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Abstract

This study develops an integrated framework for pricing double barrier options under time-
varying interest rates by combining ARIMA-based forecasting with Monte Carlo simulations.
Monthly U.S. Treasury Bill rates from 2019-2025 are modeled using the ARIMA(2,2,0)
process to generate dynamic risk-free rates, which are incorporated into three Monte Carlo
approaches standard, antithetic variate, and control variate. Tesla Inc. stock prices are
used as the underlying asset modeled through Geometric Brownian Motion. The integration
of ARIMA-based dynamic rates within the Monte Carlo framework enables more realistic
pathwise discounting and improves simulation convergence. The results show that the control
variate method provides the most accurate and stable estimates for knock-in call options,
whereas the antithetic variate technique yields superior accuracy for knock-in put, knock-out
call, and knock-out put options. Overall, the combined use of ARIMA-forecasted interest
rates and variance-reduction techniques enhances the precision and stability of double barrier
option valuation under dynamic financial conditions.
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1 Introduction

Investment plays a crucial role in the modern economy, functioning both as a channel for
productive capital allocation and as a means to enhance financial well-being. In recent years,
participation in capital markets has grown substantially worldwide. In Indonesia, the number of
investors increased by 18.01% in 2023 compared to the previous year, exceeding seven million
Single Investor Identifications (SID) by mid-2025 [1]. Globally, more than 100 million individuals
now use stock trading applications, with an annual growth rate of around 20% [2]. Despite this
rapid expansion, market volatility continues to pose significant risks for investors.

Derivative instruments, particularly options, serve as important tools for hedging and specu-
lation. Among them, double barrier options have gained increasing attention because their payoff
depends on whether the underlying asset price breaches predetermined upper or lower barriers.
There are two main types: knock-in options, which become active only after a barrier is hit,
and knock-out options, which become void once the barrier is reached. Due to their relatively
lower premiums compared to vanilla options, barrier options are often preferred in markets with
moderate volatility [3], [4].
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However, pricing barrier options is challenging due to their path-dependent nature, where
the option value depends on the entire price trajectory rather than only the terminal price at
maturity [5]. This characteristic limits the analytical applicability of classical models such as
the Black-Scholes framework. Consequently, Monte Carlo simulation has become a widely used
approach for pricing barrier options because it captures realistic market behavior. Nevertheless,
standard Monte Carlo simulations often suffer from slow convergence and high estimation variance.
To address this, variance reduction techniques such as antithetic variates and control variates are
commonly employed to enhance computational efficiency [6].

Previous studies have demonstrated that the control variate method improves convergence for
knock-in options, while the antithetic variate approach effectively reduces variance in knock-out
options [7], [8]. Further extensions include models incorporating stochastic volatility using the
Heston framework [9] and non-constant interest rates via the Cox-Ingersoll-Ross (CIR) process
[10], both of which improve pricing realism and stability.

Despite these advancements, most prior research analyzes either knock-in or knock-out options
separately. This study addresses that gap by evaluating both option types simultaneously under a
time-varying interest rate framework. The research introduces an integrated simulation approach
that combines ARIMA-based interest rate forecasting with three Monte Carlo methods: standard,
antithetic variate, and control variate, to assess their relative performance. Using Tesla Inc.
(TSLA) stock prices as the underlying asset, this study aims to improve pricing accuracy and
provide a more realistic model of option valuation in dynamic financial markets.

2 Methods

This study adopts an experimental quantitative approach based on numerical simulation to
estimate the price of double barrier options under time-varying interest rates. The simulation is
conducted using three Monte Carlo techniques: the standard method, antithetic variate, and
control variate. This simulation-based approach is employed due to the absence of closed-form
analytical solutions for double barrier options with non-constant interest rates, necessitating
numerical methods to obtain accurate estimates [3], [6].

2.1 Data and Sources

The study utilizes secondary data comprising two main types. First, daily stock price data of
Tesla Inc. (TSLA) from August 23, 2023, to August 23, 2025, obtained from Yahoo Finance [11].
This data is used to model the stochastic price process in the simulations. Second, monthly U.S.
Treasury Bill rates from 2019 to 2025, sourced from the official website of the U.S. Department of
the Treasury [12], are used to forecast non-constant interest rates through the ARIMA method.

2.2 Return and Normality Testing

Daily stock returns are computed using the logarithmic transformation:

Ry =1n ( Sf;) , (1)

where S; represents the stock price on day-t [3]. Prior to simulation, the return data is tested for
normality using the Kolmogorov—Smirnov (K-S) test to ensure it follows a normal distribution.
The test statistic is defined as:

D = max |F,(x) — Fy(zx)|, (2)

where F,,(x) is the empirical distribution function, and Fy(z) is the theoretical distribution. The
data is considered normally distributed if the D-value is less than the critical value at a given
significance level [13].
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2.3 Modeling Non-Constant Interest Rates Using ARIMA

Capturing the temporal variability of interest rates involves employing the Autoregressive
Integrated Moving Average (ARIMA) model, denoted as ARIMA(p, d, q), which is used to
generate monthly forecasts of interest rates serving as inputs for the Monte Carlo simulation.

2.3.1 Stationarity Testing

Stationarity of the data is assessed with respect to its mean. The Augmented Dickey—Fuller
(ADF) test is employed to evaluate whether the mean of the series is constant over time. The
test is based on the following regression model:

p
AXy =X 1+ Z BiAX; 1+ wy, (3)
=2

where the null hypothesis (Hp): 7 = 0 indicates the presence of a unit root, implying non-
stationarity, while the alternative hypothesis (H1): v < 0 indicates mean stationarity. The series
is considered stationary if the ADF test statistic is smaller than the corresponding Dickey—Fuller
critical value [14]. If non-stationarity is detected, differencing is applied until the mean becomes
stable:

VXt = Xt — Xt—la (4)

2.3.2  Model Identification and Parameter Estimation

Model identification is performed using autocorrelation (ACF) and partial autocorrelation (PACF)
functions. A cutoff in ACF typically suggests an MA(q) structure, while a PACF cutoff points
to an AR(p) structure. If both decay gradually, a combined ARMA or ARIMA model is likely
suitable. The parameters are estimated through Maximum Likelihood Estimation (MLE), and
significance tests are applied to retain only meaningful coefficients. Model selection is guided
by the lowest values of the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC):

AIC = —2In L + 2k, (5)

BIC = —-2InL + klnn, (6)

where L is the log-likelihood and k is the number of estimated parameters [15].

2.3.8 Diagnostic Testing

Post-estimation diagnostics are carried out to validate model adequacy. The Ljung-Box test is
employed to detect any remaining autocorrelation in the residuals [15]:

m A2

Qm) =nn+2)y" L (7)
k=1

In addition, a t-test on the residual mean is performed to ensure its expectation is zero [13]:

t =

€
= "

2.3.4  Forecasting and Evaluation of Accuracy

The ARIMA model produces interest rate forecasts through conditional expectation:

Xt+h|t = B(Xqn]Xe, Xe-1,- - 1), 9)
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with 95% confidence intervals defined as:
Xyt £ 1.9664. (10)

Forecast accuracy is assessed via the Mean Absolute Percentage Error (MAPE):
1 n

MAPE =100% x — Y |
t=1

X — Xy

= (11)

MAPE values below 20% indicate high predictive accuracy, while those exceeding 50% suggest
poor forecasting performance [15],[16],[17].

2.4 Double Barrier Option

Double barrier options are a class of exotic derivatives characterized by two threshold prices: a

lower barrier (Hp,) and an upper barrier (Hyr). These options either activate (knock-in) or become

void (knock-out) depending on whether the underlying asset price crosses the set barriers[18].
The corresponding payoff functions for various option types are:

Sr—K,0), S;€(Hp,Hy), vVt €|0,T
Knock Out Call = max(Sr 0), St el 'L7 v); 0,71, (12)
0, otherwise,
- K H; H It T
Knock In Call = max(Sr 0), St ¢ ( .L’ v), 3t €[0,7], (13)
0, otherwise,
K —-587,0), S;e(Hp, H vt e [0, T
Knock Out Put = max( 7,0), S € .L’ v); 0,71, (14)
0, otherwise,
K —587,0), S H; H Jtelo,T
Knock In Put = max( 7, 0), S ¢( .L’ v); €0, 7], (15)
0, otherwise.

where St is the asset price at maturity and K is the strike price [5]. To address the
effect of discrete monitoring, a continuity correction is applied. Monitoring is performed daily
(n =252 x T') and applies the discrete-to-continuous adjustment factor 0.5826 o+/T'/n:

H* = Hexp(£0.5826 04/T'/n), (16)

where the positive sign is used for upper barriers and the negative for lower ones, with the initial

barrier level defined as Hy = max(Sp, K) and varied according to H = Hy(1 + s%), where s

denotes the percentage shift applied to move the barrier upward or downward relative to Hy.
A key identity in the literature relates knock-in and knock-out options to a vanilla option:

Knock-In Option + Knock-Out Option = Vanilla Option (17)

This equation highlights the complementary nature of knock-in and knock-out structures [3].

2.5 Monte Carlo Simulation

Monte Carlo methods are employed to compute option prices by simulating numerous stochastic
price paths for the underlying asset. This study compares three simulation techniques: standard
Monte Carlo, antithetic variates, and control variates.
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2.5.1 Standard Monte Carlo Method

The Monte Carlo method is employed to estimate option prices by generating a total of n
standard normally distributed random variables, denoted as Z;. The stock price evolution, which
is inherently path-dependent, is modeled using the following stochastic process:

Siltirn) = Si(ty) exp ((r; — So?) At + oVALZ,). (18)

The random variables Z; are derived from uniformly distributed pseudo-random numbers
U; ~ U(0,1), which are then transformed into standard normal variables. This transformation
can be accomplished using either the inverse cumulative distribution function Z = ®~1(U) or
the Box—Muller method:

Zinj—1 = \|—2In UL cos(2nUD), (19)

Zio; =\ 2 UL sin(2xU). (20)

Using the generated Z values, the stock price paths are simulated under time-varying interest
rates, and the corresponding discounted payoff values of the double-barrier options are computed.
For call and put options, the discounted payoffs are respectively defined as:

n—1

C; = e 2i=0 "3 A (hayoff call), (21)
n—1

P=e 2 At(payoﬂ“ put). (22)

In this study, the time-varying interest rates r; obtained from the ARIMA forecasts are specified
on a monthly basis and mapped onto the simulation grid by assigning each forecasted value to
the corresponding daily steps within that month. Both the drift term (r; — 0.50%)At and the
discount factor exp(— Zj rjAt) use the same mapped sequence 7, ensuring consistency between
the stochastic price evolution and the present-value calculation. The estimated option prices are
then obtained by taking the average over all simulated paths:

A 1

n — 79 2

C n;c (23)

~ 13

P, =- P;. 24
ng (24)

In addition to pricing estimation, the Monte Carlo simulation also provides an estimate of
the standard error, which quantifies the uncertainty of the result:

‘@(an) = %a (25)
sf = $ - i 1 2. (f(U) — an)?, (26)
=1
an = % > (). (27)
=1

Here, sy represents the sample standard deviation, and n denotes the number of simulated
price paths [6].

Bella Cindy Thalita 1180



Pricing Double Barrier Options with Time-Varying Interest using Standard, Antithetic, ...

2.5.2 Antithetic Variate Method

The antithetic variate method utilizes paired random variables Z; and —Z; to reduce the variance
of the estimator. The stock prices at time ¢ + At for each pair are expressed as follows:

S (4 At) = Si(t) exp [(r; — So?) At + oVALZ,] (28)
S+ At = Si(t) exp [(rj — So?)AL - oVALZ)]. (29)

The option price estimator for this method is computed as the mean of the payoffs obtained
from both paths:

_ 1 Lo o)
Vanti = — y —7——. 30
Anti N ; 9 ( )
By using antithetic pairs, this method significantly decreases the variance of the simulation
results without altering the expected value of the estimator [6].

2.5.3 Control Variate Method

In the control variate approach, a European vanilla option is employed as a control variable
whose analytical expected value is known from the Black—Scholes framework (Hull, 2021). The
theoretical price of the European option is expressed as:

Cps = SoN(dy) — Ke "I N(d_), (31)

where:

gh — In(So/K) + (r £ 30T
o oVT '
In the control variate method, a European vanilla option is used as the control variable

because its analytical price is known from the Black—Scholes model. The control variate estimator
is defined as:

(32)

0%, = Ci + 6(Cps — i), (33)

where C; denotes the simulated payoff of the double barrier option, Y; represents the simulated
payoff of the corresponding vanilla option computed along the same simulated price path, and
Cpg is the theoretical price of the vanilla option under the Black—Scholes model. Here, 6
corresponds to 0. for call options and 6, for put options. In the numerical implementation, these
coefficients are estimated directly from simulated payoffs as

_ Cov(C, Cg)

b = Var(Cg) (34)
. COV(‘P7 PE)
= Nar(Pp) (35)

where C and Pp denote the simulated payoffs of the vanilla call and put options, respectively.
The final estimator of the option price is computed as:

N 1 X
Vov = 5 20, (36)
i=1

This method proves to be effective because the double-barrier and European option payoffs
exhibit a strong linear dependence, which enables the control variate adjustment (through the
coefficient to substantially reduce the estimation variance [6]

Bella Cindy Thalita 1181



Pricing Double Barrier Options with Time-Varying Interest using Standard, Antithetic, ...

2.6

Notation

The main variables and symbols used throughout this study are summarized in Table 1.

2.7

1.

Table 1: Summary of notation used throughout the paper.

Symbol Description

St Stock price at time ¢

So Initial stock price

K Strike price

T Time to maturity (in years)

T Time-varying risk-free rate at step j

o Annualized volatility

At Time increment per simulation step (T'/n)

n Number of time steps in each simulation (252 x T for daily monitoring)
M Number of Monte Carlo simulation paths

Hjp, Hy Lower and upper barrier levels

a* Continuity-corrected barrier level

Z; Standard normal random variable at step 4

N(Y) Standard normal cumulative distribution function (CDF)

c, p Call and put option values

C;, P, Discounted payoffs for call and put in simulation path i

D Discount factor exp(—)_; 7;At)

r Equivalent constant annual rate for Black—Scholes benchmark

Research Stages

Data Collection and Preparation: Collect daily closing prices of Tesla Inc. (TSLA)
as the underlying asset and monthly U.S. Treasury Bill rates as the risk-free interest rate
inputs. The data are cleaned, aligned by date, and converted into consistent time series
formats for further analysis.

. Interest Rate Modeling (ARIMA): Model non-constant interest rates using the

ARIMA(p,d, q) framework. The procedure includes testing for stationarity using the
Augmented Dickey—Fuller (ADF) test, identifying and estimating parameters via ACF and
PACF with Maximum Likelihood Estimation (MLE), conducting diagnostic checks using
the Ljung—Box Q-test and residual t-test, and evaluating forecast accuracy through the
Mean Absolute Percentage Error (MAPE).

Parameter Estimation: Calculate daily log-returns and assess their distributional
properties using the Kolmogorov—Smirnov normality test. The estimated parameters —
volatility (o), initial price (Sp), strike price (K'), maturity (7°), lower and upper barriers
(L, U), number of time steps (n), and number of simulations (M) — are used as inputs in
the option pricing model.

Monte Carlo Simulation: Estimate the fair value of double-barrier options using three
Monte Carlo approaches: standard, antithetic variates, and control variates. Each simulation
employs daily monitoring with time-varying interest rates r;, drift and discounting based
on the same rate mapping, and a continuity correction for discrete barriers.

Result Evaluation: Compare the simulation outcomes in terms of pricing accuracy,
standard error, and computational efficiency. The results are analyzed to determine which
Monte Carlo method provides the most accurate, stable, and computationally efficient
valuation for double-barrier options.
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Data Collection and Preparation
(TSLA Prices, U.S. T-Bill Rates)

Interest Rate Modeling (ARIMA)
ADF Test, ACF/PACF, MLE, Q-Test, MAPE

Parameter Estimation
Log-Returns, o, So, K, T, L, U, n, M

Monte Carlo Simulation
Standard, Antithetic, Control Variates

Result Evaluation
Price Accuracy, SE, Efficiency

Figure 1: Flowchart of the research methodology.

3 Results and Discussion

This section presents the results of the data analysis, interest rate modeling using the ARIMA
method, and the valuation of double barrier options via Monte Carlo simulation. Three simulation
techniques are implemented: standard Monte Carlo, antithetic variates, and control variates.

3.1 Results

The dataset employed in this study comprises the daily closing prices of Tesla Inc. (TSLA)
shares from August 23, 2023, to August 23, 2025, and monthly USD interest rates from 2019 to
2025. The Tesla stock prices have an average of $260.51 with a standard deviation of $70.13,
ranging from $142.05 to $479.86. The Kolmogorov—Smirnov test yields a statistic of 0.0567 with
a p-value of 0.0763 (> 0.05), indicating that the log returns are normally distributed. In addition,
a sensitivity analysis varying the drift (u) and volatility (o) parameters by +10% shows terminal
price deviations below 0.1%, confirming that the model outputs are stable and supporting the
robustness of the GBM assumption. The monthly interest rates, with a mean of 2.58% and a
standard deviation of 2.08% (ranging from 0.01% to 5.44%), are used to construct a time-varying
risk-free rate series r; through an ARIMA forecasting model.

The first step in the ARIMA modeling process is to test the stationarity of the interest
rate series using the Augmented Dickey—Fuller (ADF) test. The original interest rate data is
found to be non-stationary (p-value = 0.7125 > 0.05). After the first differencing, the series
remains non-stationary (p-value = 0.1432 > 0.05), but it becomes stationary after the second
differencing (p-value = 0.0000 < 0.05). This result indicates that the interest rate data follows
an ARIMA (p, 2, q) process.

Table 2: ADF Stationarity Test Results for Interest Rate Data

Condition ADF Statistic p-value Decision
Before differencing -1.8742 0.7125  Non-stationary
After 1st differencing -2.9864 0.1432  Non-stationary
After 2nd differencing -8.3471 0.0000 Stationary

The ACF and PACF plots indicate that the differenced interest rate data follow a low-order
process. Several ARIMA configurations were estimated to determine the most appropriate model
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specification. Based on the information criteria and forecasting performance, the ARIMA(3,2,0)

model yields the lowest AIC value of -572.5303 and BIC -565.9162, while the ARIMA(2,2,0)
model provides the smallest MAPE value of 14.2294%. Both models demonstrate adequate
residual diagnostics, confirming their suitability for modeling the interest rate dynamics.

Table 3: ARIMA Model Estimation and Evaluation Results

Model Significant Parameters AIC BIC MAPE (%)
ARIMA(1,2,0) é1 = —0.5108 (p = 0.0000) T558.0354 5545260  16.2472
ARIMA(1,2,1) 0, significant; ¢1 not significant -571.9345  -565.3205 26.9804
ARIMA(2,2,0) 1, ¢ significant (p < 0.05) _567.8182 -561.2041  14.2294
ARIMA(2,2,1) 0 significant; ¢1, ¢2 not significant -571.3260 -562.5072 18.7809
ARIMA(3,2,0)  ¢1, 65 significant; ¢ not significant  -572.5303 -565.9162  23.4533
ARIMA(3,2,1)  ¢1, 61 significant; ¢a, ¢3 not significant -571.3389  -562.5202 14.5108

The ARIMA(2,2,0) model is selected as the best specification based on its parameter sig-
nificance, residual diagnostics, and forecasting performance. Although ARIMA(3,2,0) yielded
the lowest information criteria values (AIC = —572.5303; BIC = —565.9162), ARIMA(2,2,0)
was preferred for its superior out-of-sample accuracy (lower MAPE) and significant coefficients.
Both autoregressive terms (¢; = —0.7144, ¢o = —0.3983) are statistically significant (p < 0.05),
and the residuals pass the Ljung-Box test (p-value > 0.05), confirming no autocorrelation and
white-noise behavior. With a MAPE of 14.2294%, the model demonstrates reliable predictive
accuracy, validating its suitability for forecasting the risk-free interest rate.

The following table presents the four-month-ahead forecasts for USD interest rates generated
using the ARIMA(2,2,0) model.

Table 4: Forecasted Monthly USD Interest Rates (ARIMA(2,2,0))

Period Forecast Lower 95% Upper 95%
2025-09-30 0.0433 0.0380 0.0485
2025-10-31 0.0437 0.0351 0.0522
2025-11-30 0.0436 0.0314 0.0559
2025-12-31 0.0437 0.0266 0.0609

The forecasted USD interest rates remain relatively stable over the next four months, with
values ranging between 0.0433 and 0.0437. The 95% confidence intervals indicate a moderate-
to-high uncertainty band, widening slightly over time, from [0.0380-0.0484] in September to
[0.0266-0.0608] in December 2025. This suggests that while short-term USD interest rates
are stable, small fluctuations may occur due to market factors. These forecasted rates are
subsequently used as the time-varying risk-free rate (r;) inputs in the Monte Carlo simulation.

Table 5: Simulation Parameters for the Double Barrier Option

Parameter Symbol Value

Initial stock price So 340.0100

Strike price K 395.2300

Constant risk-free rate (annualized, BS benchmark) T 0.0435

Time-varying risk-free rates (monthly, annualized) {r;} 0.0432, 0.0433, 0.0437, 0.0436, 0.0437
Volatility o 0.6293

Time to maturity T 0.3333

Upper barrier U 606.7100

Lower barrier L 166.1200

Number of simulations M 50-500,000

The simulation parameters are determined to ensure that each variable reflects actual market
conditions as accurately as possible. The initial stock price (Sy = 340.0100) corresponds to Tesla
Inc’s closing price on August 23, 2025. The strike price (K = 395.2300) is derived from the
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average strike price of options expiring on December 23, 2025. The risk-free rate sequence {r;}
is obtained from the ARIMA(2,2,0) forecasts of monthly U.S. Treasury Bill rates.

For the Black—Scholes benchmark, a constant equivalent annual rate (r = 0.0435) is used for
discounting. In the Monte Carlo simulations, however, the time-varying interest rate sequence {r;}
is applied consistently to both the drift term (r;—0.50?) At and the discount factor exp(— 3" ;TiAt)
to ensure coherence between price evolution and present value computation. Each monthly r;
value (August—December 2025) is assigned to all daily steps within its corresponding month,
maintaining consistency between the stochastic process and discounting in the simulation grid.

The annual volatility (o = 0.6293) is calculated from the standard deviation of daily log
returns, reflecting the high volatility of Tesla’s stock. The option’s time to maturity is four
months (1" = % year), from August 23 to December 23, 2025. The barrier levels are determined
using a continuous barrier adjustment approach, considering both volatility and the time horizon.
The upper barrier is set at U = 606.71, and the lower barrier at L = 166.12. The number
of iterations (M) ranges from 50 to 500,000 to examine convergence behavior across all three
simulation methods: standard Monte Carlo, antithetic variate, and control variate.

Once the parameters are defined, the next step is to compute the benchmark option prices
using the Black—Scholes model. These values serve both as theoretical reference points and
control variables in the control variate method. Based on the selected parameters, the vanilla
option prices are calculated using the Black—Scholes formula as follows:

C = SoN(dy) — Ke " N(dy) = 340.0100(0.4238) — 395.2326(0.9856)(0.2892) = 31.4469

P=Ke "TN(—dy) — SoN(—dy) = 395.2326(0.9856)(0.7108) — 340.0100(0.5762) = 80.9759

Therefore, the benchmark prices are $31.4469 for the call option and $80.9759 for the put
option. These values are used as the expected control values in the control variate approach. The
next stage is to conduct Monte Carlo simulations to estimate the prices of double barrier options
using stochastic modeling techniques. This method involves simulating numerous random paths
of the underlying asset price under the assumption of Geometric Brownian Motion (GBM).

The simulation results for knock-in options using the standard Monte Carlo method are
shown in Table 6. As the number of iterations (M) increases from 50 to 500,000, the estimated
option values become more stable, and the standard error decreases consistently for both call
and put options.

Table 6: Knock-in Option Simulation Results (Standard Monte Carlo, r; time-varying)
M Call - Price Call — Error Put — Price Put — Error

50 17.1852 9.7394 9.2029 6.4422
1,000 15.4085 2.0349 14.9147 1.8167
10,000 18.6020 0.7338 12,7517 0.5298
100,000 17.1193 0.2163 12.9278 0.1681
500,000 17.3310 0.0981 12.8924 0.0751

The simulation results for knock-out options are presented in Table 7.

Table 7: Knock-out Option Simulation Results (Standard Monte Carlo, r; time-varying)
M Call — Price Call — Error Put — Price Put — Error

50 5.3873 3.0110 93.6382 9.4297
1,000 15.3160 1.1882 67.7029 2.1324
10,000 13.9665 0.3490 66.5776 0.6710
100,000 14.2007 0.1121 67.8121 0.2146
500,000 14.0720 0.0500 68.1174 0.0959

Tables 6 and 7 present the results of standard Monte Carlo simulations for double barrier
knock-in and knock-out options under time-varying interest rates (r;). It is evident that increasing
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the number of iterations (M) consistently reduces the standard error and yields more stable
option price estimates.

For the knock-in option, the call price converges around $17.3310 with a standard error of
0.0981, while the put option stabilizes near $12.8924 with a standard error of 0.0751. For the
knock-out option, the call price approaches $14.0720 with a standard error of 0.0500, and the put
price converges at approximately $68.1174 with a standard error of 0.0959 when M = 500,000.

These results confirm that as the number of Monte Carlo iterations increases, both knock-in
and knock-out option prices exhibit strong convergence and numerical stability, supporting the
theoretical expectation of the Monte Carlo method’s consistency.

Beyond the standard Monte Carlo approach, simulations were also conducted using the
antithetic variate technique. The simulation results for the knock-in option under this method
are shown in Table 8.

Table 8: Knock-in Option Simulation Results (Monte Carlo with Antithetic Variates, r; time-varying)
M Call - Price Call — Error Put — Price Put — Error

50 15.6684 6.4728 11.7113 5.0380
1,000 17.5238 1.4895 13.1417 1.1552
10,000 17.1708 0.4679 12.7905 0.3624
100,000 17.2851 0.1499 12.7839 0.1149
500,000 17.2892 0.0670 12.7614 0.0513

The results for the knock-out option using the same method are displayed in Table 9.

Table 9: Knock-out Option Simulation Results (Monte Carlo with Antithetic Variates, r; time-varying)
M Call - Price Call — Error Put — Price Put — Error

50 12.3151 2.8811 67.6338 3.5334
1,000 13.2903 0.6932 67.6197 0.8446
10,000 14.4136 0.2329 68.2897 0.2663
100,000 14.0667 0.0725 68.1624 0.0837
500,000 14.0817 0.0324 68.1951 0.0374

The antithetic variate method improves convergence by using symmetrically distributed
random pairs that offset deviations. As shown in Tables 8 and 9, increasing the number of
simulations (M) reduces standard errors and stabilizes option price estimates.

For the knock-in option, the call price converges to about 17.2892(SE = 0.0670)andtheputtol2.7614
(SE =0.0513). For the knock-out option, the call approaches 14.0817(SE = 0.0324)andtheput68.1951
(SE = 0.0374) at 500,000 iterations. These results confirm that the antithetic variate method
effectively lowers variance while preserving expected values, yielding faster and more accurate
convergence in double barrier option pricing under time-varying interest rates.

Additionally, the control variate technique was applied, utilizing the linear dependence
between the double-barrier and vanilla options. The knock-in simulation results using this
method are shown in Table 10.

Table 10: Knock-in Option Simulation Results (Monte Carlo with Control Variates, r(t) time-varying)
M Call — Price Call — Error Put — Price Put — Error

50 19.6045 3.8255 9.7405 5.8367
1,000 18.7256 0.9811 12.1419 1.4170
10,000 17.7293 0.3267 11.9850 0.4540
100,000 17.4429 0.1036 12.6472 0.1455
500,000 17.4145 0.0462 12.6767 0.0652

Meanwhile, the knock-out option results using the control variate method are displayed in

Table 11.
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Table 11: Knock-out Option Simulation Results (Monte Carlo with Control Variates, r(t) time-varying)
M Call — Price Call — Error Put — Price Put — Error

50 11.8424 3.8255 71.2354 5.8367
1,000 12,7213 0.9811 68.8341 1.4170
10,000 13.7176 0.3267 68.9909 0.4540
100,000 14.0040 0.1036 68.3288 0.1455
500,000 14.0324 0.0462 68.2993 0.0652

The simulation results for the knock-in option under this method are presented in Table 10.
Meanwhile, the knock-out option results using the control variate method are displayed in
Table 11.

Table 12: Control Variate Coefficients (6., 6,) for Knock-in and Knock-out Options under Time-varying
Interest Rates

M Knock-in Knock-out

0. 0y 0. 0,
50 0.9215 0.2819 0.0785 0.7181
1,000 0.8448 0.3212 0.1552 0.6788
10,000 0.8286 0.3187 0.1714 0.6813
100,000 0.8235 0.3365 0.1765 0.6635
500,000 0.8221 0.3372 0.1779 0.6628

The control variate method effectively reduces the variance of Monte Carlo simulations by
linking double-barrier and European vanilla options as control variables. As shown in Tables 10
and 11, increasing the number of simulations (M) steadily decreases the standard error, reaching
below 0.05 at 500,000 iterations. The estimated knock-in prices converge to 17.4145 (call)
and 12.6767 (put), while the knock-out prices stabilize at 14.0324 (call) and 68.2993 (put),
demonstrating accurate and consistent valuation under time-varying interest rates.

Table 12 reports the estimated control variate coefficients (6., 6,,), which quantify the optimal
linear adjustment factors obtained from the ratio Cov(C,Y’)/Var(Y'). For knock-in options, 6.
values range from 0.8210 to 0.9215, whereas knock-out options exhibit smaller 6. (0.0785-0.1779)
but larger 6, (0.6628-0.7181). These magnitudes indicate a stronger linear dependence between
the knock-in call and its corresponding vanilla option payoff, while for knock-out structures the
put payoff acts as a more effective control variable. The approximate equality of standard errors
between knock-in and knock-out options reflects their complementary payoff structures under
the shared control-variate scheme, resulting in similar sampling variances.

Finally, Table 13 compares the performance of standard, antithetic, and control variate Monte
Carlo methods at M = 500,000, confirming the superior stability and precision of the control
variate approach across all option types.

Table 13: Comparison of Monte Carlo Methods at M = 500,000 Iterations

Option Type Method Price Error
Knock-In Call Standard Monte Carlo 17.3310 0.0981
Antithetic Variate 17.2892  0.0670

Control Variate 17.4145 0.0462

Knock-In Put Standard Monte Carlo 12.8924 0.0751
Antithetic Variate 12.7614 0.0513

Control Variate 12.6767 0.0652

Knock-Out Call Standard Monte Carlo 14.0720 0.0500
Antithetic Variate 14.0817 0.0324

Control Variate 14.0324 0.0462

Knock-Out Put  Standard Monte Carlo 68.1174 0.0959
Antithetic Variate 68.1951 0.0374

Control Variate 68.2993 0.0652
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In the Black—Scholes framework, a constant equivalent annual rate of 4.35% (r = 0.0435) is
used, obtained from the average of the ARIMA(2,2,0) monthly forecasts. By contrast, the Monte
Carlo simulations apply time-varying monthly rates {r;}, yielding a more realistic pathwise
discounting.

At M = 500,000 (Table 13), knock-in calls price higher than knock-out calls ($17.3310 vs.
$14.0720), while knock-in puts are far below knock-out puts ($12.8924 vs. $68.1174), reflecting
opposite activation/deactivation at the barrier. Across methods, all converge; antithetic variates
deliver the smallest error for KO puts (0.0374), and control variates give consistently low errors
(e.g., KI call 0.0462; KO put 0.0652) without extra iterations.

Table 14: Most Accurate Method by Option Type
Option Type Method with Minimum Error Price (USD) Error

Knock-In Call Control Variate 17.4145 0.0462
Knock-In Put Antithetic Variate 12.7614 0.0513
Knock-Out Call Antithetic Variate 14.0817 0.0324
Knock-Out Put Antithetic Variate 68.1951 0.0374

As presented in Table 14, the antithetic variate method produces the most accurate results for
three of the four option types—knock-in put, knock-out call, and knock-out put—achieving
the lowest standard errors of 0.0513, 0.0324, and 0.0374, respectively. This indicates that the
antithetic variate approach is particularly effective for barrier options whose payoffs respond
asymmetrically to price movements, as it efficiently cancels out random fluctuations through
paired simulations.

In contrast, the control variate method performs best for the knock-in call option, where the
payoff exhibits a strong linear dependence on the corresponding vanilla call payoff. The use of the
vanilla option as a control variable effectively captures this dependence and substantially reduces
the variance, yielding the smallest standard error of 0.0462. Therefore, while the antithetic
variate method demonstrates superior accuracy for most barrier structures, the control variate
technique proves more advantageous for options whose payoffs closely track the underlying asset’s
directional movements. Collectively, these findings confirm that the choice of variance reduction
method should align with the payoff structure and dependence characteristics of each option
type.

The performance differences among the three variance-reduction methods can be explained
by their theoretical properties. The antithetic variate method is most effective for knock-out
and knock-in put options because their payoffs are nonlinear and asymmetrically affected by
downward movements in the underlying asset. By generating negatively correlated random paths
(Z and -Z), this method cancels out stochastic noise around the mean, producing smoother
convergence. In contrast, the control variate approach performs better for knock-in call options
because the double-barrier payoff exhibits a strong linear dependence on the corresponding
European call value under the same simulated path. This dependence allows the control variate
adjustment through the estimated coefficient to effectively offset systematic bias and reduce the
estimator’s variance. The standard Monte Carlo method, which lacks such a dependence-based
adjustment, converges more slowly, confirming the theoretical advantage of variance-reduction
techniques for path-dependent payoffs.

To ensure the reliability of these results, a parity check was conducted based on Equation 17,
which states that the sum of the knock-in and knock-out option prices should equal the cor-
responding vanilla option price under the Black—Scholes framework. Table 15 presents the
numerical validation of this relationship, confirming that the simulated values adhere closely to
the theoretical parity condition. In this validation, no rebate is assumed, and the strike price and
maturity are identical across the knock-in, knock-out, and vanilla options. Parity is considered
numerically satisfied when the difference between the combined knock-in and knock-out values
and the corresponding vanilla option value remains within a tolerance of ¢ = 0.1.
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Table 15: Parity Verification: Knock-In/Knock-Out vs. Vanilla Option (Black—Scholes)

Option Type Knock-In Knock-Out Sum (In + Out) Vanilla (B—S) Difference
Call 17.4145 14.0817 31.4962 31.4469 ~ 0.0493
Put 12.7614 68.1951 80.9565 80.9759 ~ 0.0194

The parity verification in Table 15 shows that the combined knock-in and knock-out option
prices (31.4962 for the call and 80.9565 for the put) are nearly identical to their corresponding
Black—Scholes values (31.4469 and 80.9759), with deviations well below 0.1. This strong numerical
consistency confirms that the Monte Carlo simulations particularly those employing control
variate and antithetic variate methods accurately preserve the theoretical parity between barrier
and vanilla options. Consequently, the comparison and method recommendations presented
earlier are validated as both statistically reliable and theoretically sound.

3.2 Discussion

The results confirm that all three Monte Carlo approaches standard, antithetic variate, and
control variate produce double barrier option prices that converge toward the theoretical Black—
Scholes values. Increasing the number of simulations consistently reduces standard errors and
enhances numerical stability. Among the methods, the control variate performs best for knock-in
call options due to its high control coefficient (6. =~ 0.8221), reflecting a strong linear dependence
between the barrier and vanilla payoffs, while the antithetic variate yields the most accurate
results for knock-in put, knock-out call, and knock-out put options by effectively balancing
random fluctuations in asymmetric payoffs.

These findings align with prior studies demonstrating the efficiency of variance reduction tech-
niques in improving simulation accuracy [6]. The parity verification further supports the validity
of the barrier option theory [3], with deviations between simulated and theoretical values below
0.05. Moreover, incorporating a time-varying interest rate modeled using ARIMA(2,2,0) enhances
realism compared to the traditional constant-rate assumption [10], allowing the framework to
capture dynamic macroeconomic conditions.

Nevertheless, this study has limitations: the constant volatility assumption may not fully
reflect market behavior, and the focus on Tesla Inc. restricts generalizability. Future research
should integrate stochastic volatility models (e.g., Heston) or quasi-Monte Carlo methods to
improve convergence, and extend the analysis to multiple assets for broader validation. In
conclusion, combining dynamic interest rates with variance reduction techniques substantially
improves the precision and stability of double barrier option pricing, offering a robust and
practical foundation for more adaptive financial modeling.

4 Conclusion

This study evaluates three Monte Carlo simulation techniques standard, antithetic variate, and
control variate for pricing double barrier options under time-varying interest rates generated
from an ARIMA(2,2,0) model. The results show that all three approaches produce option prices
converging toward the theoretical Black-Scholes benchmark, with decreasing standard errors as
the number of simulations increases. The control variate method performs best for knock-in call
options, while the antithetic variate technique yields the most accurate estimates for knock-in put,
knock-out call, and knock-out put options. Parity validation confirms the consistency between
simulated barrier option prices and their corresponding vanilla values, verifying both numerical
accuracy and theoretical soundness.

Future research may enhance this framework by incorporating stochastic volatility models such
as Heston or adopting quasi-Monte Carlo techniques to improve convergence rates. Expanding
the analysis to multiple assets and alternative interest rate processes would also broaden the
model’s applicability in dynamic financial markets.
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