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Abstract

This article discusses a single-prey and single-predator model by incorporating two behavioral
mechanisms, namely group defense in prey modeled through a Holling type IV response
function and cooperative hunting in predators represented by a predation rate dependent
on predator density. Through system analysis, up to four equilibrium points are obtained
mathematically. Among these, three equilibria are biologically feasible under typical parameter
values, corresponding to total extinction, predator extinction, and coexistence states. The
total extinction equilibrium is always unstable, while the stability of the predator extinction
and coexistence equilibria depends on the predator attack rate. Numerical simulations in the
form of phase portraits were obtained by varying the parameters related to the predator attack
rate. The simulation results show various dynamic behaviors, including predator extinction,
asymptotically stable coexistence between prey and predators, and bistability. Numerical
continuation analysis identifies a subcritical Hopf bifurcation at o = 0.4595, confirmed by a
positive first Lyapunov coefficient, as well as a saddle-node at a = 0.0478 and transcritical
bifurcations o = 3.0505 that alter equilibrium structure and stability. These findings
demonstrate how prey group defense and predator cooperation can generate bistability and
abrupt transitions between extinction and coexistence, accompanied by damped oscillatory
dynamics near critical parameter values.
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1. Introduction

Ecology studies how organisms interact with their environment, including how interspecies
relationships form adaptive mechanisms in ecosystems [1]. In the context of predator—prey
interactions, predation pressure acts as a powerful selective force for prey[2]. Johnson and Belk
[3] explain that prey species have evolved to develop various adaptive traits to avoid predation,
ranging from reducing the likelihood of detection, increasing escape ability, to developing
morphology that can withstand attacks or deceive predators.

One form of adaptation in predators is cooperative hunting. Several animals exhibit coopera-
tive hunting behavior, for example, wild dogs, lions, chimpanzees, birds, ants, spiders, crocodiles,
eagles, and several other species [4]. Lions hunt in groups, dividing roles to surround, distract,
and restrain the movement of zebras, thereby increasing the chances of a successful hunt. In
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addition, male lions also use ambush strategies in dense vegetation to approach prey without
being seen, while females hunt in open areas [5]. Lions are more active at night and often move
to dense vegetation around water sources to ambush prey such as zebras [6]. In contrast, zebras
employ a group defense strategy by forming tight formations, increasing collective vigilance, and
undertaking daily migrations (diel migration) to avoid predators, thereby significantly reducing
the risk of encounters with lions [7]. Zebras approach water sources during the day to feed,
then move away at night, adjusting their spatiotemporal patterns to predator activity. This
spatiotemporal shift significantly reduces the risk of predation, indicating that the collective
strategy of prey involves not only increased vigilance, but also the regulation of space use based
on predator activity patterns [7].

In ecological systems, collective responses of prey, as demonstrated by zebras, are part of a
group defense strategy. This mechanism allows prey to reduce the rate of attacks by forming
collective protection, which makes target selection by predators less efficient. Mathematically,
this strategy is often modeled through the Holling type IV predation response function, which
reduces the predator attack rate when prey density is very high. The study by Resmawan et al
[8] applies the Holling type IV response in a predator-prey model with an additive Allee effect,
showing how prey group defense affects population stability and bifurcation. These findings are
in line with Pratama et al. [9], who modeled the effects of fear and group defense with Holling
type IV response, and found that increased prey growth or predator mortality can make prey
populations more likely to increase group defense. Meanwhile, Chen et al. [10] developed a
stochastic model incorporating prey group defense (Holling type IV), collective predator hunting,
and environmental disturbances (white noise and Lévy Jump).

On the other hand, predators also adopt a collective strategy, namely cooperative hunting.
Cooperative hunting provides various advantages, including increasing the chances of a successful
hunt, reducing hunting time, targeting a large number of prey, finding food more quickly, and
preventing prey from being eaten by other predators [11]. In mathematical modeling, cooperative
hunting is usually represented by interaction coefficients that depend on predator density, so the
attack efficiency increases as the number of predators hunting together increases [12][13]. Several
studies show that cooperative hunting can greatly affect ecological dynamics. Bai and Tang [12]
show that the intensity of cooperative hunting can determine the global stability of a population,
while Alves and Hilker [14] find that cooperative hunting can cause an Allee effect in predators,
namely the dependence of predation success on the existence of a group of a certain minimum
size. Furthermore, Pal et al. [4] and Du et al. [13] emphasize that cooperation in hunting can
produce more complex population dynamics, including the emergence of oscillations and changes
in equilibrium stability.

Recent studies show that cooperative hunting can evolve even without high cognitive abilities,
suggesting broader ecological implications for predator cooperation than previously thought [15].
Furthermore, spatiotemporal models incorporating hunting cooperation and group defense reveal
the formation of complex patterns and bifurcation phenomena that can affect ecosystem stability
[16]. Chen and Yang [17] show that cooperative hunting combined with predator-dependent
shelter use can result in Hopf bifurcation and complex dynamic behavior. The influence of the
Allee effect on prey group defense and predator success has been studied by Singh et al. [18],
showing a significant impact on population stability. Zhang [19] emphasizes that predator—prey
models with diffusion, cooperative hunting, and predator—taxis can trigger transitions between
stable and unstable conditions. Furthermore, the interaction between predator cooperative
hunting and prey group defense has the potential to induce bifurcation, thereby substantially
affecting ecosystem stability [20].

Although previous studies have investigated prey group defense or predator cooperative
hunting as separate mechanisms, the dynamic conflict between these two adaptive strategies
has not been sufficiently emphasized. Prey group defense tends to suppress predation efficiency
at high prey densities, while cooperative hunting enhances predator attack success as predator
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density increases. The interaction between these opposing mechanisms introduces an ecological
trade-off that can fundamentally alter population stability and generate alternative dynamic
outcomes. Moreover, modeling prey group defense using a Holling type IV functional response
introduces a non-monotonic predation rate, which is known to promote complex dynamics
such as multiple interior equilibria, bistability, and rich bifurcation structures. However, the
combined effects of Holling type IV group defense and predator density dependent cooperative
hunting on system stability and bifurcation behavior remain insufficiently explored. This study
aims to fill this gap by developing and analyzing a predator-prey model that integrates both
mechanisms within a unified framework, revealing how their interaction can produce bistability,
Hopf, saddle-node, and transcritical bifurcations that are absent in classical predator-prey models.
These dynamics imply that small changes in predation efficiency or initial population densities
may lead to qualitatively different ecological outcomes, with important consequences for species
persistence and ecosystem management.

2. Methods

The model of interaction between prey and predator studied is the Lotka-Volterra predator-prey
model, incorporating two main adaptive mechanisms, namely group defense in prey through
Holling type IV functional response and cooperative hunting in predators through interaction
coefficients that depend on predator density [13][21]. The research methodology was developed
through the following stages [22].

2.1. Biological Assumptions and Model Construction

The predator-prey model is formulated as a system of ordinary differential equations describing
the temporal evolution of prey and predator populations. Prey growth follows a logistic law,
reflecting intraspecific competition and environmental carrying capacity. Prey group defense is
incorporated through a Holling type IV functional response, which captures the reduction in
predation efficiency at high prey densities due to collective protection. Predator cooperative
hunting is modeled by allowing the predation rate to depend linearly on predator density,
representing increased hunting success as more predators participate. This linear form is adopted
as an exploratory assumption to examine the potential impact of strong cooperation without
assuming a saturation effect from the outset.

2.2. Qualitative Properties of the Model

To ensure that the model is biologically well posed, basic qualitative properties of the solutions
are examined. For any positive initial conditions, the prey and predator populations remain
non-negative for all future time, ensuring positivity of solutions. Moreover, boundedness of
solutions is guaranteed by the logistic growth term in the prey equation and the linear mortality
term in the predator equation, which prevent unbounded population growth. These properties
ensure that the model dynamics are confined to a biologically meaningful region of the phase
space.

2.3. Equilibrium and Stability Analysis

Equilibrium points are obtained by setting the time derivatives of the system equal to zero,
leading to a set of algebraic equations. Boundary equilibria correspond to extinction or predator
free states, while interior equilibria represent coexistence between prey and predators. The
existence of interior equilibria is determined by analyzing a cubic polynomial equation. Local
stability is analyzed by evaluating the Jacobian matrix at each equilibrium point and applying
the Routh-Hurwitz criteria to determine stability conditions.
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2.4. Numerical Simulation and Bifurcation Analysis

Numerical simulations are performed to illustrate the local behavior of solutions near equilibrium
points and to validate the analytical results. Parameter values are selected for exploratory
purposes rather than empirical calibration, allowing systematic investigation of the effects of the
predator attack rate parameter . To capture global changes in system dynamics, numerical
continuation is carried out using MatCont software, enabling the detection and classification of
bifurcations such as saddle-node, Hopf, and transcritical bifurcations.

3. Results and Discussion

The results presented here describe the analytical and numerical outcomes of the proposed
predator-prey model. Starting with formulation of the mathematical model and identification
of all the system’s equilibrium points. The local stability of each equilibrium is then analyzed
using the Jacobian matrix and eigenvalue criteria. Finally, numerical simulations and bifurcation
analysis are provided to illustrate how variations in the predator attack rate a lead to transitions
between extinction, coexistence, and bistable dynamical states.

3.1. Mathematics Model

This predator—prey interaction model was developed to describe the population dynamics of two
interacting species, taking into account social behaviors commonly found in nature, namely group
defense in prey and cooperative hunting in predators. When prey form groups, the chances of
individuals being preyed upon decrease due to collective protection, while predators that hunt in
groups can increase their success in capturing prey. To represent these two phenomena, a Holling
type IV response function is used to describe the effect of group defense in prey, and n + aP
indicates an increase in hunting effectiveness due to cooperation between predators. Based on
this response function, the predator-prey model with group defense in prey and cooperative
hunting in predators can be written as the following system of differential equations:

dN N aNP

Y N (12 p)- 2L

a " < K) (n+ Py e "
dP aNP

In the model (1), N and P represent the population density of prey and predators, respectively.
The parameters r, K, a, n, a;, b, ¢, and m represent the prey growth rate, environmental carrying
capacity, level of cooperation between predators in hunting, predator predation rate, predator
attack rate on prey, group defense of prey, predator conversion rate, and predator mortality rate.
Model (1) is given under the initial conditions N(0) > 0 and P(0) > 0, where all parameters are
positive.

3.2. Equilibrium Points

The equilibrium points of model (1) is obtained by solving the equations with

dN dP
E—O and E—O
N alNP
N({l——)— P =0
" ( K) (n+aP)——xz =0
alNP

By solving Eq. (1), we obtain
1. By = (0,0), which represents the extinction of prey and predators.
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2. Ey = (K,0), which represents the extinction of predators.

3. The interior point E3 = (N*, P*) represents the coexistence of prey and predator popula-
tions, where N* > 0 and P* > 0.

The prey density N* at the interior equilibrium is given by the positive root of the cubic
equation

CLC2O[T'

7 N*3 — (ac?ar — m*)N*? — mncaN* +m?b =0

and the corresponding predator equilibrium is given by

* * *
pPr = crn]j (1 — f{) , provided that N? <1
Since the equilibrium equation for N* is cubic, it may admit more than one real root depending
on parameter values. Consequently, in addition to the interior equilibrium point E3, another
equilibrium point F4 may arise. The equilibrium point F, is mathematically admissible and may
be biologically feasible for certain parameter ranges. However, for other parameter values, E,
yields negative predator density and thus loses biological relevance. Nevertheless, F4 plays an
important role in organizing the system dynamics, particularly in the occurrence of saddle-node
and transcritical bifurcations.

3.3. Local Stability

The Jacobian matrix in the predator-prey system is obtained by calculating the partial derivatives
of Eq. (1), resulting in the following Jacobian matrix.

ofi 0Ofi
IV, P) = (s}v 3;?) B
ON oP
with

ofi 2N b— N?

oft aNP aN

or = " YhE N2 _(n+ap)b+N2
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Theorem 3.1. The equilibrium point E1 = (0,0) is unstable (saddle point)
Proof. By substituting E; = (0,0) into Eq. (2), we get

(JEI) = (6 _(in>

than eigen values for Fy are Ay =r > 0 and Ay = —m < 0. Therefore, equilibrium point
E; = (0,0) is unstable (saddle point). O
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aK

e <m

Theorem 3.2. The equilibrium point Es = (K,0) is asymptotically stable if cn

Proof. By substituting Es = (K, 0) into Eq. (2), we get

K

—r  —pk

J — b+K
(/) ( 0 cn—bigz - m)

bigg — m. Hence, E5 is locally

asymptotically stable if CU% <m. O

than eigen values for Fs are \y = —r < 0 and Ay = ¢n

Theorem 3.3. The equilibrium point Es = (N*, P*) is asymptotically stable if tr J(E3) < 0
and det J(Es3) > 0.

Proof. By substituting E3 = (N*, P*) into Eq. (2), we get
D11 Do
J =
(Jms) ( Doy D22>

where each of the components is defined as

2N* b— N*2
Dy=r(1- - P aP* ————
1 r( K ) (n+ aP el ey
alN*P* o QaNT*
12——ab+N*2—(’I7+CLP )b—|—N*2
—N*2
Dy = c¢(n + aP*)aP* b+ N2
alN*P* . N*
Dz = “br N el )b+N*2 a

Since the linearization at 3 yields a two dimensional autonomous system, the local stability
is completely determined by the trace and determinant of the Jacobian matrix. This results
in the characteristic equation, namely:

W= (tr )X + det(J) =0 (3)
where

trJ = D1 + Doy,
det(J) = D11 D2y — D12 Doy

From characteristic in Eq. (3), the eigen value of Jg, are given by:

trJ & /(tr J)2 — 4det(J)
A2 = >

Based on the Routh-Hurwitz stability criterion for planar systems [23], the equilibrium
point Fs3 is asymptotically stable if and only if tr J(F3) < 0 and det J(E3) > 0. O
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3.4. Numerical Simulation

To ensure reproducibility of the numerical simulations, the baseline parameter values used
throughout the analysis are summarized in Table 1.

Table 1: Parameter Values

Parameter Description Values Source
T Intrinsic growth rate of prey 9.03 [11]
K Environmental carrying capacity of the prey 5 [24]
Ui Predator predation rate 0.5 [14]
a Level of cooperation between predators in hunting 0.5 [4]
b Prey group defense parameter 3.6 Assumption
c Predator conversion rate 0.3 [4]
m Natural mortality rate of the predator 0.08 Assumption

Numerical simulations are used to show changes in system dynamics around the equilibrium
point. The development of the populations of both species, namely the prey and predator
populations, can be visualized through phase portraits that describe the interaction between
the two based on a two dimensional prey-predator model. In this study, the entire numerical
simulation process was carried out using MATLAB software, because MATLAB provides stable
numerical integration functions and facilitates the visualization of phase portraits.

For simulation purposes, a set of basic parameter values was used in the model, then variations
were made to one main parameter, namely the predation rate «, which represents the predator’s
success rate in capturing prey. The simulation process was carried out in three stages, namely
the first simulation using the parameter value assumption a = 0.11, the second simulation with
the assumption a = 3, and the third simulation with the assumption @ = 5. Each change in the
value of o produces a different phase portrait, allowing us to observe how an increase in the
predation rate affects the stability of the equilibrium and the evolution of the populations of
both species.

After that, to find out more about the changes in the system solution, a numerical continuation
process was carried out using MatCont software. Numerical continuation was applied to the
parameter « to track changes in the equilibrium point and detect bifurcations, such as saddle-node
bifurcations or Hopf bifurcations. The results of the numerical continuation were then displayed
in the form of a bifurcation diagram, so that it could be seen how the solution structure changed
when the value of the parameter o was varied.

To illustrate the qualitative behavior of the predator-prey system for different values of the
predator attack rate («), several phase portraits are generated using the parameter values listed
in Table 1. Numerical simulations are first conducted using the parameter values in Table 1 with
a = 0.11 to examine the baseline dynamics of the system under a low predation rate.

25

B A

==

[
Zo;l:J =

Figure 1: Phase portrait with a = 0.11
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The phase portrait in Fig. 1 shows four main equilibrium points, namely E7, F2, F3, and
E4, with equilibrium point FEs is stable. Stability analysis of the Jacobian matrix at each point
shows that point Ej is unstable (saddle point), because it has one positive and one negative
eigenvalue (A\; = 9.03 > 0, Ay = —0.08 < 0), so that the trajectory moves away from that
point. The point E» = (5,0) has two negative eigenvalues (A = —9.03, Ay = —0.0771), so it is
asymptotically stable, and in the phase portrait, a horizontal trajectory moving towards this
point is visible, depicting the extinction of the predator with a stable prey population. The
interior point F3 = (0.8444,23.7648) has a pair of complex eigenvalues with positive real parts,
namely Ao = 0.5166 £ 0.77074, indicating that this point is an unstable spiral. Biologically, the
coexistence condition at this point is unstable, and the population will move away from this state
through increasing oscillations. Meanwhile, the eigenvalues at the point Ey = (4.171,23.409)
show one positive and one negative (A\; = —5.0834 < 0, Ao = 0.1065 > 0), so this point is an
unstable (saddle point).

The phase portrait shows that the biologically stable equilibrium point is dominated only by
FE5, which is the state of predator extinction with the prey population surviving at its carrying
capacity. Analytically, the equilibrium point Es = (K, 0) is asymptotically stable if cnbj‘_% <m,
as stated in Theorem 3.2. Based on the simulation parameters for a = 0.11, this condition is
satisfied, which is consistent with the phase portrait. The interior point E3, which represents
prey-predator coexistence, is unstable with a spiraling away character, so that the system cannot
survive in a state of coexistence in the long term. Trajectories that start around the interior
point oscillate and then move away from the point towards the attraction domain FEs.

To investigate how an increase in the predator attack rate affects the system dynamics, a
second simulation is performed for o = 3 using the same baseline parameters.

Figure 2: Phase portrait with a = 3

The phase portrait in Fig. 2 shows three main equilibrium points, namely F,, F>, and Ej3,
with equilibrium points Fo and Fj is stable. Stability analysis of the Jacobian matrix at each
point shows that point F; is unstable (saddle point), because it has one positive and one negative
eigenvalue (A = 9.03 > 0, Ao = —0.08 < 0), so that the trajectory moves away from that point.
The equilibrium point Ey = (5,0) has two negative eigenvalues (A\; = —9.03, A2 = —0.0013),
so it is asymptotically stable. This stability is consistent with the analytical condition derived
in Theorem 3.2. In the phase portrait, a horizontal trajectory moving towards this point is
visible, depicting the extinction of the predator with a stable prey population. The interior
point E3 = (0.1689, 5.5288) has a pair of complex eigenvalues with negative real parts, namely
A1,2 = —0.0426 £1.11757, indicating that this point is a stable spiral. This can be seen in the clear
spiral pattern in the figure, where the trajectory circles toward this point, indicating asymptotic
convergence to the coexistence equilibrium through damped oscillations.

The phase portrait shows two significant stable points in the biological context, namely
FEs and E5. Based on the simulation parameters, the calculation results show that Fo and Ej
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meet the stability requirements. The existence of these two stable points indicates a bistable
phenomenon, where the direction of population development is highly dependent on the initial
conditions [25]. If the initial population is in the attraction domain of F3, the system will move
towards predator-prey coexistence. Conversely, if it is close to the attraction domain of Fs, the
system will move towards a condition where only the prey survives.

For a higher predation rate, the system behavior is further examined by considering o = 5,
which reveals a different stability structure in the phase portrait.

Figure 3: Phase portrait with a =5

The phase portrait in Fig. 3 shows four equilibrium points, namely Fy, Es, F3, and Fy,
with the interior equilibrium point FEs is stable. Stability analysis of the Jacobian matrix at
each point shows that point Ej is unstable (saddle point), because it has one positive and one
negative eigenvalue (A; = 9.03 > 0, A2 = —0.08 < 0), so that the trajectory moves away from
that point. The point Fy = (5,0) has one negative and one positive eigenvalue (A\; = —9.03,
A2 = 0.0511), so it is unstable (saddle point), even though the streamline at the bottom of the
graph appears to move horizontally towards it. For a = 5, the stability condition cn biIéQ <m
is violated, confirming the loss of stability of, in agreement with the numerical phase portrait.
Biologically, this point describes a situation where the predator becomes extinct and the prey
population remains at a constant value, but this state is unstable to small disturbances in the
predator variable. The interior point E3 = (0.0936,3.1112) has a pair of complex eigenvalues
with negative real parts, namely A\; 2 = —0.03275 £ 1.1093¢, indicating that this point is a stable
spiral. This can be seen in the clear spiral pattern in the figure, where the trajectory circles
toward this point, indicating asymptotic convergence to a coexistence equilibrium after transient
oscillations. Meanwhile, the eigenvalues at the point £y = (5.0114, —0.38882) show two negative
values (A1 = —9.0868 < 0, Ao = —0.0509 < 0), so mathematically it is a stable point, but it is
not biologically meaningful because it involves a value of P < 0.

The phase portrait in Fig. 3 shows that the only biologically relevant stable point is FEj3.
This condition is equivalent to tr J(E3) < 0 and det J(E3) > 0, so based on the Routh-Hurwitz
criterion, point Ej3 is asymptotically stable. The system tends to move toward predator—prey
coexistence, while other points only act as saddles that form flow structures around them. The
inward spiral around E3 indicates that population dynamics will experience weakening oscillations
before finally settling into that equilibrium state.

3.5. Bifurcation

The bifurcation was performed by continuing one parameter, namely in the a system, which
represents the rate of predator attacks on prey. The analysis was performed using MatCont
software and visualized in the form of a bifurcation diagram as shown in Fig. 4. The horizontal
axis represents the parameter a, while the vertical axis represents the prey population N.
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Figure 4: Bifurcation Diagram

The numerical continuation results show that for small values of «, the interior equilibrium
point Fs3 is unstable and the system is attracted to the predator extinction equilibrium Eo. When
the parameter « increases, a Limit Point (LP) bifurcation is first detected at o = 0.0478. The
existence of the LP point indicates a saddle-node bifurcation, which is marked by the meeting
of two equilibrium branches F3 and E4. Further continuation reveals the presence of a Hopf
bifurcation (H) at v = 0.4595. The first Lyapunov coefficient L; = 0.30518 > 0 indicates
that the Hopf bifurcation that occurs is subcritical [26]. After passing this point, the interior
equilibrium F5 becomes stable and the system exhibits damped oscillations in the predator and
prey populations, with trajectories spiraling toward a stable focus. Continuation is continued
until a Branch Point (BP) is found at « = 3.0506, which marks the occurrence of a transcritical
bifurcation, where the two equilibrium branches intersect and a stability exchange occurs [27].
At this BP point, a stability exchange occurs between F,4 and the predator extinction point Fs.
After passing BP, the equilibrium point F4 becomes mathematically stable. However, for the
corresponding parameter values it yields negative predator density and is therefore biologically
infeasible. Thus, the numerical continuation results show an exchange of stability between
equilibrium points, which is consistent with the phase portrait structure and indicates that
changes in the predation rate intensity « play an important role in determining the long-term
dynamics of the predator-prey system.

From an ecological perspective, the Hopf bifurcation marks a change in the stability of
the coexistence equilibrium. The predator and prey populations exhibit transient oscillations
before converging to a stable coexistence state. Such dynamics are commonly observed in
ecosystems where cooperative hunting enhances predator success but does not immediately lead
to prey collapse. In contrast, the transcritical bifurcation highlights a critical threshold beyond
which predator extinction becomes unavoidable or unstable, emphasizing the delicate balance
between predation pressure and population persistence. Compared with classical predator-prey
models, such as the Lotka-Volterra and Holling type systems, the present model demonstrates
richer dynamical behavior due to the combined effects of prey group defense and predator
cooperation, underscoring their important roles in maintaining population sustainability and
ecosystem balance.

4. Conclusion

The dynamic analysis shows that the system may admit up to four equilibrium points in the
mathematical sense. Among these, the extinction equilibrium Fj, the predator extinction
equilibrium FEjs, and the interior equilibrium FE3 are biologically feasible, while the additional
equilibrium F,; may be feasible or infeasible depending on parameter values. The stability
analysis shows that the extinction equilibrium F; is always unstable, while the stability of the
predator extinction equilibrium FE5 and the coexistence equilibrium F3 depends on the interaction
parameters, particularly the predator attack rate. Numerical simulations were performed by
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taking the value of the parameter for the predator’s attack rate on the prey (a). The numerical
simulation results show that an increase in the value of « causes significant changes in the
behavior of the system. For low values of the attack rate, predator extinction is observed as the
only biologically stable outcome. As the attack rate increases, the system may exhibit bistable
dynamics, where both predator extinction and prey—predator coexistence are locally stable, and
the long-term behavior depends on initial conditions. For sufficiently high attack rates, the
interior equilibrium becomes the unique biologically relevant stable state. Numerical continuation
analysis reveals the presence of several bifurcation mechanisms that govern qualitative changes in
system dynamics. In particular, a subcritical Hopf bifurcation when o = 0.4595 marks a change
in the stability of the interior equilibrium, with solutions exhibiting damped oscillations before
converging to a stable coexistence state, while saddle-node and transcritical bifurcations when
a = 3.0506 indicate changes in the number of equilibrium points and stability exchange between
coexistence and predator extinction states.

Despite these insights, several limitations should be acknowledged. The model adopts
simplified functional forms, particularly the linear representation of predator cooperative hunting
and the exploratory selection of parameter values, which may not fully capture saturation
effects or species-specific behavioral constraints in real ecosystems. Moreover, the analysis is
restricted to a deterministic and non-spatial framework, neglecting environmental variability,
spatial heterogeneity, and stochastic disturbances. Future research may extend this work by
incorporating nonlinear or saturated cooperative hunting functions, spatial structure, time delays,
or stochastic effects, as well as by calibrating model parameters using empirical data to enhance
biological realism and predictive capability.
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