CAUCHY - Jurnal Matematika Murni dan Aplikasi
Volume 10 (2) (2025), Pages 1324-1348
p-ISSN: 2086-0382; e-ISSN: 2477-3344

Modified of Roots Finding Algorithm of High Degree Polynomials

Bandung Arry Sanjoyo*, Mahmud Yunus, and Nurul Hidayat

Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Abstract

Although the Durand-Kerner method is widely used across various fields of computer science,
especially in numerical computing, it continues to encounter challenges in locating roots of
high-degree polynomials, such as issues with accuracies of roots of the polynomial zeros. Our
initial tests and observations on several methods for finding polynomial roots revealed that
the roots’ accuracy starts to degrade noticeably for polynomials where the degree exceeds 10.
Based on considerations of algebraic concepts involving polynomial vector spaces, we introduce
an improvement of the Durand-Kerner algorithm aimed at improving root precision. This
approach includes targeted refinements in coefficient evaluation, identification of root types,
and iterative polishing techniques. We also conducted a comparative evaluation to assess its
effectiveness against the original Durand-Kerner method and MATLAB’s roots() function.
Overall, the enhanced algorithm delivers superior accuracy for complex roots—particularly
in cases involving multiple zero or integer roots—outperforming both benchmarks, but its
execution time increases substantially with polynomial degree.

Keywords: high-degree polynomial zeros, Durand-Kerner algorithm, polynomial root-finding,
numerical stability.

Copyright © 2025 by Authors, Published by CAUCHY Group. This is an open access article
under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

1 Introduction

Despite being an old problem, the computation of the roots of large-sized high-degree polynomials
has become one of the most important contemporary issues in science [1], [2], [3].One of the
most popular methods for this purpose is the Durand-Kerner (DK) method, also known as
Weierstrass iteration, which refines approximations to all roots at once. It enjoys particular
popularity due to its conceptual simplicity and natural parallelism. Yet, the method is not
without drawbacks: it might not converge at all or produce unusable results in particular for
large degree polynomials [4], [5], [6], [7], [8].

As the demand for computational precision and efficiency continues to grow, the development
of advanced root-finding algorithms has become increasingly critical for progress in scientific
computing and engineering applications [1], [9], [10], [11], [12]. Over the past several decades,
the pursuit of accurate and scalable methods for solving high-degree polynomial equations has
remained a central focus in numerical analysis [3], [7], [13], [14], [15]. High-degree polynomials
present substantial computational challenges due to the lack of general analytical solutions,
necessitating the use of iterative numerical techniques with controllable error bounds.

*Corresponding author. E-mail: bandung@its.ac.id

Submitted: November 2, 2025 Reviewed: November 9, 2025 Accepted: November 25, 2025
DOI: https://doi.org/10.18860/cauchy.v10i2.37278

https://creativecommons.org/licenses/by-sa/4.0
mailto:bandung@its.ac.id
https://doi.org/10.18860/cauchy.v10i2.37278

Modified of Roots Finding Algorithm of High Degree Polynomials

Several researchers have improved the DK algorithm by assigning initial values. These
initial values significantly impact stability, convergence, and the number of iterations required to
obtain the roots [4], [6], [16], [17], [18]. From a computational strategy perspective, to achieve
stability in root finding, initial values can be combined with other initialization techniques.
The lambda maximal bound, derived from the dominant eigenvalue of the companion matrix,
consistently guarantees that all roots lie within the complex circle and supports fast and stable
convergence [19]. On the other hand, iterative methods like Newton-Raphson and Laguerre are
used to approximate improve accuracy of a single root. They are usually used in conjunction
with polynomial deflation to successively find all roots of a given polynomial [20], [21]. However,
with high-degree polynomials and polynomials which have complex roots, algorithms using the
Newton-Raphson and Laguerre methods are also numerically unstable and inaccurate when
multiple or closely spaced roots must be found. These difficulties underline the necessity for
stronger and globally convergent algorithms to cover complexities of high-degree polynomials [22],
[23].

The DK method for multiple roots suffers from convergence failures, including a decrease
in the accuracy of real roots due to iteration cycles and floating-point instability at degree
n > 10. Modifications for special cases are suggested, with evidence that the basic version is
globally unstable [8]. The Weierstrass method on multiple roots, where the accuracy of real root
approximation fails due to error magnification from simultaneous iterations, leads to deviations of
up to 1073 in floating-point double precision for high degrees. Convergence drops to linear (from
quadratic), especially when the roots are close together (< 107 distance), and floating-point
errors worsen this at n > 15 [24], [25].

This study presents to improve numerical precision in resolving high-degree polynomial
problems base on an adaptation of the Durand-Kerner technique. To achieve this objective,
we classify polynomials based on the coefficients of the polynomial and their roots, examine
foundational theorems relevant to root-finding techniques, and develop a computational algorithm
inspired by the Durand-Kerner method. The rest of the paper is structured as follows: Section 2
presents the methodology used in this research. Section 3 presents the results and discussion.
Finally, Section 4 concludes the study and outlines potential directions for future research.

2 Methods

To achieve the objectives of this research, the methodology consists of the following steps:
examining the problem of polynomial root-finding, exploring fundamental theories related to
root-finding techniques, designing the proposed algorithm, conducting evaluation and testing of
the algorithm, and performing result analysis.

2.1 Polynomial zeros and the fundamental theories

Definition 1. A functionp : F' — F is called a polynomial of degree n if there exist a1, ag, ..., ant1 €
F with a1 # 0 such that

p(x) = ajz™ + apr™ t azz" 4 - 4 anx + angt (1)

forallx € F. Symbol F' denote R or C. In case a1 = 1, the polynomial is called monic polynomsial.
The expression p(x) = 0 is called polynomial equation, and a number z € C is called a zeros or
root of a polynomial p if p(z) = 0 [2], [3], [26]. When coefficients aji2,ak+3, ..., Gn+1 GTE ZETO
for k > 1, the polynomial has k zero roots, i.e., z1 = z0 = -+ = 2z = 0 and n — k non zero roots
Zkt1, Zk425 - Zn, Which are the roots of the deflated polynomial.

n—k—1

q(x) = =k 4 agr +asz" R4 4 (p—_ a1 (2)

Bandung Arry Sanjoyo 1325

Modified of Roots Finding Algorithm of High Degree Polynomials

Theorem 1 (Fundamental theorem of algebra). If p(x) is a monic polynomial of degree n, then
the equation p(x) = 0 has at least one root, z, and the polynomial can be expressed as shown in
Equation (3).

p(z) = (z — z)q(x) (3)
where q(x) is a polynomial of degree n — 1 [20].

Based on Equation (3), the polynomial p(z) can also be expressed as in Equation (4).

p(x) = (x—21)(x — z) - (¥ — zn) (4)

where z1, 29, ..., 2, are the roots of the polynomial p(z). Therefore, a polynomial p(z) of degree
n has n roots, which may be real and distinct, real and repeated, complex conjugate pairs, or a
combination of these types.

Theorem 2 (Division algorithm for polynomials). Let p(z) be a monic polynomial of degree n,
and let s(x) be a non-zero polynomial. Then, there exists unique polynomials q(x) and r(x) such
that

p(x) = s(x)q(x) + r(x) (5)
where the degree of r(x) is less than the degree of s(x) [2], [20].

Let p(x) be a monic polynomial of degree n with all coefficients of p in R. Then p(x) has
unique factorization of the form given in Equation (6).

px)=(x—21) (2 —2m) - (@ F b1z +c1)--- (2% + bz + 1) (6)

where z1, ..., Zm, b1, ..., b, c1, ..., c, € R.

2.2 Durand-Kerner Algorithm

The general form of a monic polynomial’s roots, as expressed in Equation (3), can be computed
using the following iterative formula [1], [4], [9]:

LD ok ﬂ (7)

’ 1 (- =)

.S
N

where zzk denotes the i-th root approximation at the k-th iteration. The Durand-Kerner algorithm
is an iterative method based on Equation (7) that simultaneously computes all complex roots
z; € C, where i = 1,2, ..., n.

The convergence of this method is highly sensitive to the choice of initial approximations

29 [1], [9], [27]. Therefore, selecting initial guesses that are sufficiently close to the actual roots

is critical for the algorithm’s success. The iterative process continues until the approximations

2F converge to the actual roots. The overall steps of the root-finding procedure are outlined in

Algorithm 1.
Given the initial value z?, they should be sufficiently close enough to the roots z; [28]. The
initialization of 2¥ is commonly performed using Cauchy’s bound, as expressed in Equation

(8) [16]. ,
2 =re’ where r =14+ max |ag (8)
2<i<n+1

Bandung Arry Sanjoyo 1326

Modified of Roots Finding Algorithm of High Degree Polynomials

Algorithm 1 Durand-Kerner algorithm

Input: coeffs = [1, ag, ag, ..., a,4+1] which is the coefficient of p(z).
Output: z = [z1, 29, ..., 2] which is the roots of p(z) = 0.
Algorithm:
1. Set initial value 2? for i = 1,2, ..., n.
k
2. Compute next zl-(kﬂ) = zl’»g - np% fori=1,2,...,n.
k

H (Z'L —Zj)

j=1

J#i

(k+1)

7

3. Repeat step 2. until z closed to zf or p(zi(kﬂ)) closed to zero.

The Algorithm 1 is considered to have converged when one of the following conditions is satisfied:
k+1

(i) the difference between successive approximations |2/ — 2F| is less than a predefined

tolerance €1;
k1

is less than e, or
i)l :

(ii) the polynomial evaluation |p(z
(iii) the number of iterations exceeds a specified maximum threshold.

The computational complexity of the Durand-Kerner method is O(kn?) where k is the number
of iterations and n is the degree of the polynomial [29]. This complexity arises primarily from
steps 2 and 3 of the algorithms.

2.3 Modification and analysis algorithm for polynomial zeros

The input and output design of the proposed method adhere to the same structure as the classical
Durand-Kerner algorithm and MATLAB’s roots() function. However, the key modifications are
introduced in the initialization of root estimates values and the iterative root-finding process. The
initial approximation z{ are distributed along a circular boundary in the complex plane, where
the radius is determined by the maximum modulus of the polynomial’s roots. This boundary is
referred to as the lambda maximal bound (Aez) [19].

Here, A denotes the spectral radius of the companion matrix C' with associated the

polynomial and is computed using power method defined as follows:

T
Ty Tly1

)\maz - kT + (9)
Tj T

where zg € R, and z; = C*zg. The computation \qe requires non-constant extra space and
has a computational complexity of O(n?) flops [19], [30]. The radius of the circular boundary of
the complex plane is set to 7 = Ajae + € Where € > 0 is a small margin ensuring that all roots lie
within the circle. The initial points are then assigned as z? = re for k=1,2,...,n with)
uniformly spaced angle on [0, 27).

In comparison with Cauchy’s bound, the lambda maximal bound yields the smallest radius
that still enclosed all the roots [19].The choice of this boundary based on the lambda maximal
value follows the recommendation by Kjellberg (1984), who stated that the initial values 2y
should lie within or on a circle in the complex plane and be sufficiently close to the actual roots
z;. This approach ensures better convergence behavior and numerical stability in the root-finding
process [28]. Furthermore, the root-finding process incorporates classification mechanism that
analyses the characteristics of the polynomial’s coefficients and degree. These classifications
include integer and non-integer coefficients, as well as the nature of the roots—whether they are
integer, real, or complex values.

For polynomials of degree n < 2, the roots can be obtained with high precision and robustness.
Specifically, for degree n = 1, the root is given by the formula z = —a, which avoids issues related

Bandung Arry Sanjoyo 1327

Modified of Roots Finding Algorithm of High Degree Polynomials

to numerical rounding or near-zero denominators. For degree n = 2, the roots are analytically
derived using Equation (10):

—a(2) — \/a(2)Z — 4a(3)
2 2

(10)

I
o
)
=)
e
[}
I

<1

Equation (10) involves only basic arithmetic operations and a square root, which are well-
conditioned for most input ranges. Moreover, the denominator is a constant (2), eliminating
the risk of division by very small numbers that could amplify numerical errors. Consequently,
the formula provides numerical stability and robustness in computing the roots of quadratic
polynomials. For polynomials of degree n > 2, the algorithm is designed by analyzing the
characteristics of the polynomial coefficients, rather than directly applying Equation (7) as done
in the original Durand-Kerner algorithm.

The modified algorithm is analytically evaluated by measuring its computational workload
and memory usage. The computational workload includes number of arithmetic operations and
iteration count. This analysis provides insight into the efficiency and scalability of the proposed
method compared to Durand-Kerner (DK) Algorithm.

2.4 Evaluation and testing of the algorithm

The algorithm was implemented in MATLAB and evaluated using a diverse set of polynomial
equations with degrees starting from n = 1, under the constraint that the maximum coeflicient
value does not exceed the mazflint (maximum floating-point integer) threshold. This constraint
ensures numerical stability during computation.

Performance metrics used in the evaluation include convergence rate, root estimates accuracy,
and computational time. The experimental evaluation involved classifying the input polynomials
into several categories:

(i) polynomials with integer coefficients,
(ii) polynomials with real (non-integer) coefficients,
(iii) polynomials with integer roots,
(iv)
The accuracy and performance of the proposed root-finding method were compared against
those of the Durand-Kerner algorithm and MATLAB’s roots() function.

polynomials with clustered roots and ill-conditioned polynomials.

3 Results and Discussion

3.1 The Modified Algorithms

To improve the roots of the polynomial, the modified algorithms accommodate specific character-
istics of polynomials:
i. If the coefficients a; = 0, for ¢ = 2,3,...,n + 1, the roots of the polynomial z; = 0 for
1=1,2,...,n.
ii. If the coefficients are not all zero and a,41 = 0, then one of the roots of the polynomial is
necessarily zero and the polynomial effectively reduce to a polynomial of degree n — 1.
iii. If all coefficients a; are integers, then some of the roots can be determined by examining
the factors of the constant term a,11. Subsequently, the polynomial function is reduced
using Equation (5).
iv. If all coefficients a; are integers and the polynomial does not have any root that is a factor
of the constant term a,,41, then a quadratic factor of the form x? 4+ bx + ¢ is sought, where
b is an integer and c is factor of a,41. Subsequently, the polynomial function is reduced
using Equation (6).

Bandung Arry Sanjoyo 1328

Modified of Roots Finding Algorithm of High Degree Polynomials

v. When the conditions outlined in points (i) to (iv) are not satisfied, the root-finding process
is executed using the Durand-Kerner method with initial values placed on boundary of
a circle whose radius corresponds to the lambda maximum bound [19].This initialization
strategy is followed by a refinement step to improve designed to enhance the accuracy of
the computed roots.

The Modified DK first eliminates the zero roots and then deflates the polynomial to a lower
degree. For the test case, we use input polynomials of the form

p(x) = 2"+ asx™ P+ azz" 2+ - 4 apya™F (11)

where k > 1. The polynomial has k zero roots, i.e., z1 = 29 = --- = 2z, = 0 and n — k nonzero
TOOtS 211, 2k+2, ---, Zn, Which are the roots of the deflated polynomial

q(z) = 2" "+ apa" " faza" M 4t g (12)
The overall steps of the newly proposed root-finding procedure, referred to as the modified

DK algorithm, are summarized in Algorithm 2.

Algorithm 2 Proposed algorithm for polynomial zeros

Input: coeffs = [1, ag, ag, ..., ap+1] which is the coefficient of p(x).
Output: roots = [z1, 22, ..., z»] which is the roots where p(roots) = 0.
Algorithm modifiedDK:
function roots = modifiedDK(coeffs)
1. [roots newCoeffs] = Calculate_zero_ roots(coefls);

» Using Equation (2).

e roots = [0 0 ... 0]; k = length(roots);

o newCoeffs = coeffs(1:n-k); n = n-k;
2. if n = 1, then z = as.

. if n = 2, then the roots calculated by Equation (9).
4. if (all coefficients a; are integers and has linear or quadratic factors which integer coefficients)

w

o Solve the polynomial using Equation (6).

5. SolvePolyInteger(newCoeffs);
else
6. Solve polynomial newCoeffs using DK algorithm which employs initialization using lambda
maximum bound.
end

The Algorithm 3 found an integer root z; if p(z;) is less than es. In Algorithm 3, the step
Find linear factor of the coeflicients a1 is performed first to detect possible integer or rational
roots. When trial division is employed, the computational cost is approximately O(+/|an+1]),
which is generally negligible for moderate-sized coefficients, although it may become expensive for
very large integers. The term |,/a, 11| represents the upper bound on the number of candidates
roots. Testing each candidate requires evaluating the polynomial, which incurs a cost of O(n) per
candidate. Since there are [\/|ap+1| candidates to test, the total cost becomes O(l\/|an+1]| - n).
The step deflation of the polynomial, deconv(coef fs, poly(roots)), using synthetic division after
finding a root requires O(n) operations per step, leading to a cumulative cost of O(kn) if k roots
are detected through factorization.

Bandung Arry Sanjoyo 1329

Modified of Roots Finding Algorithm of High Degree Polynomials

Algorithm 3 Algorithm for finding the zeros of polynomials with integer coefficients.

Input: coeffs = [1, ag, ag, ..., ay41] which is the integer coefficient of p(z).
Output: roots = [z1, 22, ..., z,] which is the roots where p(roots) = 0.
Algorithm SolvePolylInteger:
function roots = SolvepolyInteger(coeffs)
1. n = length(coeffs)-1; roots = [|;
2. Find linear factor

o factor = findFactors(abs(coeffs(n+1)));

o idx = find(abs(p(factor) <= e3);

o roots = [roots factor(idx)];

o newCoeffs = deconv(coeffs, poly(roots));

3. Find quadratic factors
¢ cekFaktorQuadrat = true;
while length(sisaPoli) > 1 && cekFaktorQuadrat
[Q, sisaPoli] = factorizedIntoQuadratFactor(newCoeffs);

o if ~isempty(Q)

. r = solvequadrat(Q);
o else
. cekFaktorQuadrat = false;
. r = Solve polynomial newCoeffs using DK algorithm which employs initialization
using lambda maximum bound;
. end
. root = [root r|;
e end
e end
end

The step factorizedIntoQuadratFactor(coeffs) is finding a quadratic factor of polynomial with
coefficient coef fs expressed in algorithm 4. Algorithm 4 describes the procedure for identifying
a quadratic factor of a given polynomial. The resulting factor takes the form 2 + bz + ¢ where ¢
is a divisor of a,+;1 (the constant term), and b is an integer within the range [—|az|, |az|], where
ay = coef fs(2). The factorization of the constant term a,; requires approximately O(v/|an+1])
operations. Candidate value ¢ are then generated, with the number of candidates estimated as
l\/|an+1]. For each candidate b, the evaluation of possible values of b involves at most 2|as| + 1
iterations. Dividing a polynomial of degree n by a quadratic factor incurs a computational
cost on the order of O(n) operations. Consequently, the search for a quadratic factor requires
O(ly/|an+1](2]az| + 1)n), or equivalently O(n|az|\/|an+1]) in worst-case.

Therefore, the overall worst-case complexity of SolvePolyInteger is O(nl|az|/|an+1|). When
the input polynomial solely of integer coefficients and contains both linear and quadratic
factors, the algorithm exhibited near-linear scaling with respect to the polynomial degree. This
behaviour is consistent with the theoretical bound O(n|ag|\/|an+1|) for moderate coefficient
magnitudes. Finally, the computational complexity of the modified DK in Algorithm 2 is

O(max{nlaz|v/Jan+1],n*}).

Bandung Arry Sanjoyo 1330

Modified of Roots Finding Algorithm of High Degree Polynomials

Algorithm 4 Algorithm for finding a quadratic factor of a polynomial

Input: coeffs = [1, ag, as, ..., ant1]
Output: @ = [1,b,] and remainderPoly
function [Q, remainderPoly| = factorizedIntoQuadratFactor(coeffs)
remainderPoly := coeffs
n := length(remainderPoly) — 1
faktorC := findFactors(remainderPoly(end))
for each c in faktorC do
M := |remainderPoly(2)|
for b=—M to M do
Q:=11,b,
[D__temp, sisa| := deconv(remainderPoly, Q)
if all(|sisa| < 107®) and all(|D__temp — round(D__temp)| < 10~%) then
remainderPoly := round(D__temp)
return
end if
end for
end for
Q=]

remainderPoly := coeffs

3.2 Experimental Setup and Performance Analysis

To assess the performance of the proposed root-finding algorithm, we conducted a series of
numerical experiments on various families of univariate complex polynomials with degrees
ranging from 2 to 30. The algorithm was implemented in MATLAB R2024b and executed on a
desktop PC equipped with an Intel Core i7 processor, 16 GB RAM, 1.80 GHz clock speed, and 8
Logical Processor(s) running the Microsoft Windows 10 operating system.

For each polynomial type, we recorded both the accuracy of the computed roots and the
total computational time. Accuracy was evaluated using polynomials with known exact roots or
by measuring the residual norm, defined as |p(zy)|, where zj denotes the computed root.

The first experiment involves running the algorithm’s program on input polynomials with
real coefficients that have k zero roots. Figure 1 and Figure 2 present the performance of three
root-finding — DK algorithm, Modified DK algorithm, and MATLAB’s roots() function — in
terms of mean error, maximum error, and runtime when applied to polynomials of degree 25
with k zero roots, where k = 2, ...,23. The mean error (emeqn) refers to the average of the mean
errors computed for all roots across each experiment for different values of k. The maximum
error (em,qz) refers to the largest maximum error observed across all experiments.

Mecan Error of Roots of 25th-Degree Polynomials with k Zero Roots Max Error of Roots of 25th-Degree Polynomials with k Zero Roots
T T T e = T T st
+ s t " s ! T 9 ‘ ‘
B L] | P - L]
104+) L] e DK, ¢npean = 4.560217c — 02 104+ = ——= DK, €4, = 6.341894e — 02
. | |— Moedified DK, €0, = 1.355179¢ — 09 — Modified DK, é,0, = 1.730237¢ — 08
o | [|—= roots(), emean = 3.5555T4e — 09 5 ——a 100t8(), €mar = 2.712191¢ — 08
w107 1 w10 }
. ﬁ ﬁ \
| \ [‘
" H ﬂ H ﬂ n ﬂ H | " ‘ [H ﬂ H “ |
| |
|
’W ﬂﬁ TT."JJ H Hﬂ ﬂfTTTfTT"
5 10 15 20 5 10 15 20
k = the number of zero roots k = the number of zero roots
(a) (b)

Figure 1: The comparisons of mean error of roots of polynomials of degree 25 with real coefficients and
k zero roots

Bandung Arry Sanjoyo 1331

Modified of Roots Finding Algorithm of High Degree Polynomials

The graph in Figure 1a illustrates the mean error of the computed roots for each method. The DK
algorithm yields the highest mean error, approximately 4.56 x 1072, indicating lower numerical
accuracy. In contrast, the Modified DK algorithm and MATLAB’s roots() function produce
significantly lower mean errors, around 1.36 x 10~? and 3.56 x 10~?, respectively. These results
suggest that the Modified DK algorithm, which simplifies the polynomial by first identifying
zero roots and then reducing its degree, improves the accuracy of the computed non-zero roots.
Figure 1b presents the maximum error observed among the computed roots. The Modified DK
algorithm again demonstrates better precision than DK algorithm, with a maximum error of
approximately 1.73 x 1078, In comparison, the MATLAB’s roots() function shows a similar
level of maximum errors, both in order of 10~®. These findings reinforce the conclusion that the
Modified DK algorithm is more robust in preserving root accuracy, particularly for polynomials
with multiple zero roots.

Figure 2 illustrates the computational time required by each method. The MATLAB’s
roots function achieves the fastest execution time, with a maximum runtime of approximately
1.56 x 10~ seconds. This is significantly faster than both the DK and Modified DK algorithm,
which have mean runtimes of 3.54 x 1072 and 3.68 x 10~2 seconds, respectively. Although
Modified DK algorithm is more accurate in computing roots (as shown in Figures la and 1b), it
requires more computational time.

Running Time
100 = T T T = 9 RC . ;
o DK, tiean = 3.537135¢ — 02
—= Modilied DK, Ly, = 3.678588¢ — (2

. ——a 100t8(), tmean = 1.563000¢ — 04

107 ¢ ey :

Error

HTT

2 4 6

ITTHT\‘TW'TET-T-TE-?
10 12 14 16 18 20 22
the number of zero roots

f—a

8
k=

Figure 2: The comparisons of runtimes for polynomials of degree 25 with real coefficients and k zero
roots

Testing on first-degree polynomials was not conducted because the roots of such polynomials
can be obtained directly without involving floating-point operations that may lead to numerical
errors. Testing on second-degree polynomials was performed on 500 polynomials with integer,
real, and complex coefficients, for which the exact (true) roots are known. Additional experiments
were also carried out on polynomials with randomly generated real coefficients, where the exact
roots are unknown.

Figure 3 presents a comparison of the mean error for each root of second-degree polynomials
with integer coefficients and integer roots, evaluated using the DK algorithm, a Modified
DK algorithm, and MATLAB’s roots() function over 300 trials. Both the DK algorithm and
MATLAB’s roots() function yielded average mean and maximum errors on the order of 107,
indicating significant numerical inaccuracies. In contrast, the Modified DK algorithm consistently
produced a mean and maximum error of zero, demonstrating superior numerical stability and
accuracy. Figure 4 illustrates the comparative computational time for root-finding in quadratic
polynomials with integer coefficients and integer roots. The Modified DK algorithm achieved a
performance improvement of approximately 7.5 times faster than DK algorithm and MATLAB’s
roots() function.

Bandung Arry Sanjoyo 1332

Modified of

Roots Finding Algorithm of High Degree Polynomials

10710

Error

-

107

0—12

Mean Error of Roots

———o DK, €yean = 1.510082¢ — 09, &0 = 2.197816¢ — 09

— % Modified DK, &eqn = 0.0000€ + 00, & = 0.0000¢ + 00
——a 100t8(); Cpean = 3.709115¢ — 09 €0, = 3.709115¢ — 09

0 50 100

"
i I g

|||| II
150 200
Number of Experiment

Figure 3: The comparisons of mean error of each root of second-degree polynomials with integer
coeflicients and integer roots.

Error

Running Time
T

2 DK, lyar — 9.213600¢ — 05
—— Modified DK, 00, = 9.889000e — 06
—= 100ts(), fmean = 7-535933¢ — 05

w1l

A i JLLT el

i

i [I!
\HHHH” HHHM I HHIH il HHHH mm\mnmummnmmul H

ETITI
‘H l"\‘ | \ u

HIHIm ulmnl ‘IHI [t

100

Figure 4: Comparison of running times of second-degree polynomials with integer coefficients and integer

roots.

Figure 5 presents a comparison of the mean error for each root of second-degree polynomials
with real coefficients and real roots, evaluated using the DK algorithm, a Modified DK algorithm,
and MATLAB’s roots() function over 200 trials. All three methods produced average mean and
maximum errors on the order of 10716, indicating significant numerical inaccuracies. Figure 6
illustrates the comparative computational time for root-finding in quadratic polynomials with
real coefficients and real roots. The Modified DK algorithm achieved a performance improvement

faster than

both the classical DK algorithm and MATLAB’s built-in roots function.

Mean Error of Roots

———= DK, Epnean = 3.013735¢ — 16, €pq, = 4.030803¢ — 16
— Modified DK, €00, = 2.9744e — 16, €por = 2.9744e — 16
—a 100t8(), Emeen = 9.505294¢ — 16 €0 = 9.505294¢ — 16

Ty
Ll

rl | iFI |‘
|||| \. |.l| | \||l|||||| .nluw i st A J

80 100 120
Number of Experiment

140

Figure 5: Comparisons of mean error of each root of second-degree polynomials with real coefficients
and real roots.

Bandung Arry Sanjoyo

1333

Modified of Roots Finding Algorithm of High Degree Polynomials

Running Time

] ' : ' ! "2 DK, tyur — 7.839860¢ — 04
— Modlhcd DK Emcan = 5.866950e — 05
107" —a 100t8(); Emean = 6727300 — 04

T 5
M!!ll'llln o |||Um|\|\|h|ny”\‘i ‘|||.|' i

nill|niltn”“ml"n iliiiili ||||I||’mll| liiidhii i “ iliii | iiili I“]

|
“H |”|"|“"||"|'I|| m\l i "'1'i|’|
|m|||I|i||I|||' nn||H|||II||||HIIIlIIIIlIII||||m|m II' llnm||m
0 60 100 120 140 160 180 200
Number of Experiment

Figure 6: Comparison of running times of second-degree polynomials with real coefficients and real roots.

3.3 Comparative Analysis of Root-Finding Accuracy for High-Degree

The evaluation of high-degree polynomials was conducted on cases with integer, real, and complex
roots, under the constraint that the magnitude of the coefficients does not exceed the maximum
representable value within computer memory precision. Figures 7 through 9 present a comparative
analysis of the mean error for three methods applied to polynomials with linear factors, integer
coefficients, and integer roots, specifically for degrees 7, 17, and 29 with integer coefficients
and integer roots. The primary metric for evaluation is the mean and maximum error of the
computed roots across 30 independent trials.

n Mean Error of Roots = Max Error of Roots
10 ' DK, Emean = 6.709949 — 07 10 I . DK, &par = 3.270471c — 06
—= Maodified DK, &,00, = 0.000000e + 00 — Madified DK, &, = 0.000000e + 00
s ——a 100t5(), Ernean = 1.147884c — 06 10 ——a 10o0ts(), Ener = 2.703493¢ — 06
N
S ’ S
£ 8L 1 E48f J
£ 10° I 1o '[
" { ‘ l H ‘ l { } | " w { l |
o
ik L. IREIEIEIE % UL T i L h S
5 10 16 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(a) (b)

Figure 7: Comparisons of mean error of each root of polynomials degree 7 with integer coefficients and

integer roots.

Mean Error of Roots Max Error of Roots
L y g 2 *
104t [o ‘ | 104+ T ol
Al e A |
5 4o [[{ B0t [[| (H1A
w | [u | | 1 7
——e DK, @pean = 4.556950¢ — 04 [——=o DK, @ = 3.238805¢ — 03
1012t — Modified DK, €qn = 1.942537e — 10 s | —+ Modi f‘ed DK, éper = 1.65 4077e 09
—a roots(). &, 5.934692¢ — 04 | ——a 100t3(), Eps = 2. 0692875
. UIIIHIIIIHHIHHIIIIHIHHH\IHHH L UNI!HII\IHIIHIHIHHHHIHHHH\I
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(a) (b)

Figure 8: Comparisons of mean error of each root of polynomials degree 17 with integer coefficients and
integer roots.

Bandung Arry Sanjoyo 1334

Modified of Roots Finding Algorithm of High Degree Polynomials

Mean Error of Roots Max Error of Roots
T T T T T T T = .
) . » y ' .
107 r ! 10} ‘ ']'
E 108 Em 8 ‘ 1ﬁ|
fin] i I
e DK, eean = Inf — DK: Emar = Inf
10712 L —+ Modified DK, Eean = 2.574503¢ — 06 10’12 + —— Modified DK. ¢, = 3.973969 — 05
——a roots(), Emean = ’3()81816r —03 —a Toots(). Eper = l r.3J 508e — 02
IEEEELIIEEEEEEEEEERINN I IEBELIIIEEEEEEEEEEEIIE
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(a) (b)

Figure 9: Comparisons of mean error of each root of polynomials degree 29 with integer coefficients and
integer roots.

Figure 7 presents the error analysis for polynomials of degree 7. The Modified DK method
achieves a mean error below computational threshold, indicating perfect recovery of all roots
across all trials. The same result (mean error below computational threshold) also holds for
polynomials of degree less than 7; however, those results are not shown here. In contrast, the
DK method and MATLAB’s roots() function yield mean errors of approximately 6.71 x 1077
and 1.15 x 1075, respectively. The maximum error follows a similar trend, with Modified DK
maintaining zero error, while DK and MATLAB’s roots() reach up to 3.27 x 107% and 2.70 x 1079,
respectively.

Figure 8 extends the analysis to polynomials of degree 17. The Modified DK method continues
to outperform the other two, with a mean error of 1.94 x 1071% and a maximum error of 1.65x1077.
In comparison, the DK algorithm exhibits a mean error of 4.56 x 10~* and a maximum error of
3.24 x 1073, while MATLAB’s roots() shows a mean error of 5.93 x 10~*and a maximum error of
2.07 x 1073, Figure 9, although not fully detailed here, is expected to follow the established trend.
As polynomial degree increases to 29, the Modified DK algorithm is anticipated to maintain
superior numerical stability and accuracy, while both DK algorithm and MATLAB’s roots() are
likely to suffer from increased error due to the accumulation of numerical instability inherent in
high-degree polynomial root-finding.

The Modified DK algorithm demonstrates significantly improved accuracy and robustness
in computing the roots of high-degree polynomials with integer coefficients and integer roots.
Its performance remains consistent across varying degrees, outperforming both the classical DK
algorithm and MATLAB’s roots() function. These results suggest that the modifications to the
DK algorithm effectively enhance its numerical stability, making it a reliable method for solving
high-degree polynomials with integer-precision polynomial root finding.

To assess the computational performance especially on running time, experiments were
conducted on the above polynomials of degrees 7, 17, and 29 with integer coefficients and integer
roots. The average running time over 30 trials was recorded for each method and shown at Figure
10 through 12. For polynomials of degree 7, the MATLAB’s roots() function demonstrated the
fastest execution time with a mean of 1.79 x 10~ seconds, followed by Modified DK algorithm at
2.47 x 1073 seconds, and DK algorithm at 7.86 x 1072 seconds. This indicates that Modified DK
algorithm is approximately three times faster than DK algorithm, while MATLAB’s roots() is
significantly more efficient than both. At degree 17, the trend remains consistent. The MATLAB’s
roots() function maintained its superior speed with a mean running time of 1.53 x 10~* seconds.
Modified DK algorithm achieved a mean of 1.55 x 102 seconds, outperforming DK algorithm,
which recorded 6.18 x 10~2 seconds. The Modified DK algorithm was roughly four times faster
than DK algorithm, confirming its computational advantage at moderate polynomial degrees.
However, for polynomials of degree 29, a notable deviation was observed. While MATLAB'’s
roots() continued to exhibit the lowest running time (2.88 x 10~4 seconds), the Modified DK
algorithm experienced a substantial increase in computational cost, with a mean running time

Bandung Arry Sanjoyo 1335

Modified of Roots Finding Algorithm of High Degree Polynomials

of 2.76 seconds—significantly higher than DK’s 2.84 x 10~2 seconds. This suggests that the
enhancements introduced in Modified DK algorithm, although beneficial for accuracy, may incur
considerable overhead at higher degrees, potentially due to increased iteration complexity or
convergence criteria.

Running Time
10" F ' ! DK, hyean = 7.863213¢ — 03
—+ Modified DK, 7,e0n = 2.472060¢ — 03
—=a 100ts(), Lmean = 1.788800e — 04
3

10 15 20 25 30
Number of Experiment

Figure 10: Comparison of running times of 7-th degree polynomials with integer coefficients and integer
roots.

Running Time

10° . ; i
—= DK, tpean = 6.184413e — 02
—= Modified DK, t_mmn = 1.552735e — 02
——=a 100t5(), frean = 1.529000e — 04
% . . L 3
!
o *
g 102¢ |
L

AT T L T e s e s e 00 e
5 10 15 20 25 30
Number of Experiment

10“’—T

Figure 11: Comparison of running times of 17-th degree polynomials with integer coefficients and integer
roots.

Running Time
T

T T T < T ? T
o DK, fyean = 2.840222¢ — 02
—+ Modified DK, #yeqn = 2.757815¢ + 00
F 1 ——a 100t5(), Lnean = 2.881800e — 04
10° E .
g | v
102 I 5
| |
E | . E
‘ | E
[Tt Chl bl et binddlinl Le

5 10 15 20 25 30
Number of Experiment

Figure 12: Comparison of running times of 29-th degree polynomials with integer coefficients and integer
roots.

Bandung Arry Sanjoyo 1336

Modified of Roots Finding Algorithm of High Degree Polynomials

The running time evaluation reveals a clear trade-off between accuracy and computational
efficiency. The Modified Durand-Kerner algorithm consistently outperforms the classical DK
algorithm in both speed and precision for lower and moderate degrees. However, its scalability
in terms of execution time becomes a limiting factor for high-degree polynomials. In contrast,
MATLAB?’s roots() function remains the most efficient across all tested degrees, though it does
not match the precision of Modified DK algorithm. These findings highlight the importance of
selecting root-finding algorithms based on the specific requirements of accuracy and computational
resources.

To assess the robustness and stability of root-finding methods, we include the Wilkinson
polynomial as a critical benchmark due to its well-documented sensitivity to coefficient perturba-
tions [31], [32].Figures 13(a) and 13(b) present the mean and maximum root errors, respectively,
across varying polynomial degrees. The classical DK algorithm exhibits a rapid increase in both
mean and maximum errors as the degree increases, indicating poor stability under the Wilkinson
polynomial’s challenging conditions. MATLAB’s roots() function also shows increasing error,
though it performs slightly better than DK algorithm in higher degrees. In contrast, the Modified
DK algorithm demonstrates significantly improved accuracy. Both the mean and maximum errors
remain consistently low across all tested degrees, suggesting that the modifications introduced in
the algorithm effectively mitigate the instability typically associated with Wilkinson polynomials.

n

Mean Errors of Roots of Polynomial Wilkinsons, H (x+k)y=0 Max Errors of Roots of Polynomial Wilkinsons, H (x+k)=0
k=1 =1
10° f——DK = T o0 [—DK IR ol P
—+—— Modified DK . Modified DK
—a—roots() —ea— roots()
104 10 i
g &
w108 W48]
(e § 102k
o] 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Degree of Polyomial, n Degree of Polyomial, n

(a) (b)

Figure 13: Comparisons of mean error of each root of Polynomial Wilkinsons for n = 3 — 35

Running Times for Polynomial Wilkinsons, H (z+k)=0
k=1

O T T
10 -~ DK
——w—— Modified DK

—a—roots()

10

1

ok ‘\ =

X“ IR e
E 1 _,sr—a'/d— I 1 1
15 20 25

0 5 10 30 35

Degree of Polyomial, n

Figure 14: Running Time Comparisons Polynomial Wilkinsons for n =9

Figure 14 reveals that MATLAB’s roots() function is consistently the fastest across all
degrees, benefiting from optimized internal routines. The classical DK algorithm shows moderate

Bandung Arry Sanjoyo 1337

Modified of Roots Finding Algorithm of High Degree Polynomials

computational cost, increasing gradually with polynomial degree. However, the Modified DK
algorithm, while superior in accuracy, incurs a substantially higher computational cost, especially
for higher-degree polynomials. This trade-off suggests that the algorithm’s enhanced stability
comes at the expense of increased iteration complexity or more stringent convergence criteria.
Such behaviour is expected in algorithms designed for precision over speed, particularly when
applied to numerically unstable problems.

To further investigate the numerical stability of root-finding algorithms, a perturbation was
introduced to the Wilkinson polynomial by subtracting 2~ 232! from the original form:

20
[[+k) —27%2 =0 (13)
k=1
This modification targets the 18th coefficient, simulating a subtle yet impactful change that
challenges the precision of numerical solvers. Given the Wilkinson polynomial’s sensitivity to
coefficient perturbations, this test serves as a stringent benchmark for evaluating algorithmic
robustness [31].

20 20

Roots of Comparison of H (z+ k) - 2Bl — ¢ Error of Each Roots of Comparison of H (x+k)— 2 #Hp =g
k=1 k=1
O Trueroots 100+ i !
ar DK Roots
® @ X M DK Roots
2t O 0 MatlabRoots 104 F | |
= ! I
Eor ® o PPEEEEEER { Wqgsf AN
5L ® 1 ——= DK, emean = Inf
k 10712 H——= Modified DK, ep0on = 3.356239%¢ — 05
® &
——a 100t3(), €mean = 2.825379¢ — 04 I
4 . . L . L 1 0 1 N
-25 -20 -15 -10 -5 0 5 2 4 6 8 10 12 14 16 18 20
Re(x) Roots, x,
(a) (b)

Figure 15: Error comparisons of each roots polynomial Wilkinsons with perturbations for n = 20

Figure 15a presents a visual comparison of the computed roots in the complex plane. The
true roots (green circles) lie precisely on the real axis at integer positions from —1 to —20.
The Modified DK algorithm (blue crosses) closely approximates these positions, with minimal
deviation. MATLAB’s roots() function (red squares) shows slightly larger deviations, particularly
for roots near the center of the distribution. The classical DK algorithm (green crosses), however,
fails to converge accurately, with several roots deviating significantly from their true positions.
This visual evidence underscores the superior stability of the Modified DK algorithm in handling
perturbed polynomials, while highlighting the limitations of the classical DK algorithm under
such conditions.

Figure 15b provides a quantitative comparison of the error associated with each computed
root. The classical DK algorithm exhibits catastrophic failure, with a mean error reported
as infinite (émean = 00), indicating divergence or non-convergence in the root-finding process.
MATLAB'’s roots() function achieves a mean error of 2.83 x 104, while the Modified DK
algorithm significantly outperforms it with a mean error of only 3.36 x 1075, This result confirms
that the Modified DK algorithm not only maintains converged but also delivers high precision in
the presence of subtle coefficient perturbations. Its error profile remains consistently low across
all roots, demonstrating its robustness and reliability.

The Wilkinson polynomial test confirms that the Modified DK algorithm offers superior
accuracy and robustness in root-finding tasks involving ill-conditioned polynomials. Although
it is computationally more expensive than the classical DK algorithm and MATLAB’s roots|()
function, its performance in terms of error control makes it a valuable tool for applications where

Bandung Arry Sanjoyo 1338

Modified of Roots Finding Algorithm of High Degree Polynomials

precision is critical. These findings underscore the importance of including Wilkinson polynomial
benchmarks in algorithmic validation to ensure reliability under extreme numerical conditions.

To assess the numerical accuracy of root-finding algorithms, we also conducted experiments
on polynomials of degrees 7, 9, and 18 with integer coefficients and complex roots. The evaluation
focused on three methods: the classical DK algorithm, a Modified DK algorithm, and MATLAB’s
roots() function. The mean and maximum errors of the computed roots were measured across 30
independent trials.

For polynomials of degree 7 in Figure 16, all methods demonstrated high precision, with
mean errors on the order of 1071, The Modified DK method yielded the lowest mean error
(4.93 x 1071%), followed closely by DK (6.61 x 10~1%), while MATLAB’s roots() exhibited slightly
higher error (1.14 x 10~!4). The maximum error results followed a similar trend, confirming the
reliability of all methods at low degrees.

& Mecan Error of Roots B Max Error of Roots
10 s DK, frean = 6.066295¢ — 15 1077 ' e DK, Gy = 1745572 — 14
— Modified DK, Gepm — 4.925015¢ — 15 — Modified DK, &, — 1.286284¢ — 14
1o ——a 100ts(), Emean = 1.137788¢ — 14 10| ——a 1oots(), €nar = 2.487610e — 14
s 5
=108 S0t
10 12 4 10 121 =
™ L)
Liraleasiaztolistenstlnatiee s Lestleatssalalanstlnstanese
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(a) (b)

Figure 16: Comparisons of mean error of each root of 7-th degree polynomials with integer coefficients
and complex roots with real part and imaginer part of the roots are integer.

5 Mean Error of Roots 5 Max Error of Roots
ol T+ DK, oo = 1.104283¢ — 13 10 ‘ T+ DK, ey = 2.507245c _ 13
— Modified DK, &0, — L.312807c — 13 —= Modified DK, &,,,, — 3.520749¢ — 13
el ——= 1oots(), B = 6.139914e — 13 ok ——a roots(). &y = 1.168786e — 12

Error

1012 F 1 112k ‘]
m..w.rMmﬂﬁﬂH;ﬂmW-«TMMMJLWMM mlm.rmﬂn?mm,ﬂwhmM'mumwMW
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(a) (b)

Figure 17: Comparisons of mean errors of each root of 9-th degree polynomials with integer coeflicients
and complex roots with real part and imaginer part of the roots are integer.

As the degree increased to 9 in Figure 17, the error magnitudes rose accordingly. The Modified
DK and DK algorithm maintained comparable performance, with mean errors of 1.31 x 10713
and 1.19 x 10713, respectively. In contrast, the MATLAB’s roots() function showed a significantly
higher mean error of 6.14 x 1073, indicating reduced numerical stability. The maximum error
for MATLAB’s roots() reached 1.17 x 10~'2, nearly four times greater than that of DK and
Modified DK algorithms.

At degree 18 in Figure 18, the differences became more pronounced. The Modified DK
algorithm achieved a mean error of 1.42 x 10~ substantially outperforming DK algorithm
(1.78 x 107®) and MATLAB’s roots() (3.60 x 1078). The maximum error for Modified DK was
also the lowest (7.35 x 107%), compared to DK (2.03 x 10~7) and MATLAB’s roots() (2.14 x 10~7).

Bandung Arry Sanjoyo 1339

Modified of Roots Finding Algorithm of High Degree Polynomials

Mean Error of Roots Max Error of Roots
T T . : : T

s DK, ¢eon = 1.782949¢ — 08 « DK, €4 = 2.033928¢ — 07
4l —= Modified DK, &0, = 1.416033¢ — 09] al — Modified DK, &,,,, = 7.352152¢ — 09]
10 ——a roots(), @e. = 3.601746¢ — 08 10 ——a 100b8(), Foey — 2.140568¢ — 07
8 g8l ? o 1 E108r]
| | o]] I
10-12 L 4 10-12 L 4
AR RRL] (Hlataldl]
] hAARANE L Tl BV VARG
20 20 25

5 10 15 25 30 5 10 15 30

Number of Experiment Number of Experiment
(a) (b)
Figure 18: Comparisons of mean errors of each root of 18-th degree polynomials with integer coefficients
and complex roots with real part and imaginer part of the roots are integer.

To assess the running time of three methods on polynomial with integer coefficient dan
complex roots, experiments were conducted on the above polynomials of degrees 7, 9, and 18 with
integer coefficients and complex roots and each method tested over 30 independent trials. As
presented in Figure 19-21, for polynomials of degree 7, the MATLAB’s roots() function exhibited
the shortest mean running time (7.06 x 10~° seconds), followed by DK algorithm (3.81 x 1074
seconds), while Modified DK algorithm required the longest time (1.54 x 1073 seconds). This
pattern persisted for degree 9, where MATLAB’s roots() remained the fastest (8.75 x 107°
seconds), DK algorithm recorded 6.44 x 10~* seconds, and Modified DK algorithm increased to
2.00 x 1073 seconds.

At degree 18, the computational cost of Modified DK algorithm rose substantially to 2.78
seconds, compared to DK algorithm’s 2.90 x 1072 seconds and MATLAB’s roots() at 3.25 x 1074
seconds. This sharp increase suggests that the modifications introduced in the algorithm, while
improving numerical accuracy, result in significantly higher computational overhead, particularly
for high-degree polynomials.

The results demonstrate that the Modified DK algorithm consistently provides superior
accuracy in computing the roots of polynomials with complex solutions, particularly as the
polynomial degree increases. While all methods perform adequately at lower degrees, the Modified
DK algorithm exhibits enhanced numerical stability and precision under more challenging
conditions. These findings support its suitability for high-degree polynomial root-finding tasks
where complex roots are involved.

i Running Time ’ Running Time
[T T = Calk — T T —
10 e DK, fyean — 3.812567¢ — 04 10 ——+ DK, fyyeqn = 6.436433¢ — 04
—— Modified DK, Zqn = 1.540740¢ — 03 —— Modified DK, .0, = 2.003667¢ — 03
——a 100t8(), bnean = 7.060667¢ — 05 ——a 100t5(); Eean = 8.752000¢ — 05
-2 %
10 102
s s
o, .3 I
10 103 1 ’
o 1 ?l o 1] o
: 111 ‘
4 \ \
10 | | { ‘
| | -4 L | {4
{IH“T b [| l {
‘ ‘ 1o 1. i 1

10 15 20 25 30 5 10 15 20
Number of Experiment

Number of Experiment

Figure 19: Comparison of running times of 7-th
degree polynomials with integer coefficients and
complex roots with real part and imaginer part of
the roots are integer.

Figure 20: Comparison of running times of 9-th
degree polynomials with integer coefficients and
complex roots with real part and imaginer part of
the roots are integer.

Bandung Arry Sanjoyo

1340

Modified of Roots Finding Algorithm of High Degree Polynomials

Running Time

——+ DK, Tmean = 2.899456e — 02
— Modified DK, {1000 = 2.780215¢ + 00
—a 100ts(), Emean = 3-249367e — 04
100 ¢
E 9 o o
u i i
o | o
107 1 | J {
I B8 :
I | | |
IR LARCRHAG TR
| I8 == 1' ‘ 1
= | - | | | [
T'FTH w | 111?!}--!-‘ e (L LI IL T | i lin | Ll
5 10 16 20 25 30

Number of Experiment
Figure 21: Comparison of running times of 18-th degree polynomials with integer coefficients and
complex roots with real part and imaginer part of the roots are integer.

The running time analysis reveals a clear trade-off between computational efficiency and
numerical precision.While the Modified DK algorithm consistently delivers superior accuracy, its
execution time increases markedly with polynomial degree. In contrast, MATLAB’s roots()
function remains the most efficient across all tested degrees, though it does not match the precision
of Modified DK algorithm in high-degree cases. These findings underscore the importance of
selecting root-finding algorithms based on the specific requirements of accuracy and performance
in practical applications.

To assess the numerical accuracy of root-finding algorithms, we conducted experiments on
polynomials of degrees 7, 17, and 27 with real coefficients and real roots. The mean and maximum
errors of the computed roots were measured across 30 independent trials.

All three methods demonstrated high precision at 7-th degree polynomials, as shown in
Figure 22. The Modified DK algorithm yielded a mean error of 2.28 x 10~!3, closely matching
DK algorithm (2.25 x 10713), while MATLAB’s roots() exhibited a slightly higher error
of 4.77 x 10713, The maximum errors followed a similar trend, with Modified DK and DK
algorithm both below 7.5 x 10713, and MATLAB’s roots () reaching 1.55 x 107!2. As the degree
increased shown in Figure 23, the error magnitudes rose accordingly. The Modified DK algorithm
maintained superior accuracy with a mean error of 6.58 x 10~ outperforming DK algorithm
(7.18 x 107?) and MATLAB’s roots() (2.41 x 10~®). The maximum error for Modified DK
algorithm was 4.19 x 1078, significantly lower than DK algorithm (6.62 x 10~%) and MATLAB’s
roots() (1.41 x 10~7). At 27-th degree polynomial as in Figure 24, the classical DK algorithm
failed to converge, resulting in infinite error values. The Modified DK algorithm remained stable,
achieving a mean error of 1.42 x 10™* and a maximum error of 1.40 x 1073. In contrast, the
MATLAB’s roots() function showed a mean error of 7.24 x 10~* and a maximum error of
6.17 x 1073, indicating a substantial decline in accuracy.

o Mean Error of Roots g Max Error of Roots
10 ‘ . DK, e = 2.2492666 — 13 10 ' e DK, ey — T.4082906 — 13
—— Modified DK, €,,.,, = 2.280941¢ — 13 — Modified DK, &,,.4x = 7.210084e — 13
10% ——a roots(), Enean = 1.772164e — 13 i ——a roots(), Fpean = 1545416 — 12
5 5
&5 108 & 10

'mMmﬁ.Tmﬂmw.,i'ﬂm,mﬂh@w 'mevimmimhﬁﬂmﬂmﬂ

(a) (b)

Figure 22: Comparisons of mean errors of each root of 7-th degree polynomials with real coefficients and
real roots.

Bandung Arry Sanjoyo 1341

Modified of Roots Finding Algorithm of High Degree Polynomials

s . Mean Error of Roots . Max Error of Roots
—+ DK. fean = 7.1771206 — 09 % DK, Fnean = 6.620337¢ — 08
—— Modilicd DK, & = 6.584390¢ — 09 — Modiflicd DK, &0 = 4.193710¢ — 08
—a 1o0ts(), Epean = 2.405066e — O ——a 100t5(), Eypean = L.A0T4T4e — 07
104 1 104+

Error
Error

il il Ll

Nurnber of Experlment Number of Experiment

(a) (b)

Figure 23: Comparisons of mean errors of each root of 17-th degree polynomials with real coefficients

and real roots.

o Mean Error of Roots § Max Error of Roots
[l T —— Y 10 T2 DK, e = Inf
— Modified DK, &, — 1.423192¢ — (4 — Modified DK, &4, = 1.395363e — 03 &
——a 1oots(), Epean = 7.244593 — 04 ——a rooLs(), Cupen = 6.174467c 03 I

).

i Ll
AU e HEL LR
5 10 15 20 5 10 15 20 25 30
Number of Experiment Number of Experiment
@ (0)

Figure 24: Comparisons of mean errors of each root of 27-th degree polynomials with real coefficients

and real roots.

The results demonstrate that the Modified DK algorithm consistently provides superior
accuracy and numerical stability when solving polynomials with real coefficients and real roots,
particularly as the polynomial degree increases. While all methods perform adequately at lower
degrees, the Modified DK algorithm maintains precision and robustness under more challenging
conditions. The classical DK algorithm exhibits instability at higher degrees, and MATLAB’s
roots () function, although efficient, shows reduced accuracy in high-degree cases. These findings
support the Modified DK algorithm as a reliable and accurate approach for root-finding in
real-coefficient polynomial systems.

To assess the running time of three methods on polynomial with integer coefficient dan
complex roots, experiments were conducted on the above polynomials of degrees 7, 17, and 27
with real coefficients and real roots and each method tested over 30 independent trials. The
running time experiment are presented in Figure 25-27.

Running Time

Running Time
T

107 > T
—— DK, t, . = 4.499433¢ — 04
— 3300e — 1L*e % |
e = 115806 — 04 10] PEY TARATTY Bhes o Ty
——=a roots(6.3206670 - 05 o DK, frean = 8.421537¢ — 02
102k — Modified DK, 04n = 7.704894¢ — 02
——a 100ts(), Emean = 1.532600e — 04
= = 102 [|
o o 1 |
i 5 RN
10-3 L = 4 1 |
‘ 103 : ‘ I3
Il ‘ 104 e e e LT e o e e LT T»M Il
5 10 15 20 25 30 10 15 20 25 30
Number of Experiment Number of Experiment

Figure 25: Comparison of running times of 7-th Figure 26: Comparison of running times of 17-th
degree polynomials with real coefficients and real ~ degree polynomials with real coefficients and real
roots whose real and imaginary parts are integers. roots whose real and imaginary parts are integers.

Bandung Arry Sanjoyo 1342

Modified of Roots Finding Algorithm of High Degree Polynomials

In Figure 25, the MATLAB’s roots() function exhibited the shortest mean running time
at 6.32 x 1079 seconds, followed by DK algorithm at 4.50 x 10~ seconds, and Modified DK
algorithm at 7.11 x 10™4 seconds. This indicates that MATLAB’s roots() is approximately 7
times faster than DK algorithm and more than 11 times faster than Modified DK algorithm for
low-degree polynomials.

For 17-th degree polynomials as in Figure 26, As the polynomial degree increased, the running
times of DK and Modified DK algorithm rose significantly. DK algorithm recorded a mean
time of 8.42 x 1072 seconds, while Modified DK algorithm was slightly faster at 7.70 x 1072
seconds. In contrast, MATLAB’s roots () maintained a low execution time of 1.53 x 10~ seconds,
demonstrating its superior computational efficiency even for moderate-degree polynomials.

Running Time
T

T T T T
I - 4
ot LTI ‘TTTTTTTTTHTTT*TTH
| 111 o DK, £can = 1.270233e — 01
[— Modified DK, 00, = 1.352594e — 01
—a 100ts(), finean = 1.135577e — 03
5102 ‘ ‘]
]
i
103 F ‘ ‘ [l 3
| SRS i
AT e e
5 10 15 20 25 3

T
0
Number of Experiment

Figure 27: Comparison of running times of 27-th degree polynomials with real coefficients and real roots
with real part and imaginer part of the roots are integer.

At the 27-th degree polynomials, both DK and Modified DK algorithm showed further
increases in running time, with DK algorithm at 1.27 x 10~! seconds and Modified DK algorithm
at 1.35 x 10~! seconds. Meanwhile, MATLAB’s roots() remained significantly faster, with a
mean running time of only 1.14 x 1073 seconds. This suggests that MATLAB’s roots() is over
100 times faster than the other two methods at this degree.

The running time analysis reveals that MATLAB’s roots () function consistently outperforms
both the classical and Modified Durand-Kerner algorithm in terms of computational efficiency
across all tested polynomial degrees. While the Modified DK algorithm offers improved accuracy
in root approximation, its execution time increases substantially with polynomial degree. These
results highlight a clear trade-off between precision and performance, emphasizing the importance
of algorithm selection based on application-specific requirements.

To assess the numerical accuracy of root-finding algorithms, we conducted experiments on
polynomials of degrees 7, 17, and 27 with real coefficients and complex roots. The mean and
maximum errors of the computed roots were measured across 30 independent trials. For 7-th
degree polynomials as in Figure 28, all three methods demonstrated high precision at this low
degree. The Modified DK algorithm yielded the lowest mean error (1.21 x 10714), closely followed
by DK algorithm (1.21 x 10~!), while MATLAB’s roots() exhibited a slightly higher error
(4.75 x 10~1*). The maximum error results followed a similar trend, with Modified DK and DK
algorithm both below 3.6 x 107'4, and MATLAB’s roots() reaching 1.09 x 10713,

As the polynomial degree increased, the error magnitudes rose accordingly as in Figure 29.
The Modified DK algorithm maintained competitive accuracy with a mean error of 3.92 x 10712
comparable to DK algorithm (3.68 x 10~!2), and significantly outperforming MATLAB’s roots ()
(1.49 x 10711). The maximum error for Modified DK algorithm was 1.34 x 10711, slightly lower
than DK algorithm (1.38 x 10~!!), and substantially better than roots () function (5.44 x 10711).
At 27-th degree polynomial as in Figure 29, the classical DK algorithm failed to converge,
resulting in infinite error values. The Modified DK algorithm remained stable, achieving a mean

Bandung Arry Sanjoyo 1343

Modified of Roots Finding Algorithm of High Degree Polynomials

error of 6.23 x 10713 and a maximum error of 3.49 x 10712, In contrast, the MATLAB’s roots ()
function showed a mean error of 2.62 x 10712 and a maximum error of 1.80 x 10—, indicating
a notable decline in accuracy. All three methods demonstrated high precision at 7-th degree

polynomials, as shown in Figure 22.

Max Error of Roots

Mean Error of Roots

! —— K, e — 1.214030¢ 4] ! —+ DK, &y — 3.560037¢ 7 '
i — Modified DK, &pan = 1.205257¢ — 14| | 4l ——+ Modified DK, &pa = 3.057229¢ — 14| |
10 ——a 100t5(); Emean = 4.748220e — 14 10 —a 100t5(), Emaz = 1.089339%¢ — 13
E 108 1 E 108 1
w w
10-‘\2 L o 10-12 L] 4
| il i
M,uWﬁrmﬁmﬂ?mj.:ﬂﬂ'mmm,uﬂ' {egs:TenetlT0a] 1eillaetentas
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment

(a) (b)

Figure 28: Comparisons of mean errors of each root of 7-th degree polynomials with real coefficients and

complex roots.

Mean Error of Roots Max Error of Roots

10° - T : 10° ' = T T
——=a DK, €pnean = 3.682384e — 12 —=a DK, €nq: = 1.384914e — 11
—+ Modified DK, &eqn = 3.915424¢ — 12 — Modified DK, &,,,, = 1.340808¢ — 11
- ——a 100ts(}, Emean = 1.485964¢ — 11 4 ——a 100ts(), Emar = D.442692¢ — 11
i 10
o] <]
B =
i 10 u 1g® 1
! I
|
Tegatlsszedlls ﬁﬁﬂ‘ tealanily leetlssred 0000 Wmmmﬁﬂﬂlﬂ
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(a) (b)

Figure 29: Comparisons of mean errors of each root of 17-th degree polynomials with real coefficients

and complex roots.

Mean Error of Roots Max Error of Roots

0 0 T
L. ——+ DK, & = Inf L DK, by = Inf
— Modified DK, €nenn = 6.230187¢ — 13 — Modified DK, €, = 3.489131e¢ — 12
n —a roots(), Euean = 2.619606e — 12 —a roots(), €y, = 1.796353¢ — 11
107" 104t
g g
108 1 Wil 1
.
el oA Tl a1 0T 0 e Lnr 150 04Tt palALLITL Lt drndd el Dnlofls
5 10 15 20 25 30 5 10 15 20 25 30
Number of Experiment Number of Experiment
(@) (b)

Figure 30: Comparisons of mean errors of each root of 23-th degree polynomials with real coefficients
and complex roots.

The results demonstrate that the Modified DK algorithm consistently provides superior
accuracy and numerical stability when solving polynomials with real coefficients and complex
roots, particularly as the polynomial degree increases. While all methods perform adequately
at lower degrees, the Modified DK algorithm maintains precision and robustness under more

Bandung Arry Sanjoyo 1344

Modified of Roots Finding Algorithm of High Degree Polynomials

Running Time Running Time
T i E==—— — : ol i o DK, fnean = 7.827420¢ — 03
* DK, Tncan = 4.077433¢ — 04 ‘ 10 = e Modificdl DK, s — 9.310280¢ — 03
. — hlud:{le({DK, bmean = 1.587(!7?5 - 03 | ! 00t3(), tcan = 1.301067¢ — 04
10 E ——a 100ts(), Fpean — 8.123000¢ — 05 4
102
s s
& ‘ N , .
] CMSSERER I 13
e 1 \
1= { " lv | 1 o ‘ e (L] | i1 |
| | | ‘ | { | ‘ ‘ I
I8 L | il [| | E = 1 il
‘ X ‘ 5 L N ‘ ‘ 10 I . IS8 [l
5 10 15 20 25 30 5 10 15 30
Number of Experiment Number of Experiment

Figure 31: Comparison. of running ti@es of 7- Figure 32: Comparison of running times of 17-
th degree polynomials with real coefficients and {}, qegree polynomials with real coefficients and
complex roots. complex roots.

challenging conditions. The classical DK algorithm exhibits instability at higher degrees, and
MATLAB’s roots () function, although efficient, shows reduced accuracy in high-degree cases.
These findings support the Modified DK algorithm as a reliable and accurate approach for
root-finding in real-coefficient polynomial systems with complex solutions.

To assess the running time of three methods on polynomial with integer coefficient dan
complex roots, experiments were conducted on the above polynomials of degrees 7, 17, and
23 with real coefficients and complex roots and each method tested over 30 independent trials.
The running time experiment are presented in Figure 31-33. In Figure 31, the roots function
exhibited the shortest mean running time at 8.12 x 1072 seconds, followed by DK algorithm at
4.08 x 10~ seconds, and Modified DK algorithm at 1.39 x 10~3 seconds. This indicates that
MATLAB’s roots() is approximately 5 times faster than DK algorithm and more than 17 times
faster than Modified DK algorithm for low-degree polynomials.

For polynomial 17-th degree as in Figure 32, as the polynomial degree increased, the running
times of DK and Modified DK algorithm rose moderately. DK algorithm recorded a mean
time of 7.83 x 1073 seconds, while Modified DK algorithm was slightly slower at 9.31 x 1073
seconds. In contrast, MATLAB’s roots () maintained a low execution time of 1.30 x 10~% seconds,
demonstrating its superior computational efficiency even for moderate-degree polynomials.

Running Time
T

-1 L i
00 —— 1
: ' — DK, fipcan = 1.436246e — 02
I — Modified DK, Tpean = 1.965342e — 02
102 I ——a 10048(), Lpean = 2.029933e — 04

b L |
* | ¥

Error

103k

e 1Ll L |
5 10 15 20 25 30
Number of Experiment

Figure 33: Comparison of running times of 23-th degree polynomials with real coefficients and complex
roots.

At 23-rd degree polynomial as in Figure 33, both DK and Modified DK algorithm showed
further increases in running time, with DK algorithm at 1.44 x 1072 seconds and Modified DK
algorithm at 1.97 x 1072 seconds. Meanwhile, MATLAB’s roots() remained significantly faster,

Bandung Arry Sanjoyo 1345

Modified of Roots Finding Algorithm of High Degree Polynomials

with a mean running time of approximately 1.50 x 10~4 seconds. This suggests that MATLAB’s
roots() is over 100 times faster than the other two methods at this degree.

The running time analysis reveals that MATLAB’s roots () function consistently outperforms
both the classical DK and Modified DK algorithm in terms of computational times efficiency
across all tested polynomial degrees. While the Modified DK algorithm offers improved accuracy
in root approximation, its execution time increases substantially with polynomial degree. These
results highlight a clear trade-off between precision and performance, emphasizing the importance
of algorithm selection based on application-specific requirements.

4 Conclusion

The proposed modification to the DK algorithm enhances both the accuracy and stability
of root-finding for high-degree polynomials. Although it introduces additional computational
times overhead at higher degrees, it offers a valuable alternative for applications requiring high
numerical precision.

CRediT Authorship Contribution Statement

Bandung Arry Sanjoyo: Conceptualization, Methodology, Software, Formal Analysis, In-
vestigation, Data Curation, Visualization, Writing Original Draft, Supervision. Mahmud
Yunus: Conceptualization, Methodology, Validation, Formal Analysis, Writing Review & Edit-
ing, Supervision. Nurul Hidayat: Conceptualization, Methodology, Resources, Data Curation,
Visualization, Writing Review & Editing, Supervision, Project Administration.

Declaration of Generative AI and Al-assisted technologies

During the preparation of this work, the author used Al-assisted tools (Microsoft Copilot) to
improve language clarity. After using these tools, the authorn reviewed and edited the content
to ensure accuracy and originality. The author takes full responsibility for the final content of
the manuscript.

Declaration of Competing Interest

The author declares no competing interests.

Funding and Acknowledgments

This research was funded by the Department of Mathematics, Institut Teknologi Sepuluh
Nopember (ITS), Surabaya. The author gratefully acknowledges the support of Institut Teknologi
Sepuluh Nopember for providing computational resources and a MATLAB software license.

Data and Code Availability

The MATLAB code and test data used in this study are available from the corresponding author
upon reasonable request for research purposes.

Bandung Arry Sanjoyo 1346

Modified of Roots Finding Algorithm of High Degree Polynomials

References

V. Y. Pan, “New progress in classic area: Polynomial root-squaring and root-finding,”
arXiv preprint arXiv:2206.01727, 2022.

J. van Kan, G. Segal, and F. Vermolen, Numerical Methods in Scientific Computing. TU
Delft Open Publishing, 2023.

M. Shams, N. Kausar, S. Araci, and G. Oros, “Numerical scheme for estimating all roots
of non-linear equations with applications,” AIMS Mathematics, vol. 8, pp. 23 60323 620,
2023. DOI: 10.3934/math.20231200.

O. Aberth, “Iteration methods for finding all zeros of a polynomial simultaneously,”
Mathematics of Computation, vol. 27, no. 122, pp. 339-344, 1973.

P. Batra, “Improvement of a convergence condition for the durand-kemer iteration,” Journal
of Computational and Applied Mathematics, vol. 96, pp. 117-125, 1998.

H. Guggenheimer, “Initial approximations in durand-kerner’s root finding method,” BIT
Numerical Mathematics, vol. 26, pp. 537-539, 1986. DOI: 10.1007/BF01935059.

P. Marcheva and S. Ivanov, “On the semilocal convergence of a modified weierstrass method
for the simultaneous computation of polynomial zeros,” in International Conference of
Numerical Analysis and Applied Mathematics (ICNAAM), 2022, p. 420012. por1: 10.1063
/5.0082007.

B. Reinke, D. Schleicher, and M. Stoll, “The weierstrass—durand—kerner root finder is
not generally convergent,” Mathematics of Computation, vol. 92, pp. 839-866, 2023. DOLI:
10.1090/mcom/3783.

V. Y. Pan, “Solving a polynomial equation: Some history and recent progress,” SIAM
Review, vol. 39, pp. 187-220, 1997. DOI: 10.1137/S0036144595288554.

M. Shams, N. Rafiq, N. Kausar, P. Agarwal, C. Park, and S. Momani, “Efficient iterative
methods for finding simultaneously all the multiple roots of polynomial equation,” Advances
in Difference Equations, vol. 2021, p. 495, 2021. DOI: 10.1186/s13662-021-03649-6.

B. Liu, Y. Yang, and M. Yu, “Enhancing numerical stability in multiport network synthesis
with modified dk method,” in 2024 IEEFE International Microwave Filter Workshop (IMFW),
IEEE, 2024, pp. 170-172. DOL: 10.1109/IMFW59690.2024 . 10477159.

F. J. Hall, R. M. Marsli, and R. M. Marsli, “An application of gelfand’s formula in
approximating the roots of polynomials,” arXiv preprint arXiv:2505.03753, 2025.

D. Khomovsky, “On using symmetric polynomials for constructing root finding methods,”
Mathematics of Computation, vol. 89, pp. 2321-2331, 2020. DOI: 10.1090/mcom/3531.

A. Tassaddiq, S. Qureshi, A. Soomro, E. Hincal, D. Baleanu, and A. Shaikh, “A new
three-step root-finding numerical method and its fractal global behavior,” Fractal and
Fractional, vol. 5, no. 4, p. 204, 2021. pDoI: 10.3390/fractalfract5040204.

G. Milovanovié, A. Mir, and A. Ahmad, “On the zeros of a quaternionic polynomial with
restricted coefficients,” Linear Algebra and Its Applications, vol. 653, pp. 231-245, 2022.
DOI: 10.1016/j.1aa.2022.08.010.

V. Jain, “On cauchy’s bound for zeros of a polynomial,” Approzimation Theory and Its
Applications, vol. 6, pp. 18-24, 1990. por: 10.1007/BF02836305.

W. Deren and Z. Fengguang, “On the determination of the safe initial approximation for
the durand-kerner algorithm,” Journal of Computational and Applied Mathematics, vol. 38,
pp. 447-456, 1991. DOT: 10.1016/0377-0427 (91)90188-P.

Bandung Arry Sanjoyo 1347

https://doi.org/10.3934/math.20231200
https://doi.org/10.1007/BF01935059
https://doi.org/10.1063/5.0082007
https://doi.org/10.1063/5.0082007
https://doi.org/10.1090/mcom/3783
https://doi.org/10.1137/S0036144595288554
https://doi.org/10.1186/s13662-021-03649-6
https://doi.org/10.1109/IMFW59690.2024.10477159
https://doi.org/10.1090/mcom/3531
https://doi.org/10.3390/fractalfract5040204
https://doi.org/10.1016/j.laa.2022.08.010
https://doi.org/10.1007/BF02836305
https://doi.org/10.1016/0377-0427(91)90188-P

Modified of Roots Finding Algorithm of High Degree Polynomials

18]

[24]

[25]

A. Al-Swaftah, A. Burqan, and M. Khandagji, “Estimations of the bounds for the zeros
of polynomials using matrices,” in Mathematics and Computation, D. Zeidan, J. Cortés,
A. Burqgan, A. Qazza, J. Merker, and G. Gharib, Eds., Springer Nature, 2023, pp. 256-37.
DOI: 10.1007/978-981-99-0447-1_3.

B. Sanjoyo, M. Yunus, and N. Hidayat, “A new initial approximation bound in the durand
kerner algorithm for finding polynomial zeros,” arXiv preprint arXiv:2511.07728, 2025.

K. Madsen, “A root-finding algorithm based on newton’s method,” BIT Numerical Mathe-
matics, vol. 13, pp. 71-75, 1973.

H. Orchard, “The laguerre method for finding the zeros of polynomials,” IEEE Transactions
on Circuits and Systems, vol. 36, pp. 13771381, 1989. DOI: 10.1109/31.41294.

T. R. Cameron, “An effective implementation of a modified laguerre method for the roots
of a polynomial,” Numerical Algorithms, vol. 82, pp. 1065-1084, 2019. po1: 10.1007/s110
75-018-0641-9.

R. Imbach, V. Y. Pan, C. Yap, I. S. Kotsireas, and V. Zaderman, “Root-finding with
implicit deflation,” in Computer Algebra in Scientific Computing, M. England, W. Koepf,
T. Sadykov, W. Seiler, and E. Vorozhtsov, Eds., Springer, 2019, pp. 236-245. DOI: 10.100
7/978-3-030-26831-2_16.

P. Marcheva and S. Ivanov, “Convergence analysis of a modified weierstrass method for
the simultaneous determination of polynomial zeros,” Symmetry, vol. 12, no. 9, p. 1408,
2020. por: 10.3390/sym12091408.

P. Marcheva, “Fixed points and convergence of iteration methods for simultaneous approxi-
mation of polynomial zeros,” Ph.D. dissertation, University of Plovdiv "Paisii Hilendarski",
2023.

J. A. Gallian, Contemporary Abstract Algebra, 10th. Boca Raton: Chapman and Hall/CRC,
2020.

D. Han, “The convergence of durand-kerner method for simultaneously finding all zeros of
the polynomial,” Journal of Computational Mathematics, vol. 18, pp. 567570, 2000.

G. Kjellberg, “Two observations on durand-kerner’s root-finding method,” BIT Numerical
Mathematics, vol. 24, pp. 556—-559, 1984. DOI: 10.1007/BF01934913.

A. Terui and T. Sasaki, “Durand-kerner method for the real roots,” Japanese Journal of
Industrial and Applied Mathematics, vol. 19, pp. 19-38, 2002. DOI: 10.1007/BF03167446.

X.-M. Niu and T. Sakurai, “A method for finding the zeros of polynomials using a companion
matrix,” Japanese Journal of Industrial and Applied Mathematics, vol. 20, pp. 239-256,
2003. por: 10.1007/BF03170428.

J. Wilkinson, “The evaluation of the zeros of ill-conditioned polynomials. part ii,” Nu-
merische Mathematik, vol. 1, pp. 167-180, 1959. poI1: 10.1007/BF01386382.

R. M. Corless and L. Sevyeri, “The runge example for interpolation and wilkinson’s examples
for rootfinding,” SIAM Review, vol. 62, pp. 231-243, 2020. poI: 10.1137/18M1181985.

Bandung Arry Sanjoyo 1348

https://doi.org/10.1007/978-981-99-0447-1_3
https://doi.org/10.1109/31.41294
https://doi.org/10.1007/s11075-018-0641-9
https://doi.org/10.1007/s11075-018-0641-9
https://doi.org/10.1007/978-3-030-26831-2_16
https://doi.org/10.1007/978-3-030-26831-2_16
https://doi.org/10.3390/sym12091408
https://doi.org/10.1007/BF01934913
https://doi.org/10.1007/BF03167446
https://doi.org/10.1007/BF03170428
https://doi.org/10.1007/BF01386382
https://doi.org/10.1137/18M1181985

	Introduction
	Methods
	Polynomial zeros and the fundamental theories
	Durand-Kerner Algorithm
	Modification and analysis algorithm for polynomial zeros
	Evaluation and testing of the algorithm

	Results and Discussion
	The Modified Algorithms
	Experimental Setup and Performance Analysis
	Comparative Analysis of Root-Finding Accuracy for High-Degree

	Conclusion

