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Abstract

Flood vulnerability in East Java varies across districts due to differences in hydrometeorological
pressure and exposure levels. This study compares two clustering algorithms—DBSCAN and
K-Means++—for identifying patterns in eleven flood-impact indicators. DBSCAN parameter
selection was conducted using a k-distance graph, resulting in € = 0.8 and MinPts = 3, which
produced five clusters and three noise points. The Silhouette Index for DBSCAN was 0.3266,
calculated including noise points to ensure fair evaluation against K-Means++-, which obtained
a Silhouette Index of 0.2453 for five clusters. The findings indicate that DBSCAN produced
higher internal cohesion under the given dataset. However, the resulting clusters are not
interpreted as validated flood risk zones or as physically causal patterns, due to the absence
of external validation layers such as historical flood maps, hydrological data, or topographic
information. The results therefore provide a methodological comparison between density-
based and centroid-based clustering for flood-impact variables without making geographical
or causal inferences.
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1 Introduction

Flood hazard research increasingly incorporates machine learning and clustering techniques to
analyze multidimensional disaster indicators [1], [2]. Although numerous studies have demon-
strated the practical usefulness of unsupervised learning—for example, density-based clustering
for early warning systems [3] the majority of prior works prioritize empirical mapping rather
than examining whether the selected algorithms are structurally compatible with the statistical
properties of hydrometeorological data. Consequently, the literature is dominated by case-specific
implementations with limited methodological evaluation or cross-algorithm comparison.
Partition-based methods such as K-Means and K-Means++ remain popular in flood sus-
ceptibility analysis due to their computational efficiency [4], [5]. However, existing studies
seldom acknowledge that these algorithms assume convex cluster structures and rely on Euclidean
distance as their similarity metric, which leads to instability in the presence of outliers, skewed dis-
tributions, or extreme-magnitude events—characteristics frequently observed in disaster-impact
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datasets [6], [7]. These limitations are rarely scrutinized, resulting in analyses whose clustering
structure may be strongly influenced by noise rather than underlying hazard patterns.

Density-based methods such as DBSCAN offer a contrasting clustering paradigm by allowing
arbitrarily shaped clusters and explicitly identifying noise [8], [9]. Several studies highlight
DBSCAN’s theoretical suitability for environmental and hazard data containing heterogeneous
densities or localized anomalies [10]. However, much of this evidence remains conceptual: prior
research does not rigorously evaluate how DBSCAN behaves relative to centroid-based methods
under controlled parameter selection, nor does it examine how noise treatment affects internal
validity metrics. Comparative DBSCAN-K-Means++ studies remain scarce, and those that exist
are predominantly situated in industrial or digital analytics domains [11], [12], limiting their
relevance for flood-related applications.

A further limitation in the existing flood-clustering literature is the reliance on single-algorithm
analyses [5], [8]. Such studies typically report cluster results without discussing algorithmic
assumptions, sensitivity to parameter choices, or fairness in comparing methods with differing
noise-handling mechanisms. This absence of methodological scrutiny restricts the interpretability
of results and obscures whether observed cluster differences arise from genuine hazard patterns
or from algorithm-specific biases.

In this context, East Java serves not as a source of novelty, but as a suitable testbed because
its district-level flood-impact indicators exhibit high variance, localized extremes, and irregular
density distributions [13], [14]. These characteristics allow for a meaningful assessment of how
structurally different clustering paradigms respond to disaster-impact data.

Accordingly, this study fills the methodological gap by conducting a controlled comparison
between DBSCAN and K-Means+-+ using a unified internal validity metric the Silhouette
Index—while applying consistent preprocessing, fair parameter selection, and transparent noise
treatment. The aim is not to infer geographical causation or identify physical patterns in flood-
impact indicators, but to clarify how density-based and centroid-based algorithms behave when
exposed to heterogeneous hazard-impact data. This methodological clarification is essential for
improving the reliability, reproducibility, and interpretability of clustering-based flood assessments.

2 Methods

This section outlines the methodological framework employed to compare DBSCAN and K-
Means++ for clustering flood-impact indicators in East Java. The research procedure encompasses
five sequential stages: data acquisition and preparation, standardization, application of the
DBSCAN algorithm, application of the K-Means++ algorithm, and cluster validation. Each
stage is designed to ensure a fair and reproducible comparison between the two clustering
paradigms while maintaining consistency in preprocessing and evaluation.

2.1 Research Procedure

The research was conducted systematically through several stages, beginning with a detailed
description and preparation of the dataset used in the analysis.

The dataset consists of flood-impact records from 38 districts/cities in East Java Province,
compiled from the Indonesian Meteorological Agency (BMKG), the Geospatial Information
Agency (BIG), and the Central Bureau of Statistics (BPS). All data correspond to the 2024
reporting period and use district/city (ADM2) administrative polygons as the spatial analysis
unit. For each spatial unit, a set of eleven disaster-impact indicators (X1-X11) was assembled to
represent the multidimensional consequences of flood events.

These eleven disaster impact indicators consist of the number of flood events (X1), which
represents the annual frequency of flood occurrences in each district or city. Fatalities and missing
persons (X2) indicate the total number of individuals reported dead or missing due to flood
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events. Injured or sick victims (X3) count individuals who suffered injuries or illnesses as a direct
result of flooding. Evacuated and affected population (X4) measures the number of residents
displaced or otherwise affected by flooding.

In addition, housing damage is represented by severely damaged houses (X5), which quan-
tify residential buildings categorized as severely damaged. Moderately damaged houses (X6)
enumerate residential buildings classified as moderately damaged. Slightly damaged houses
(X7) document houses that sustained minor structural damage. Inundated houses (X8) count
residential units flooded without structural collapse.

Infrastructure damage is captured through damaged educational facilities (X9), which record
schools or educational facilities impacted by flood events. Damaged religious facilities (X10) note
religious buildings affected by flooding. Damaged health facilities (X11) enumerate hospitals,
clinics, or health centers impacted by flood events.

All indicators were entered into the analysis system and standardized using the z-score
transformation to ensure uniform measurement scales and to minimize bias among variables.

Multicollinearity diagnostics were not included in the final analysis pipeline, as this study
focuses on unsupervised clustering of standardized flood-impact indicators rather than parameter
estimation or inferential modeling.

The DBSCAN algorithm was applied by calculating pairwise distances using the Fuclidean
Distance. The parameters € and MinPts were determined using the k-distance graph derived
from the K-Nearest Neighbors (KNN) plot to identify density-based clusters and noise points.

The number of clusters (K) for the centroid-based approach was determined based on
exploratory examination of spatial patterns and supported by analytical cluster tendency. The
K-Means—++ algorithm was then used to initialize centroids efficiently, followed by iterative
recalculation until convergence, producing stable and distinct cluster groupings.

Clustering validity from both DBSCAN and K-Means++ was assessed using the Silhouette
Index (SI), reflecting cohesion and separation of cluster structures. The resulting clusters were
examined using spatial visualization to illustrate the distribution of indicator based patterns,
without implying geographical causation or physical lood mechanisms.

2.2 Data Standardization

Before performing the clustering analysis, all research variables were standardized to eliminate
the effect of different measurement scales [15]. Standardization was carried out using the Z-score
transformation, which converts each variable into a common scale with a mean of zero and a
standard deviation of one [16].

The Z-score for each observation Z;; is calculated as follows:

Xy — X,

Zij = ‘
Sj

(1)
where X;; represents the value of variable j for observation 1, X j is the mean of variable j, and
s; is the standard deviation of variable j.

This transformation ensures that variables with larger numerical ranges do not dominate
the clustering process, allowing all attributes to contribute equally to the distance calculations.
The standardized data were subsequently used as input for both the DBSCAN and K-Means++
clustering methods.

2.3 DBSCAN

The clustering process was performed using the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm, which groups data points based on density similarity rather than
predefined cluster numbers [17]. DBSCAN is particularly effective for identifying arbitrary-shaped
clusters and distinguishing noise or outlier data [18].
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DBSCAN requires two key parameters: the neighborhood radius (¢) and the minimum number
of points (MinPts) required to form a dense region [10]. The distance between two data points
was measured using the Fuclidean Distance, formulated as:

p
x17$j JZ xzk:_x]k: (2)

where x; and z; denote two observations in a p-dimensional space. A point z; is considered a
core point if the number of data points within its e-neighborhood is at least equal to MinPts,
defined as:

Ns(l‘l) = {ZL‘j eD | d(l‘i,$j) < 6} (3)

The algorithm iteratively expands clusters by connecting density-reachable points until no
further expansion is possible. Points that do not belong to any cluster are classified as noise.
Parameter selection for ¢ and MinPts was performed using the k-distance graph generated from
the K-Nearest Neighbors (KNN) distance plot, which provides a clearer identification of density
thresholds. The resulting clusters were then visualized spatially using QGIS to observe the
distribution patterns of flood-impact indicators.

2.4 K-Means-+-+

The K-Means++ algorithm was employed to perform partition-based clustering by minimizing
the total variance within clusters [19]. This method improves upon the conventional K-Means by
optimizing the initialization of cluster centroids, thereby enhancing convergence stability and
reducing sensitivity to initial random selection.

The algorithm begins by selecting the first centroid randomly from the dataset. Subsequent
centroids are chosen probabilistically, where data points farther from existing centroids have a
higher probability of being selected [20]. The probability for selecting a data point x; as the next
centroid is defined as:

D(x;)?
> k=1 D(xx)?

where D(x;) denotes the shortest Euclidean distance between z; and the nearest existing centroid.
Once K centroids are initialized, each data point is assigned to the nearest centroid using the
Euclidean Distance:

P(xz) (4)

P
d(wi,c5) = | Y (i — cjk)? (5)
k=1
After assignment, new centroids are recalculated as the mean of all points belonging to each
cluster:

¢ =— i (6)

where n; represents the number of points in cluster C;. The algorithm iteratively updates cluster
memberships and centroid positions until convergence is achieved, indicated by minimal or no
change in centroid values between iterations.

This process yields compact and well-separated clusters. The resulting patterns were then
compared with DBSCAN outcomes to evaluate the effectiveness of each method in identifying
spatial distributions of patterns in flood-impact indicators.

2.5 Cluster Validation and Evaluation

The quality of the cluster structures generated by DBSCAN and K-Means++ was assessed
using the Silhouette Index (SI). This metric provides a unified measure of clustering validity by
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quantifying both the internal cohesion of data points within a cluster and their separation from
neighboring clusters. Higher SI values reflect well-defined and distinct clusters, whereas values
approaching zero or negative indicate weak cohesion or overlap between cluster boundaries.

2.5.1 Silhouette Index (SI)

The Silhouette Index evaluates both cohesion (how close data points are within a cluster) and
separation (how far they are from other clusters). For each observation i, the Silhouette coefficient
s(i) is computed as [21]:

b(i) — a(d)

N o) —aly) 7
) = max{a(i), b)) ®)
where a(7) is the average distance between observation i and all other points within the same

cluster, b(7) is the minimum average distance between observation ¢ and all points belonging to
other clusters. The overall Silhouette Index is the average of all s(i) values:

SI = % S s(i) (8)
i=1

The SI value ranges between —1 and 1, where values close to 1 indicate well-formed clusters,
values near 0 suggest overlapping clusters, and negative values imply misclassification.

3 Results and Discussion

The results are structured into five components: data preprocessing outcomes, DBSCAN clustering
results, K-Means++ clustering results, comparative algorithm evaluation, and spatial pattern
interpretation. Each component is presented with a focus on methodological insights rather than
geographical hazard claims, aligning with the study’s comparative objective.

3.1 Evaluation of DBSCAN Parameters and Cluster Formation

To identify the optimal values of € and MinPts, a k-distance graph was constructed using the
K-Nearest Neighbors (KNN) distance plot. The k-distance curve increases gradually at first,
and the optimal value of € appears at the point where the slope begins to rise sharply. This
inflection point indicates the transition from dense to sparse regions in the dataset. The resulting
k-distance graph is presented in Figure 1.

k-Distance Graph for DBSCAN

3-NN Distance

0 20 40 60 80 100 120

Points sorted by distance

Figure 1: k-distance graph used to determine the optimal value of € for DBSCAN.
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Based on the k-distance graph shown in Figure 1, the curve displays a clear inflection around
e = 0.8, which was selected as the optimal neighborhood radius, with MinPts fixed at 3. To
achieve this, several combinations of € and MinPts were tested using the Silhouette Index as
the primary validity measure. A higher Silhouette value indicates that data objects are well
grouped within their clusters, while a value close to zero or negative indicates less compact
cluster structures or possible overlap between clusters.

The evaluation results of the parameter combinations are presented in Table 1. Based on the
evaluation, the highest Silhouette Score was obtained at € = 0.8 and MinPts = 3, with a score of
0.3266. This result shows that the selected parameters provide the best clustering configuration
among all combinations tested.

Table 1: Evaluation Results of DBSCAN Parameter Combination using Silhouette Index
Epsilon (¢) MinPts Silhouette Score

0.2 3 0.0134
0.2 4 -0.1696
0.2 ) -0.1696
0.2 6 -0.1696
0.3 3 0.0943
0.3 4 -0.0866
0.4 3 0.1818
0.4 4 0.1818
0.5 3 0.1818
0.6 3 0.2403
0.6 4 0.2403
0.6 ) 0.2403
0.7 3 0.2403
0.7 4 0.2403
0.8 3 0.3266
0.8 4 0.2729
0.9 3 0.3266
0.9 4 0.3008
1.0 3 0.3266
1.0 4 0.3266

Based on the parameter optimization results, the DBSCAN algorithm was then implemented
using ¢ = 0.8 and MinPts = 3, which produced a total of five (5) distinct clusters and three
(3) noise points. The formation of these clusters indicates differences in flood intensity, affected
populations, and infrastructure damage among the districts and cities analyzed.

The results of the clustering process are summarized in Table 2, which shows the composition
of each cluster and its respective regions. In general, Cluster 0 represents districts characterized
by higher values across multiple flood impact indicators, particularly those related to affected
population and infrastructure damage, Cluster 1 represents districts exhibiting moderate to low
values across flood impact indicators while Clusters 2—4 exhibit distinct combinations of flood-
impact indicators (X1-X11), characterized by differing magnitudes of affected population, housing
damage, and infrastructure disruption, without inferring specific geographical or hydrological
causes.

The results demonstrate that DBSCAN successfully identified coherent groupings of patterns
in flood-impact indicators regions across East Java Province. The spatial visualization of these
clusters is intended solely to illustrate indicator based patterns and to facilitate methodological
comparison, rather than to serve as a basis for operational flood risk management or policy
related applications.

Based on the results of the DBSCAN clustering analysis, the spatial distribution of patterns
in flood-impact indicators in East Java Province can be visualized as shown in Figure 2. This
map illustrates the division of districts and cities into several clusters according to their flood
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Table 2: List of Districts/Cities Based on DBSCAN Clustering Results
Cluster  Districts/Cities
Cluster 0 Kabupaten Ponorogo, Kabupaten Blitar, Kabupaten Lumajang, Kabupaten Jember,
Kabupaten Situbondo, Kabupaten Pasuruan, Kabupaten Sidoarjo,
Kabupaten Mojokerto, Kabupaten Jombang, Kabupaten Madiun, Kota Surabaya

Cluster 1 Kabupaten Trenggalek, Kabupaten Kediri, Kabupaten Banyuwangi,
Kabupaten Probolinggo, Kabupaten Magetan, Kabupaten Ngawi,
Kabupaten Nganjuk, Kota Madiun, Kota Mojokerto, Kota Blitar, Kota Kediri,
Kabupaten Pacitan, Kabupaten Tulungagung, Kabupaten Bangkalan,
Kabupaten Pamekasan, Kabupaten Sumenep, Kota Batu
Kota Probolinggo, Kabupaten Malang

Cluster 2 Kabupaten Bondowoso
Cluster 3 Kabupaten Bojonegoro, Kota Pasuruan

Cluster 4 Kabupaten Gresik, Kabupaten Lamongan

characteristics, which were formed based on variables such as the number of flood incidents,
affected population, and infrastructure damage.

Each color in the map corresponds to a cluster group, namely: Cluster 0 (green), Cluster 1
(orange), Cluster 2 (blue), Cluster 3 (pink), and Cluster 4 (light green). Districts and cities that
are not assigned to any cluster (noise) are excluded from the visualization for clarity.

Cluster
0

1
Tuban S Sumenep 2
Bangkalan  pamekasan
Lamongan 3
Bojonegoro Surabaya 4
Ngawi Mojokerto
N a",ukJombang
Madiun  Nganj Pasuruan
Probolinggo Situbond
o Kediri Batu i oD R
norogo Malang Bondowoso
Pacitan Trenggalek Blitar Malang Lumajang

Jember
Banyuwangi

Figure 2: Map of cluster groupings generated by the DBSCAN algorithm

As illustrated in Figure 2, the cluster distribution illustrates variations in indicator based
groupings across administrative units in East Java. Regions classified into Cluster 0 (green)
exhibit the highest magnitudes of flood-related impact indicators, including Jember, Lumajang,
Pasuruan, and Sidoarjo. Cluster 1 (orange) encompasses districts with moderate values of
flood related impacts and limited infrastructure disruption, such as Kediri, Trenggalek, and
Ngawi. Cluster 2 and Cluster 3 representdistricts with moderate flood-impact indicator
values, characterized by intermediate levels of affected population and housing damage, including
Bondowoso, Bojonegoro, and Kota Pasuruan. Meanwhile, Cluster 4 (light green) consists of
districts characterized by relatively higher numerical values in specific flood-impact indicators,
particularly the number of inundated houses and housing damage. These patterns reflect
similarities in the numerical values of flood impact indicators across districts, rather than
similarities in geographical settings or flood mechanisms.

The spatial distribution of the clusters illustrates differences in flood-impact indicator profiles
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across administrative units in East Java. The observed cluster patterns are derived exclusively
from similarities in the reported flood-impact indicators and should not be interpreted as
evidence of underlying geographical settings or physical flood mechanisms. Instead, the results
highlight variations in the magnitude and combination of impacts—such as affected population and
infrastructure damage—as captured in the dataset. Accordingly, the cluster based spatial analysis
is intended to identify indicator based patterns in flood impacts and to provide preliminary
insights that may inform further investigation when complemented by additional data and
external validation, rather than to delineate validated flood hazard or risk zones.

After identifying the DBSCAN structure and its optimal parameters, the next stage applies
the K-Means++ algorithm to the same standardized dataset to evaluate whether a centroid-based
method produces comparable patterns

3.2 Clustering Analysis Using K-Means++ Algorithm

The K-Means++ algorithm was utilized to perform clustering on the flood disaster data of
East Java Province. This algorithm is an improved version of the traditional K-Means method,
providing better initialization of cluster centroids and minimizing the possibility of suboptimal
clustering results (Arthur & Vassilvitskii, 2007). Before clustering, the dataset was standardized
using the Z-score normalization method to ensure that all variables contributed equally, as each
variable had different measurement scales and magnitudes.

3.2.1 Determination of the Optimal Number of Clusters (Elbow Method)

To determine the optimal number of clusters (k), the Elbow Method was applied. This method
examines the relationship between the number of clusters and the total within-cluster sum of
squares (WSS). The WSS value decreases as k increases, but after a certain point, the rate of
decrease slows down, forming an “elbow” shape. This point represents the optimal number of
clusters, balancing accuracy and model simplicity.

Elbow Method to Determine the Optimal Number of Clusters

400
300
200

100

Total Within-Cluster Sum of Squares (WSS)

25 5.0 7.5 10.0
Number of Clusters (k)

Figure 3: Elbow

As illustrated in Figure 3, the inflection point occurs at k = 5, indicating that five clusters
provide the best trade-off between compactness and separation. Hence, the number of clusters
for this study was set to five.

To determine the appropriate number of clusters for the K-Means++ algorithm, the Elbow
Method was initially used, as illustrated in Figure 3. While the Within-Cluster Sum of Squares
(WSS) curve shows a gradual decline, an observable inflection point appears around k = 5.
However, because the elbow was not sharply defined, additional validation was conducted using
the Silhouette Index (SI) to strengthen the selection of the optimal number of clusters.
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After selecting k = 5, the K-Means++ algorithm was executed using the following parameters:
num_init = 10, max_iters = 100, and initializer = "kmeans++". Each observation was
assigned to the cluster whose centroid had the minimum Euclidean distance. The algorithm
iteratively minimized the total within-cluster variance until convergence was achieved.

3.2.2  Cluster Formation Using K-Means++

After determining the optimal number of clusters, the K-Means++ algorithm was applied to the
standardized dataset using the parameters num_ init = 10 and max__iters = 100. The clustering
results indicate that Cluster 1 consists of 28 districts/cities with lower to moderate values
across most flood impact indicators, including relatively small numbers of flood events, affected
populations, and housing damage. Cluster 2 comprises 5 districts/cities showing moderate levels
of flood-related impacts, characterized by increases in affected population (X4), housing damage
(X5-X7), and inundated houses (X8).

Cluster 3 includes 3 districts/cities that exhibit higher values in certain indicators, particularly
in terms of affected populations (X4) and inundated houses (X8), reflecting more significant
impacts on residents and housing. In contrast, Cluster 4 consists of a single district/city that
shows higher values in structural damage indicators (X5-X7) and public facility disruptions
(X9-X11), indicating a distinct pattern of infrastructure-related impacts. Finally, Cluster 5
represents one district/city experiencing extreme values in housing destruction (X5-X7) and
inundated houses (X8), highlighting a localized area with very high impact levels despite its more
concentrated affected area.

The resulting cluster label was then appended to the original dataset and exported as an
Excel file named Hasil _Cluster__Banjir _JawaTimur.zlsz. Table 3 summarizes the average values
of each numerical variable within each cluster.

Table 3: Average Values of Each Variable by Cluster (K-Means++, 5 Clusters)

Cluster X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 2412  0.092 0.014 4870.33 0.128 0.000  1.667 81245 0.041 0.082 0.000
2 3.876  0.221 0.087 10542.12 2.143 1.879  4.221 1924.67 0.067 0.054 0.032
3 10.333 0.667 1.000 48160.67 0.000  0.000  0.000 7603.00 0.333 0.000 0.333
4 6.459 0.503 0421 21673.45 4.887  3.214  7.558 3409.33 0.188 0.091 0.061
5 2.000 2.000 0.000 6405.00 10.000 10.000 16.000 1431.00 0.000 0.000 0.000

3.2.83  Qutlier Sensitivity in K-Means++ Results

Although the K-Means++ algorithm successfully partitioned the dataset into five clusters, the
results reveal a notable sensitivity to outliers. Because K-Means++ does not include a mechanism
for separating extreme observations from the main data structure, all districts—including those
with unusually high impact values—were forced into one of the predefined clusters.

This behavior resulted in two singleton clusters (Cluster 4 and Cluster 5 in Table 3) in the final
clustering result, each consisting of a single district that strongly influenced centroid computation
due to extreme values. The presence of these outliers increased within-cluster variance and
directly contributed to the lower Silhouette Index (0.2453) observed for K-Means++.

These findings indicate that the reduced validity of K-Means++ is not only a result of its
Euclidean and convex-cluster assumptions, but also its inability to isolate irregular or extreme-
impact districts—an issue that DBSCAN handles more effectively by assigning such observations
as noise.

3.3 Comparison Based on Silhouette Index

The Silhouette Index is a measure of how well each object lies within its cluster, with values
ranging from —1 to 1. A higher Silhouette Index indicates that the data points are well matched
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to their own cluster and poorly matched to neighboring clusters, signifying better-defined and
more cohesive groups.

Table 4: Comparison of Silhouette Index Values Between DBSCAN and K-Means++

Method Silhouette Index (1)
DBSCAN 0.3266
K-Means++ 0.2453

As shown in Table 4, the DBSCAN algorithm achieved a higher Silhouette Index value
(0.3266) compared to K-Means++ (0.2453). This result indicates that DBSCAN forms clusters
that are more cohesive and better separated than those produced by K-Means++. Therefore, it
can be concluded that, based on the Silhouette Index criterion, DBSCAN provides superior
clustering performance for identifying patterns in flood-impact indicators in East Java
Province.

3.4 Average Characteristics of Each Cluster (DBSCAN Results)

Table 5 presents the average values of all numerical flood indicators for each cluster generated by
the DBSCAN algorithm. These averages represent the general characteristics of each group of
districts or cities in East Java, classified according to similarities in their flood impact indicator
values

Table 5: Average Values of Each Variable by Cluster (DBSCAN)

Cluster X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
0 5.182 0.545 0.364 18617.82 1.455 0.909 7.636 2760.18 0.273 0.182 0.091
1 1.476 0.000 0.000 3259.14 0.000 0.000 0.000 704.05 0.000 0.000 0.000
2 2.500 0.000 0.000  690.00 0.000 0.000 0.000 186.50 0.000 1.000 0.000
3 6.000 1.000 0.000 20494.50 0.000 0.000 0.000 1341.50 0.000 0.000 0.000
4 8.000 0.000 0.000 4273.00 0.000 0.000 0.000 3241.50 0.000 0.000 0.000

Based on Table 5, the DBSCAN algorithm produced five distinct clusters representing
different levels of flood impact across East Java. Cluster 0 shows the highest flood impact, with
dominant values in X4 (affected population) and X8 (inundated houses), representing regions
consistently exposed to severe and widespread flooding. Cluster 1 contains districts with low
averages across all indicators, indicating areas experiencing light or infrequent flooding. Cluster
2 represents localized flood events, characterized by generally low values with a minor anomaly
in X10 (damaged religious facilities). Cluster 3 exhibits moderately high values, indicating
areas with significant population impact (X4) and infrastructure disruption. Cluster 4 contains
districts with substantial damage to residential structures, reflected by high values in X1 (flood
events) and X8 (total inundation).

4 Conclusion

This study conducted a methodological comparison between DBSCAN and K-Means++ in
clustering district level flood impact indicators in East Java. Using a unified preprocessing
pipeline and a fairness controlled evaluation, DBSCAN achieved a higher Silhouette Index
(0.3266) than K-Means++ (0.2453) when noise points were included in the computation. This
indicates that the density-based approach produces more coherent and internally consistent
clusters when the data exhibit irregular distributions and localized extremes.

The findings highlight that DBSCAN is better suited for multivariate disaster impact datasets
characterized by heterogeneous magnitudes and non-linear structures, whereas K-Means++
shows reduced stability under the same conditions due to its reliance on Euclidean distance
and convex-cluster assumptions. The results therefore clarify algorithmic behavior rather than
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geographical susceptibility, and the interpretation is restricted to methodological performance
rather than spatial hazard inference.

Several limitations remain in this study. First, the analysis relies on a single-year dataset,
which may not capture interannual variability in flood impacts. Second, only flood-impact
indicators were used, excluding environmental and infrastructural variables that could provide
more comprehensive context. Third, and importantly, the spatial interpretation of clusters
remains qualitative without quantitative validation through overlay analysis with external
geographical data such as topographic maps, river networks, or independent flood hazard
assessments. Consequently, the observed spatial patterns should be interpreted as indicator-based
groupings rather than validated flood risk zones.

Future work may address these limitations by incorporating multi-year temporal patterns,
integrating external validation layers, exploring hybrid clustering approaches, and expanding
variable sets to improve analytical robustness. Overall, this study contributes a transparent and
reproducible methodological comparison that can support more informed algorithm selection in
clustering-based flood impact analysis.
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