = 0.198 × 750 = 148.5 m2.
• Strong: Ad = 0.090 × 750 = 67.5 m2, Ld = 0.190 × 750 = 142.5 m2.

For the decoy price of Pd2 = 850 million, the solution for the building area and land area of
the decoy house is:

• Adjacent: Ad = 0.098 × 850 = 83.3 m2, Ld = 0.198 × 850 = 168.3 m2.
• Strong: Ad = 0.090 × 850 = 76.5 m2, Ld = 0.190 × 850 = 161.5 m2.
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All solutions satisfy the physical constraints (40 ≤ Ad ≤ 100, 100 ≤ Ld ≤ 200), big dominance
(since ∆a, ∆l ≥ 0 and at least one is strict), and small anti-dominance (since ad > 0.08). The
utility margin is context-dependent. With context expansion U ctx

b = Ub + κ(α∆a + β∆l), the
total margin becomes U ctx

b − Us = 0.02α + κ(α∆a + β∆l). For a balanced design ∆a = ∆l = ∆,
the simple margin is obtained as 0.02α + κ∆. Numerical example at κ = 1:

• Adjacent ∆ = 0.002 yields a margin of = 0.02α + 0.002.
• Strong ∆ = 0.010 yields a margin of = 0.02α + 0.010.

with α = 0.4, for example, the margin is adjacent = 0.008 + 0.002 = 0.010, while strong
= 0.008 + 0.010 = 0.018.

The following Table 1 shows decoy land areas Ld (in m2) for two decoy price levels, Pd =
750 million IDR and Pd = 850 million IDR, under two proximity settings. The “adjacent”
configuration uses ∆ = 0.002 and the “strong” configuration uses ∆ = 0.010, with Ld = (lb −∆)Pd

and lb = Lb/Pb = 0.20 based on Lb = 200m2 and Pb = 1,000million IDR.

Table 1: Decoy land areas for two price levels and proximity settings
Proximity level ∆ Ld (Pd = 750 M IDR) [m2] Ld (Pd = 850 M IDR) [m2]
Adjacent 0.002 148.5 168.3
Strong 0.010 142.5 161.5

Small illustration to show how proximity and context parameters affect results. Without a
decoy, the big house is only slightly better than the small one, so many buyers can still justify
choosing the small unit. A very close decoy (small ∆) that is dominated by the big house but
not by the small one makes the big house look like the “smart upgrade” with minimal extra
sacrifice, especially when even mild context effects (α∆a + β∆l) are present. A stronger decoy
(larger ∆) and/or stronger context (larger (α∆a + β∆l)) amplifies the utility gap in favor of the
big house, increasing its attractiveness, but if ∆ is too large the decoy stops looking credible, so
there is a practical trade-off between proximity and persuasive impact.

3.2 Discussion

Practical optimization and clear readability. Mathematically, the “smallest” proximity that
still satisfies dominance (e.g., ∆a ↓ 0+, ∆l = 0) minimizes the distance. However, in marketing
practice, salience is needed to make the difference clearly visible. That is why two levels of
proximity are reported: adjacent (conservative, high similarity) and strong (more prominent).
Both maintain product credibility (realistic specifications) while making the big advantage easy
to grasp when comparing two identical ratios [9], [10].

The role of decoy pricing. An increase in Pd proportionally raises Ad and Ld without altering
the ratio ad, ld. Since utility is ratio-based, the “proximity” perceived by consumers remains
controlled by ∆, not by the absolute level Ad, Ld. Thus, the choice of Pd is more related to the
price position in the portfolio and the physical suitability of the land, while the persuasive effect
is primarily regulated by ∆ and κ [12], [20].

Preference segmentation. The base margin 0.02α shows that markets more focused on
buildings (large α) are relatively friendly to big. In segments more focused on land (large β), the
context component κ, ∆l becomes crucial; strong design provides a larger margin with proximity
costs (the product is slightly “behind” big on both ratios) [17], [6].

Physical boundaries and anti-cannibalization. All solutions maintain Ad < Lb and Ld < Lb,
while ensuring (ad > as) so that the decoy does not become a “cheap version” of the small house.
This is important to prevent uncontrolled cannibalization of the small house market share and
maintain the migration path of preferences toward the big house [3], [4].

Sensitivity of ∆ and κ. Since U ctx
b − Us increases linearly with ∆ and κ, developers can

balance “design distance” and “communication strength” (presentation, framing, brochure/show
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unit layout). If operational κ is estimated to be low, choose a slightly larger ∆ (strong); if κ is
high (e.g., effective product education), a small ∆ (adjacent) is sufficient [10], [24].

To illustrate how proximity ∆ and the context parameter κ jointly affect the big vs. small
utility margin, we use the case-study data. The physical attributes and prices are (Ab, Lb, Pb) =
(100, 200, 1000), (As, Ls, Ps) = (40, 100, 500), so that the area-per-price ratios in (1) are ab =
Ab/Pb = 0.10, lb = Lb/Pb = 0.20, as = As/Ps = 0.08, ls = Ls/Ps = 0.20.

For a representative balanced-decoy scheme, the decoy ratios are parameterised by a proximity
distance ∆ > 0 as

ad(∆) = ab − ∆, ld(∆) = lb − ∆, (26)
which is consistent with the adjacent and strong designs reported in (11)–(13). The feasibility
bound in (17) yields 0 < ∆ ≤ ∆max := min{ab − as, lb − Ls/Pd} ≈ 0.02, so the values
∆ ∈ {0.002, 0.010} used below lie well inside the admissible range.

For any preference type θ = (α, β), with α, β ≥ 0 and α + β = 1, the baseline (no-context)
utility of option i ∈ {s, d, b} is Ui(α, β) = αai + βli, and the baseline big vs. small margin is

∆U0(α, β) := Ub(α, β) − Us(α, β). (27)

Consistent with (15)–(16), context (attraction/salience) is captured by extending the big-house
utility with a fraction κ ∈ [0, 1] of its advantage over the decoy,

U ctx
b (α, β; ∆, κ) := Ub(α, β) + κ(Ub(α, β) − Ud(α, β; ∆)), (28)

where Ud(α, β; ∆) is computed from (26). The corresponding context-augmented big vs. small
margin is

∆U(α, β; ∆, κ) := U ctx
b (α, β; ∆, κ) − Us(α, β) = ∆U0(α, β) + κ(Ub(α, β) − Ud(α, β; ∆)) (29)

All utility values are in area-per-price units (m2/million IDR), consistent with (1).
We then sweep ∆ and κ over the grid ∆ ∈ {0.002, 0.010}, κ ∈ {0, 0.5}, for two representative

preference profiles: (i) a balanced type (α, β) = (0.5, 0.5), and (ii) a building-focused type
(α, β) = (0.7, 0.3).

The resulting baseline and context-augmented margins are summarised in Table 2, which
show how the utility margin ∆U , the difference between the big option’s utility and the small
option’s utility, is affected by the decoy proximity parameter ∆ and the context parameter κ,
across two different preference profiles (α, β).

Comparison with the literature. Conceptually, these results are consistent with findings of
asymmetric dominance effects: a decoy that is close and slightly inferior on the same attribute
increases the choice of the target. The novelty here is the closed formula (Ad, Ld) that links
physical specifications, price, and preference weights into an operational recipe for two decoy
price points [9], [10].

Table 2: Sensitivity of ∆ and κ

Preference
Profile (α, β)

Decoy
Proximity (∆)

Context
Parameter (κ)

Baseline
Margin ∆U0

Context Margin
∆U(∆, κ)

(0.5, 0.5) 0.002 0.0 0.010 0.010
(0.5, 0.5) 0.002 0.5 0.010 0.011
(0.5, 0.5) 0.010 0.0 0.010 0.010
(0.5, 0.5) 0.010 0.5 0.010 0.015
(0.7, 0.3) 0.002 0.0 0.014 0.014
(0.7, 0.3) 0.002 0.5 0.014 0.015
(0.7, 0.3) 0.010 0.0 0.014 0.014
(0.7, 0.3) 0.010 0.5 0.014 0.019

Implications. For Pd1 = 750 and Pd2 = 850 million, the operationally optimal decoy
specifications (adjacent: ∆ = 0.002 ; strong: ∆ = 0.010) yield credible measures, satisfy all
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constraints, and measurably increase the target’s utility margin. The choice between adjacent
and strong can be determined by estimates (α, β), target salience κ, and pricing strategies within
the portfolio.

From an ethical perspective, the decoy effect (also known as asymmetric dominance), a robust
behavioural phenomenon, occurs when the introduction of a clearly inferior third option (the
decoy) shifts preference between two existing options (the target and the competitor). The use
of decoy pricing raises several ethical questions. Critics argue that it manipulates consumers’
choices and may lead them to make decisions they wouldn’t otherwise make. There’s a fine
line between nudging customers towards a particular option and exploiting cognitive biases to
drive sales. Ethical concerns become particularly pronounced when decoy pricing is used in
essential services or products that have significant impact consumers’ lives. For instance, using
such strategies in healthcare plans or financial products could be seen as taking advantage of
consumers in vulnerable situations [25].

4 Conclusion
This mathematical model presents a concise and executable mechanistic for designing decoy houses
so that consumer preferences shift from small-type houses to large-type houses [9], [10]. With
area-per-price utility combining building-per-price and land-per-price, the problem is formulated
as attribute selection (Ad, Ld) at a medium price Pd under dominance, anti-dominance, and
physical product constraints [4]. In thecase study, it can be shown that the big house excels in
building-per-price and is balanced in land-per-price, so that a classic asymmetric decoy can be
constructed by choosing ad between the small and big values and ld not exceeding that of the
big house.

The closed-form solution yields two simple operational mechanisms, an adjacent design with
small proximity (∆a, ∆l) to maintain high similarity, and a strong design with greater proximity
to emphasize comparison [9], [10]. In the case study, two decoy house prices were set, obtained
both mechanisms provide realistic physical sizes, satisfy the bounds [As, Ab]× [Ls, Lb], and ensure
that big dominates the decoy while small does not. When context utility is factored in, the
margin of big’s advantage increases linearly with proximity level and salience parameter κ, above
the baseline margin derived from building dimensions [12]. These results provide clear design
levers: adjust ∆ to manage product “distance,” and adjust κ through information presentation,
education, and marketing materials.

In practical terms, developers can choose adjacent for segments that already relatively value
building area, and switch to strong for segments that demand more emphasis on attribute
comparisons. From a scientific perspective, this framework combines simple rationality with
measurable context effects, thereby facilitating calibration and auditing [8]. The main limitation
is the exclusion of non-physical attributes such as location, material quality, credit access, and
heterogeneity of preferences. Future research should empirically validate the proposed decoy
house model using observed housing sales data and carefully designed consumer choice surveys.
Furthermore, ethical aspects must be emphasized: decoys should be transparent information
architecture that benefits consumers, not tools to obscure product quality [16]. Thus, this
approach is ready to be used as a guideline for accountable and effective housing portfolio design.
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