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Abstract

Dengue Hemorrhagic Fever (DHF) remains a serious global public health threat, with its
transmission dynamics strongly influenced by vector control strategies and human behavior.
This study constructs and analyzes a mathematical model based on a system of differential
equations to investigate the transmission dynamics of DHF by integrating three control
strategies: treatment, public awareness, and the release of Wolbachia-infected mosquitoes.
The basic reproduction number (R0) is derived using the Next Generation Matrix (NGM)
method and serves as a threshold parameter for disease spread. Numerical simulations show
that when R0 < 1, the system converges to the disease-free equilibrium, indicating that the
disease will eventually die out. Conversely, by adjusting the parameter δ such that R0 > 1,
the system becomes stable at the endemic equilibrium, implying the persistence of the disease
within the population. These findings highlight the importance of controlling key parameters
through integrated intervention strategies to reduce R0 below unity.
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1. Introduction
Dengue Hemorrhagic Fever (DHF) is an infectious disease that remains a serious threat to
global public health. The disease is caused by the dengue virus and is transmitted through the
bites of Aedes aegypti and Aedes albopictus mosquitoes [1]. The World Health Organization
(WHO) has reported a dramatic increase in global incidence, rising from 505,430 cases in 2000 to
approximately 14.6 million cases in 2024, with dengue now endemic in more than 100 countries [2].
In Indonesia, the epidemiological burden of dengue continues to increase with fluctuating patterns
influenced by multiple risk factors. Observational studies conducted in major cities such as
Jakarta and Medan indicate that the high risk of dengue transmission is strongly associated with
local environmental conditions [3], [4], [5]. Furthermore, data from the Indonesian Ministry of
Health recorded a significant surge in cases in 2024, reaching 257,271 cases with 1,461 deaths,
underscoring that Indonesia still faces substantial challenges in dengue outbreak management [6].

The transmission dynamics of dengue are highly complex, and control efforts involve a combi-
nation of medical and non-medical approaches. From a medical perspective, patient management
through crystalloid and colloid fluid therapy has proven effective in preventing shock and reducing
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mortality, although no specific antiviral treatment is currently available [7], [8]. From a non-
medical perspective, control strategies largely depend on human intervention and conventional
vector control measures. These include enhancing public awareness regarding environmental
sanitation to disrupt the mosquito life cycle [9], [10], as well as the application of chemical
insecticides to rapidly suppress vector populations [11]. However, the effectiveness of these
methods faces major challenges. Prolonged insecticide use has been shown to induce physiological
resistance in mosquitoes and poses potential risks to the environment [12]. The limited long-term
efficacy of conventional approaches highlights the urgent need for more sustainable biological
control strategies.

In response to the limitations of conventional methods, biocontrol innovation using Wolbachia
bacteria has emerged as a promising alternative. When introduced into Aedes aegypti mosquitoes,
Wolbachia can inhibit dengue virus replication [13], [14]. Field implementation of this strategy
has demonstrated encouraging results. A collaborative field study conducted by the World
Mosquito Program (WMP) and Universitas Gadjah Mada (UGM) in Yogyakarta showed that the
release of Wolbachia-infected mosquitoes reduced dengue incidence by up to 77% [15]. Numerous
mathematical models have also been developed to evaluate the effectiveness of Wolbachia, either
in combination with vaccination strategies [16], [17] or focusing solely on mosquito release
interventions [18], [19]. Nevertheless, most existing models examine these strategies in isolation
or primarily focus on the initial release phase.

A significant research gap remains in modeling the integration of these strategies into a
comprehensive control framework. Naaly et al. (2024) developed a model incorporating treatment,
public awareness, and vector control through insecticides [11]. The present study aims to modify
this framework by substituting chemical control with long-term Wolbachia-based biological
control. The novelty of this study lies not merely in variable substitution but in the alteration of
the system’s stability structure resulting from interaction dynamics among mosquito populations.

Unlike insecticides that directly eliminate mosquitoes, the Wolbachia mechanism operates
through biological competition and cytoplasmic incompatibility [20]. Under this mechanism,
mating between Wolbachia-infected males and wild females does not produce viable offspring, while
matings involving Wolbachia-infected females result in offspring carrying Wolbachia, regardless
of the male’s infection status [13], [18]. This phenomenon leads to a decline in the wild
mosquito population not through toxin-induced mortality, but through reproductive failure
during interactions with Wolbachia-infected mosquitoes. From a modeling perspective, this
process can be interpreted as biomass conversion, in which population dominance shifts from
wild mosquitoes (competent vectors) to Wolbachia-infected mosquitoes (incompetent vectors)
that become established within the ecosystem [21].

Therefore, this study constructs a novel SEITR–SEIW epidemiological model (Susceptible–
Exposed–Infected–Treated–Recovered for humans and Susceptible–Exposed–Infected–Wolbachia
for mosquitoes). The main theoretical contribution of this research lies in analyzing the dynamic
system behavior in which vector reduction is driven by inter-population mosquito interactions,
combined with human-centered interventions such as awareness and treatment. Through stability
analysis and numerical simulations, this study is expected to provide new insights into the
ecological stability thresholds required to achieve sustainable dengue elimination.

2. Methods
This study is a theoretical and computational investigation employing a deterministic math-
ematical model based on a system of ordinary differential equations (ODEs). The proposed
SEITR–SEIW model is developed as a modification of the classical SEIR–SEI framework by
integrating three main intervention strategies, namely human treatment, public awareness, and
biological vector control using Wolbachia bacteria within the mosquito population. The research
procedure is conducted through six systematic stages: (1) performing a comprehensive literature
review to formulate fundamental assumptions, define state variables, and determine model
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parameters and constraints; (2) constructing a mathematical model that accurately represents
the disease transmission dynamics; (3) identifying equilibrium points and deriving the basic
reproduction number (R0) using the Next Generation Matrix (NGM) method; (4) conducting
local stability analysis using the Routh–Hurwitz criteria to examine the solution behavior in
the neighborhood of the equilibrium points; (5) performing parameter sensitivity analysis to
identify key parameters that most significantly influence R0; and (6) carrying out numerical
simulations with selected parameter values to validate the theoretical analysis, utilizing Maple
2024 for symbolic computation and MATLAB 2025a to observe the time-series behavior of the
model. The parameter values used in the simulations are adopted from the global literature
and are not specifically calibrated to local incidence data. Therefore, the simulation results are
intended to provide a theoretical illustration of disease transmission dynamics rather than precise
quantitative predictions for a particular region.

In formulating the SEITR–SEIW model, the total population is classified according to
individual health and infection status. The total human population, denoted by Nh, is divided
into five compartments: susceptible humans (Sh), exposed humans who are infected but not
yet infectious during the incubation period (Eh), infectious humans capable of transmitting the
dengue virus (Ih), humans undergoing medical treatment due to dengue infection (Th), and
recovered humans (Rh). Meanwhile, the total mosquito population, denoted by Nv, consists
of susceptible wild mosquitoes (Sm), exposed wild mosquitoes in the incubation stage (Em),
infectious wild mosquitoes capable of transmitting the virus (Im), and mosquitoes carrying
Wolbachia bacteria (W ).

The model is constructed based on a set of assumptions adapted from standard epidemiological
modeling frameworks. The human population is assumed to be constant under the disease-free
equilibrium (DFE) condition [11], where the natural birth rate is equal to the natural death rate,
and migration is neglected. All human births are assumed to enter the susceptible compartment.
Disease transmission occurs via a vector-borne mechanism, where susceptible humans become
infected only through bites from infectious mosquitoes, and susceptible mosquitoes become
infected by biting infectious humans [2].

Regarding medical intervention, infected humans are assumed to undergo hospital-based
treatment to achieve recovery. Individuals in the treatment compartment are assumed to be
non-infectious due to hospitalization in facilities with strict vector isolation. According to
global clinical management guidelines [22], patients in the viremic phase must be protected
from mosquito bites by using physical barriers, such as bed nets, or by being placed in enclosed
rooms to prevent nosocomial transmission. Recovered humans are assumed to acquire temporary
immunity before returning to the susceptible class [23]. In contrast, infected wild mosquitoes
are assumed to remain infectious for life and do not recover [18]. The model also incorporates
disease-induced mortality, assuming that the mortality rate among treated individuals is lower
than that of untreated individuals due to supportive medical intervention [11]. Due to disease-
induced mortality, the assumption of a constant human population is relaxed under endemic
conditions, leading to a decline in the total human population.

Mosquitoes infected with Wolbachia (W ) are assumed to be incompetent vectors for dengue
transmission due to viral replication inhibition [24]. Competitive interactions occur between
the Wolbachia-infected mosquito population and the wild mosquito population (Sm, Em, Im).
Based on the Cytoplasmic Incompatibility (CI) mechanism, cross-mating between these two
populations leads to egg hatching failure, which is represented in the model as a reduction rate
of the wild mosquito population proportional to its interaction with the Wolbachia-infected
population [20]. The Wolbachia population is assumed to be established in the environment
through controlled release and natural recruitment, supported by field evidence of successful
dissemination in Yogyakarta [25].

Based on the compartment definitions and assumptions described above, the disease trans-
mission dynamics are as follows.
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The susceptible human population (Sh) increases through a constant recruitment rate Λh

and through the return of recovered individuals (Rh) who become susceptible again due to
waning immunity at rate ηRh. Conversely, this population decreases due to natural mortality at
a rate µhSh and transitions to the exposed compartment (Eh) following infection. Individuals
enter the exposed human class through disease transmission with an incidence rate given by
(1−α)Bmh pShIm

Nv
, where α represents the efficacy of public awareness in reducing mosquito bites,

Bmh is the transmission probability per bite from mosquitoes to humans, p denotes the mosquito
biting rate, and Im

Nv
is the proportion of infectious wild mosquitoes in the total vector population.

Individuals in the exposed class (Eh) subsequently progress to the infectious class (Ih) at rate
khEh, or are removed due to natural mortality at rate µhEh.

The infectious human population (Ih) may enter the treatment compartment (Th) at rate
ϕIh. This population also decreases due to natural mortality and disease-induced mortality at
a combined rate of (σ1 + µh)Ih. Furthermore, individuals undergoing treatment (Th) recover
and move to the recovered class (Rh) at a rate γTh, or die due to natural and disease-induced
mortality at a total rate of (σ2 + µh)Th. The recovered population (Rh) decreases due to natural
mortality and loss of immunity, causing individuals to return to the susceptible class.

The susceptible wild mosquito population (Sm) increases through a constant recruitment rate
Λm and decreases due to natural mortality at a rate µmSm. Disease transmission to mosquitoes
occurs when susceptible mosquitoes bite infectious humans (Ih), leading to a transition from
Sm to the exposed mosquito class (Em) at an infection rate given by Bhm pSmIh

Nh
, where Bhm

denotes the transmission probability per bite from humans to mosquitoes, and Ih
Nh

represents
the proportion of infectious humans in the total human population. Individuals in the exposed
mosquito class (Em) then progress to the infectious mosquito class (Im) at rate kmEm, or decrease
due to natural mortality at rate µmEm. The infectious wild mosquito population (Im) decreases
due to natural mortality at the rate µmIm.

As a form of biological control, the model incorporates a Wolbachia-infected mosquito
compartment (W ), which is assumed to have an input rate of (1 − Λm) and a natural mortality
rate of µwW . The presence of Wolbachia is assumed to exert additional mortality pressure across
all life stages of wild mosquitoes. Consequently, the susceptible, exposed, and infectious wild
mosquito populations (Sm, Em, and Im) experience reductions proportional to their interactions
with the Wolbachia population, represented by the terms δWSm, δWEm, and δWIm, respectively.

The interactions between these compartments are visualized in the transfer diagram shown
in Fig. 1.

Sh Eh Ih Th Rh

Sm Em Im

W

Λh
(1 − α)BmhpShIm

Nm khEh ϕIh γTh

ηRh

µhSh µhEh (σ1 + µh)Ih (σ2 + µh)Th µhRh

Λm
BhmpSmIh

Nh kmEm

(µm + δW )Sm (µm + δW )Em (µm + δW )Im

1 − Λm

µwW

Figure 1: Compartmental diagram of the SEITR–SEIW model.
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Based on the transmission dynamics (Fig. 1) described above, the nonlinear system of
differential equations representing the model is given as follows.

dSh
dt

= Λh + ηRh − (1 − α)BmhpShIm
Nv

− µhSh

dEh
dt

= (1 − α)BmhpShIm
Nv

− (kh + µh)Eh

dIh
dt

= khEh − (ϕ+ σ1 + µh)Ih
dTh
dt

= ϕIh − (γ + σ2 + µh)Th
dRh
dt

= γTh − (η + µh)Rh
dSm
dt

= Λm − BhmpSmIh
Nh

− (δW + µm)Sm

dEm
dt

= BhmpSmIh
Nh

− (km + δW + µm)Em

dIm
dt

= kmEm − (δW + µm)Im
dW

dt
= (1 − Λm) − µwW

(1)

The model is subject to the nonnegative initial conditions Sh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥
0, Th(0) ≥ 0, Rh(0) ≥ 0, Sm(0) ≥ 0, Em(0) ≥ 0, Im(0) ≥ 0,W (0) ≥ 0. To simplify the analysis,
new variables are introduced in the form of population proportions, defined as sh = Sh

Nh
, eh =

Eh
Nh
, ih = Ih

Nh
, th = Th

Nh
, rh = Rh

Nh
, sm = Sm

Nv
, em = Em

Nv
, im = Im

Nv
, w = W

Nv
. Accordingly, the total

population proportions satisfy sh + eh + ih + th + rh = 1 and sm + em + im + w = 1.
Expressed in terms of these normalized variables, the model system Eq. (1) can be rewritten

in proportional form as follows:

dsh
dt

= Λh + ηrh − (1 − α)Bmhpshim − µhsh

deh
dt

= (1 − α)Bmhpshim − (kh + µh)eh
dih
dt

= kheh − (ϕ+ σ1 + µh)ih
dth
dt

= ϕih − (γ + σ2 + µh)th
drh
dt

= γth − (η + µh)rh
dsm
dt

= Λm −Bhmpsmih − (δw + µm)sm
dem
dt

= Bhmpsmih − (km + δw + µm)em
dim
dt

= kmem − (δw + µm)im
dw

dt
= (1 − Λm) − µmw

(2)

With initial conditions sh(0) ≥ 0, eh(0) ≥ 0, ih(0) ≥ 0, th(0) ≥ 0, rh(0) ≥ 0, sm(0) ≥ 0, em(0) ≥
0, im(0) ≥ 0, w(0) ≥ 0.
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3. Results and Discussion
This section presents the main analytical and numerical findings of the proposed SEITR–SEIW
model. We first establish the biological feasibility of the system by proving positivity and bound-
edness of solutions. Next, the equilibrium points are characterized and the basic reproduction
number R0 is derived as a key threshold parameter governing transmission. These results are then
used to study the local stability of the disease-free and endemic equilibria. Finally, parameter
sensitivity analysis and numerical simulations are provided to quantify the influence of key
parameters and to illustrate the model dynamics under different intervention scenarios.

3.1. Positivity and Boundedness of Solutions
Since system Eq. (2) represents model variables normalized into proportions, the dynamical
analysis is conducted within a domain bounded between zero and one. The state variables are
defined as

X = (sh, eh, ih, th, rh, sm, em, im, w).

Theorem 3.1. Let X(t) =
(
sh(t), eh(t), ih(t), th(t), rh(t), sm(t), em(t), im(t), w(t)

)
be a

solution of the differential equation system Eq. (2) with initial condition X(0) ∈ R9
+. Then,

for all t ≥ 0, the solution remains nonnegative and bounded. In other words, there exists
a biologically feasible set Ω ⊂ R9

+ such that X(t) ∈ Ω for all t ≥ 0, and Ω is positively
invariant.

Proof. To establish the positivity of solutions, observe that each equation in system Eq. (2)
is constructed such that whenever a state variable attains the value zero, its time derivative
is nonnegative. For instance, when sh = 0, it follows that

dsh
dt

∣∣∣∣
sh=0

≥ 0.

Similar arguments apply to all remaining state variables in both the human and mosquito
populations. Consequently, the solution trajectories remain in R9

+ for all t ≥ 0.
The boundedness of solutions follows from the system’s structural properties. Human
compartments are modeled as proportions, implying that each human-related variable
is naturally bounded above by one. Meanwhile, the dynamics of the mosquito popula-
tion, including the Wolbachia-infected mosquitoes, are governed by recruitment, mortality,
and competitive interaction processes, which prevent unbounded growth of the solutions.
Therefore, there exists a positive constant M such that

0 ≤ sm(t), em(t), im(t), w(t) ≤ M for all t ≥ 0.

Hence, all solutions of the system remain within the bounded region Ω, and the model
admits biologically meaningful solutions that are both positive and bounded. □

3.2. Equilibrium Points and Basic Reproduction Number (R0)
Equilibrium points are obtained by setting the right-hand sides of the system Eq. (2) equal to
zero. Following this approach, two types of equilibrium points are identified: the disease-free
equilibrium (DFE)

E0 = (sh0, eh
0, ih

0, th
0, rh

0, sm
0, em

0, im
0, w0) =

Λh
µh
, 0, 0, 0, 0, Λm

δ(1−Λm)
µw

+ µm
, 0, 0, δ(1 − Λm)

µw


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and the Endemic Equilibrium (EE)

E∗ = (sh∗, eh
∗, ih

∗, th
∗, rh

∗, sm
∗, em

∗, im
∗, w∗)

where

sh
∗ = Λh

µh
+ ih

∗

µh

(
ηγϕ

G2
− G1
kh

)
eh

∗ = (ϕ+ σ1 + µh)ih∗

kh

ih
∗ = µhG1G2G3

2(km +G3) −G2ΛhΛmkhkmBhmBmhp2(1 − α)
ΛmkmBhmBmhp2(1 − α)(ηγϕkh −G1G2) −BhmpµhG1G2G3(km +G3)

th
∗ = ϕih

∗

(γ + σ2 + µh)

rh
∗ = γϕih

∗

G2

sm
∗ = Λm

Bhmpih
∗ +G3

em
∗ = ΛmBhmpih∗

(Bhmpih∗ +G3)(km +G3)

im
∗ = ΛmkmBhmpih∗

(Bhmpih∗ +G3)(km +G3)G3

w∗ = 1 − Λm
µm

with

G1 = (kh + µh)(ϕ+ σ1 + µh), G2 = (η + µh)(γ + σ2 + µh), G3 = δ(1 − Λm)
µw

+ µm

Next, we derive the basic reproduction number (R0). In this process, only the infected
compartments of the model, namely eh, ih, em, and im, are considered. We then define the
transition vector describing the movement of individuals among the infected compartments. Let
F denote the rate of appearance of new infections, and let V represent the rate of transfer of
individuals into and out of the infected compartments.

F =


(1 − α)Bmhpshim

0
Bhmpsmih

0

 , V =


(kh + µh)eh

−kheh + (ϕ+ σ1 + µh)ih(
km + δ(1−Λm)

µw
+ µm

)
em

−kmem +
(
δ(1−Λm)

µw
+ µm

)
im


By defining F and V as the Jacobian matrices of F and V evaluated at E0, respectively, we

obtain the Next Generation Matrix

FV −1 =


0 0 K1 K2

0 0 0 0
K3 K4 0 0
0 0 0 0


where

K1 = km(1 − α)BmhpΛh
µh

(
km + δ(1−Λm)

µw
+ µm

) (
δ(1−Λm)

µw
+ µm

) K3 = khBhmpΛm
(kh + µh)(ϕ+ σ1 + µh)

(
δ(1−Λm)

µw
+ µm

)
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K2 = (1 − α)BmhpΛh
µh

(
δ(1−Λm)

µw
+ µm

) K4 = BhmpΛm
(ϕ+ σ1 + µh)

(
δ(1−Λm)

µw
+ µm

)

The basic reproduction number is defined as the largest eigenvalue of the matrix FV −1. Thus,
we obtain:

R0 =

√√√√√ khkm(1 − α)BmhBhmp2ΛhΛm
µh(kh + µh)(ϕ+ σ1 + µh)

(
km + δ(1−Λm)

µw
+ µm

) (
δ(1−Λm)

µw
+ µm

)2

3.3. Stability Analysis
In this section, the local stability of the model’s equilibrium points is investigated. The local
stability analysis is performed using a linearization about the equilibrium points. This dynamical
analysis technique is a standard procedure in mathematical epidemiology for determining the
asymptotic behavior of the system, as applied in recent studies by Nurkhanifah et al. [26].
Technically, the analysis is performed by evaluating the Jacobian matrix of the system at each
equilibrium point Ek =

(
skh, e

k
h, i

k
h, t

k
h, r

k
h, s

k
m, e

k
m, i

k
m, w

k
)
, which is generally given by:

J(Ek) =



−(Q1 + µh) 0 0 0 η 0 0 −Q2 0
Q1 −Q5 0 0 0 0 0 Q2 0
0 kh −Q6 0 0 0 0 0 0
0 0 ϕ −Q7 0 0 0 0 0
0 0 0 γ −Q8 0 0 0 0
0 0 −Q3 0 0 −Q4 −Q9 0 0 −δsm
0 0 Q3 0 0 Q4 −km −Q9 0 −δem
0 0 0 0 0 0 km −Q9 −δim
0 0 0 0 0 0 0 0 −µw


where

Q1 = (1 − α)Bmhpim Q4 = Bhmpih Q7 = γ + σ2 + µh

Q2 = (1 − α)Bmhpsh Q5 = kh + µh Q8 = η + µh

Q3 = Bhmpsm Q6 = ϕ+ σ1 + µh Q9 = δ(1 − Λm)
µw

+ µm

The stability analysis is conducted in the neighborhood of the equilibrium points E0 and
E∗. The analysis begins with the disease-free equilibrium E0, since the stability of E∗ can
subsequently be derived from the stability conditions of E0. To examine the local stability of E0,
this equilibrium point is substituted into the Jacobian matrix to determine the eigenvalues that
govern its stability properties. After substituting E0, the Jacobian matrix J(E0) is obtained.

J(E0) =



−µh 0 0 0 η 0 0 −D7 0
0 −D1 0 0 0 0 0 D7 0
0 kh −D2 0 0 0 0 0 0
0 0 ϕ −D3 0 0 0 0 0
0 0 0 γ −D4 0 0 0 0
0 0 −BhmpΛm

D5
0 0 −D5 0 0 − δΛm

D5

0 0 BhmpΛm

D5
0 0 0 −km −D5 0 0

0 0 0 0 0 0 km −D5 0
0 0 0 0 0 0 0 0 −µw


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where

D1 = kh + µh D2 = ϕ+ σ1 + µh D3 = γ + σ2 + µh

D4 = η + µh D5 = δ(1 − Λm)
µw

+ µm D6 = (1 − α)BmhpΛh
µh

The eigenvalues (λ) of J(E0) are obtained by solving the characteristic equation |J(E0)−λI| =
0, resulting in the following equation:

(−µh − λ)(−D3 − λ)(−D4 − λ)(−D5 − λ)(−µw − λ)(λ4 + Uλ3 +Xλ2 + Y λ+ Z) = 0 (3)

where the coefficients are defined as:

U = km + kh + 2µm + 2µh + ϕ+ σ1 + 2
(
δ(1 − Λm)

µw

)
X =

(
km + δ(1 − Λm)

µw
+ µm

) (
δ(1 − Λm)

µw
+ µm

)
+

(2µh + kh + ϕ+ σ1)
(
km + 2δ(1 − Λm)

µw
+ 2µm

)
+ (kh + µh)(ϕ+ σ1 + µh)

Y = (kh + 2µh + ϕ+ σ1)
(
km + δ(1 − Λm)

µw
+ µm

) (
δ(1 − Λm)

µw
+ µm

)
+

(kh + µh)(ϕ+ σ1 + µh)
(
km + 2δ(1 − Λm)

µw
+ 2µm

)
Z = khkm(1 − α)BmhBhmp2ΛhΛm

µh(kh + µh)(ϕ+ σ1 + µh)
(
km + δ(1−Λm)

µw
+ µm

) (
δ(1−Λm)

µw
+ µm

)2 − 1

It is evident that five eigenvalues from Eq. (3) are negative:

λ1 = −µh, λ2 = −γ − σ2 − µh, λ3 = −η − µh, λ4 = −δ(1 − Λm)
µw

− µm, λ5 = −µw.

Next, the remaining eigenvalues are determined from the characteristic Eq. (4).

λ4 + Uλ3 +Xλ2 + Y λ+ Z = 0 (4)

The coefficients U , X, and Y are positive. Therefore, the main focus of the stability analysis
lies on the constant term Z, which is directly related to the epidemiological threshold. Since
the basic reproduction number R0 in vector-borne disease models is commonly defined as the
geometric mean of the transmission cycle (human–mosquito–human), the relationship between
the coefficient Z and the basic reproduction number is given by Z = R2

0 − 1.
Based on the proposed model’s structure, the Wolbachia intervention affects the system

through a dual control mechanism: reducing the recruitment of wild mosquitoes and suppressing
their reproductive potential via competitive interactions, as governed by the parameter δ. This
mechanism is reflected in the formulation of R0, where w = 1−Λm

µw
represents the equilibrium

population of Wolbachia-infected mosquitoes.
According to the Routh–Hurwitz criterion [27], since all other coefficients are positive, the

condition for all roots of the characteristic equation to have negative real parts (i.e., for the
system to be stable) reduces to Z < 0. This condition is equivalent to

R2
0 − 1 < 0 ⇐⇒ R0 < 1.

This result highlights the crucial role of the recruitment strategy. By setting the recruitment
rate of Wolbachia-infected mosquitoes to (1 − Λm), the intervention not only increases the
population w, which suppresses the wild mosquito population through biological interactions,
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but also competitively reduces the initial input of wild mosquitoes (Λm) into the system. If the
proportion of Wolbachia release is sufficiently large to drive R0 below unity, then the disease-free
equilibrium E0 is locally asymptotically stable, implying that the disease will eventually be
eliminated from the population.

Conversely, when the intervention parameters are insufficient such that R0 > 1, the stability
of E0 is lost because the condition Z < 0 is no longer satisfied. This instability indicates that
even a small perturbation, such as the introduction of a single infected individual, can drive the
system away from the disease-free state.

Given that the population system is bounded and that the endemic equilibrium E∗ exists
positively only when R0 > 1, the asymptotic behavior of the system shifts toward the endemic
equilibrium. Consequently, it can be concluded that the equilibrium point E∗ is locally asymp-
totically stable when R0 > 1. This condition represents a scenario in which the control strategies
fail to reduce the transmission rate below the critical threshold, leading to disease persistence
within the population and convergence to a constant endemic level, as represented by the state
variables at E∗.

3.4. Parameter Sensitivity Analysis
In this section, the parameters that have the most significant influence on the basic reproduction
number R0 are identified. To determine the dominant parameters affecting the disease transmis-
sion dynamics, the normalized sensitivity indices of R0 with respect to the model parameters are
computed. This sensitivity analysis approach is a standard method in mathematical epidemiology
for formulating efficient control strategies, as applied by Resmawan and Yahya [28] in their
analysis of a COVID-19 transmission model. The formula for computing the sensitivity index of
a parameter is given as follows.

CR0
ψ = ∂R0

∂ψ
× ψ

R0

where ψ : Λh,Λm, Bmh, Bhm, α, p, kh, km, µm, µh, µw, ϕ, σ1, and δ.

Table 1: Model parameters, descriptions, values, and references
Parameter Description Value Reference

Λh Human recruitment rate (/day) 0.0000457 Assumption
Λm Wild mosquito recruitment rate (/day) 0.6 [18]
µh Natural death rate of humans (/day) 0.0000457 [11]
µm Natural death rate of mosquitoes (/day) 0.0714 [17]
η Immunity waning rate in recovered hu-

mans (/day)
0.011 [11]

α Effectiveness coefficient of public aware-
ness (/day)

0.1 [11]

γ Human recovery rate (/day) 0.14286 [11]
p Mosquito biting rate (/day) 0.5 [11]
ϕ Rate of infected individuals receiving

treatment (/day)
0.1 [11]

σ1 Disease-induced death rate of infected
humans (/day)

0.01 [11]

σ2 Disease-induced death rate of treated
humans (/day)

0.005 Assumption

δ Competitive interaction coefficient
(/day)

0.07 Assumption

Bmh Transmission probability from infected
mosquitoes to susceptible humans

0.75 [11]

Bhm Transmission probability from infected
humans to susceptible mosquitoes

0.375 [11]

kh Incubation rate in humans (/day) 0.1667 [11]
km Incubation rate in mosquitoes (/day) 0.1428 [11]
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The selection of the human recruitment rate parameter Λh is based on the assumption that the
total human population remains constant over time. By adopting the natural human mortality
rate µh = 0.0000457 from [11], population balance is maintained by setting Λh = µh = 0.0000457.
This assumption ensures that human births compensate for natural deaths, resulting in a closed
and demographically stable population.

Furthermore, the choice of the disease-induced death rate for treated individuals, σ2, is
motivated by the assumption that individuals receiving medical treatment experience a lower
mortality risk compared to untreated infectious individuals. By adopting the disease-induced
death rate for infectious humans σ1 = 0.01 from [11], the parameter σ2 is set to 0.005, reflecting
the protective effect of medical intervention.

Meanwhile, the competitive interaction coefficient δ is determined through a threshold
analysis aimed at identifying the critical stability condition of the system, namely when the
basic reproduction number satisfies R0 = 1 (equivalently, Z = 0). Analytical calculations yield
δ = 0.045 as the critical threshold value. Specifically, when δ = 0.045, the system satisfies R0 = 1;
for δ < 0.045, R0 > 1 indicating disease persistence; whereas for δ > 0.045, R0 < 1 implying
disease elimination. Consequently, the parameter δ is varied to examine the model’s dynamic
behavior.

From a theoretical perspective, the parameter δ lies within the interval 0 ≤ δ ≤ 1. However,
to preserve biological realism, the analysis is restricted to relatively small values, namely δ < 0.1.
Larger values of δ would represent near-perfect suppression of wild mosquito reproduction,
which is biologically implausible. In natural settings, cytoplasmic incompatibility induced by
Wolbachia does not completely eliminate reproductive success in wild mosquito populations,
as it is influenced by environmental factors, population heterogeneity, and mating dynamics.
Therefore, restricting δ < 0.1 allows the model to capture strong yet realistic competitive effects
while maintaining stability and interpretability of the system dynamics.

Based on the derived expression of R0 and the parameter values listed in Table 1, normalized
sensitivity indices are computed for each parameter. The resulting numerical values are presented
in Table 2.

Table 2: Sensitivity indices of model parameters with respect to R0

Parameter Value Sensitivity Impact on R0
Index

Λm 0.6 2.254017 Positive (Increasing R0)
δ 0.15 -1.169345 Negative (Reducing R0)
µw 0.0714 1.169345 Positive (Increasing R0)
p 0.5 1.000000 Positive (Increasing R0)
µh 0.0000457 -0.500345 Negative (Reducing R0)
Λh 0.0000457 0.500000 Positive (Increasing R0)
Bmh 0.75 0.500000 Positive (Increasing R0)
Bhm 0.375 0.500000 Positive (Increasing R0)
ϕ 0.1 -0.454357 Negative (Reducing R0)
km 0.1428 0.382248 Positive (Increasing R0)
µm 0.0714 -0.212903 Negative (Reducing R0)
α 0.1 -0.055556 Negative (Reducing R0)
σ1 0.01 -0.045436 Negative (Reducing R0)
kh 0.1667 0.000137 Positive (Increasing R0)

The sensitivity analysis results indicate that the sensitivity indices of the parameters δ, µh,
ϕ, µm, α, and σ1 have a negative impact on R0. This implies that increasing the values of these
parameters decreases the basic reproduction number. Conversely, the sensitivity indices of the
parameters Λm, µw, p, Λh, Bmh, Bhm, km, and kh exhibit a positive impact on R0, meaning that
an increase in these parameters results in a higher value of the basic reproduction number.

Furthermore, it can be observed that the parameters Λm, δ, and µw exert the most significant
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influence on variations in R0. This finding suggests that the most effective strategy to mitigate
dengue transmission should focus on controlling mosquito populations through a Wolbachia-based
intervention. Such efforts can be implemented by reducing the recruitment rate of wild mosquitoes
(Λm), regulating the natural death rate of Wolbachia-infected mosquitoes (µw), and increasing
the intensity of interactions between Wolbachia-infected and wild mosquito populations (δ).
Enhancing this interaction is crucial for suppressing the wild mosquito population, which is the
primary vector for dengue transmission.

3.5. Numerical Simulation
In this section, numerical simulations are presented in MATLAB R2025a to illustrate the
dynamics of dengue transmission under the proposed SEITR–SEIW model. The initial population
proportions used in the simulations are given by

(sh, eh, ih, th, rh, sm, em, im, w) = (0.1, 0.2, 0.4, 0.3, 0.1, 0.1, 0.2, 0.4, 0.3).

The first numerical simulation is conducted using the parameter values listed in Table 1.
Based on the computation, the basic reproduction number is obtained as R0 = 0.615. Since
R0 < 1, this result indicates that dengue transmission cannot be sustained in the population, and
the system evolves toward the disease-free equilibrium. According to the local stability analysis,
when R0 < 1, the disease-free equilibrium is locally asymptotically stable. Consequently, the
solution trajectories converge to the disease-free equilibrium E0, given by

E0 = (s0
h, e

0
h, i

0
h, t

0
h, r

0
h, s

0
m, e

0
m, i

0
m, w

0) = (1, 0, 0, 0, 0, 1.3, 0, 0, 5.6).

The second numerical simulation is performed by reducing the interaction intensity between
wild and Wolbachia-infected mosquitoes, achieved by setting δ to 0.01. Under this scenario, the
computed basic reproduction number increases to R0 = 3.35. Since R0 > 1, this result indicates
the occurrence of a dengue outbreak. From the stability analysis, when R0 > 1, the endemic
equilibrium is locally asymptotically stable. The system trajectories converge to the endemic
equilibrium E∗, which is given by

E∗ = (s∗
h, e

∗
h, i

∗
h, t

∗
h, r

∗
h, s

∗
m, e

∗
m, i

∗
m, w

∗) = (0.09, 0.03, 0.046, 0.032, 0.4, 4.2, 0.2, 0.22, 5.6).

(a) (b)
Figure 2: Simulation of the system dynamics in the human population

Under the DFE condition (Fig. 2a), the exposed, infected, and treated human populations
appear only in the early period and subsequently decline to zero. The recovered human population
also dominates at the initial stage; however, this dominance is not sustained, and the population
eventually decreases to zero. In contrast, the susceptible human population increases gradually
and ultimately dominates the system, indicating that disease transmission cannot be maintained
in the long term. This behavior confirms that the system converges to the disease-free equilibrium.
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Under the EE condition (Fig. 2b), all human population compartments converge to positive
equilibrium values. The recovered human population dominates at the initial stage, but decreases
over time without approaching zero. The susceptible human population does not dominate the
system at the early stage due to ongoing transmission; however, as time progresses, it becomes
dominant again as the recovered population declines. Overall, the human population decreases
due to disease-induced mortality. The persistence of all human population compartments indicates
that dengue infection remains widespread, albeit at a relatively low endemic level.

(a) (b)
Figure 3: Simulation of the system dynamics in the vector population

Under the DFE condition (Fig. 3a), the exposed and infectious wild mosquito populations
decline toward zero, while the Wolbachia-infected mosquito population increases and becomes
dominant. This dominance effectively suppresses virus transmission from mosquitoes to humans,
thereby interrupting the transmission cycle. Under the EE condition (Fig. 3b), all mosquito
population compartments converge to positive equilibrium values. Although the exposed and
infectious wild mosquito populations remain at relatively low levels due to the dominance of
Wolbachia-infected mosquitoes, transmission is not completely eliminated. This persistence is
reflected in the continued presence of human infections, as shown in Fig. 2b.

Overall, the comparison between Fig. 2 and Fig. 3 highlights that human population dynamics
are strongly driven by mosquito population dynamics as the disease vector. The dominance
of Wolbachia-infected mosquitoes effectively suppresses the infectious mosquito population and
reduces the intensity of dengue transmission.

3.6. Discussion
In this section, a comparison is presented between the present study and previous related research.
Based on the results obtained, the proposed SEITR–SEIW model can be regarded as an extension
of earlier studies. Structurally, this model shares similarities with the work in [11], which
investigated the effects of mass awareness, treatment, and insecticide use on the transmission
dynamics of Dengue Fever. The main distinction between the present study and the model in [11]
lies in the explicit incorporation of Wolbachia-infected mosquitoes. In [11], the reduction in
mosquito populations within the compartments Sm, Em, and Im was modeled as direct mortality
resulting from insecticide application. In contrast, the model developed in this study introduces
an additional compartment representing Wolbachia-infected mosquitoes. The presence of this
compartment alters overall mosquito population dynamics, leading to a reduction in the wild
mosquito population (Sm, Em, and Im) through interactions with Wolbachia-infected mosquitoes.
The inclusion of the Wolbachia mosquito compartment is intended to explicitly capture its
influence on the dynamics of the wild mosquito population. This aspect is crucial, since in the
proposed model the decline in wild mosquito populations is governed by interaction terms of the
form δSmW , δEmW , and δImW , which directly depend on the size of the Wolbachia-infected
mosquito population (W ). Consequently, the explicit representation of the W compartment
is essential to consistently and quantitatively describe the competitive effects between wild
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mosquitoes and Wolbachia-infected mosquitoes.
The analytical results obtained from the extended SEITR–SEIW model indicate that the

combined implementation of treatment, enhanced mass awareness, and the release of Wolbachia-
infected mosquitoes is effective in reducing the transmission rate of Dengue Fever. Therefore,
this comparative analysis demonstrates that the present study successfully extends existing
models into a new modeling framework that incorporates alternative and complementary control
strategies.

4. Conclusion
In this article, we developed a SEITR–SEIW model consisting of nine compartments, namely
susceptible humans, exposed humans, infected humans, treated humans, recovered humans, sus-
ceptible mosquitoes, exposed mosquitoes, infected mosquitoes, and Wolbachia-infected mosquitoes.
The proposed SEITR–SEIW model admits two equilibrium points: the disease-free equilibrium
and the endemic equilibrium. The disease-free equilibrium is locally asymptotically stable when
R0 < 1, whereas the endemic equilibrium is locally asymptotically stable when R0 > 1. The
results of the sensitivity analysis indicate that the parameters Λm, δ, and µw have a significant
influence on the basic reproduction number R0. These findings provide theoretical support for
the idea that mosquito population control, particularly through mechanisms associated with
Wolbachia-infected mosquitoes, may play an important role in suppressing the transmission of
Dengue Fever. Nevertheless, this interpretation remains conceptual, as the developed model does
not incorporate economic costs, operational feasibility, or practical implementation constraints
in real-world settings.

The model proposed in this study still relies on certain simplifying assumptions in representing
the dynamics of Wolbachia-infected mosquito populations. n particular, the impact of interactions
between wild and Wolbachia-infected mosquitoes on wild mosquito recruitment is not explicitly
modeled; instead, it is represented indirectly through variations in recruitment parameters.
Therefore, future research may extend the current framework by explicitly linking the interaction
intensity between these two mosquito populations to the recruitment process, thereby providing
a more comprehensive and biologically realistic representation of the system.
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