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Abstract

Chronic wound image classification is important for supporting the assessment of conditions
such as diabetic foot ulcers (DFU) and pressure ulcers (PU). While convolutional neural
network (CNN)–based approaches have shown promising results, most previous studies focus
on binary classification and rarely evaluate robustness in multiclass chronic wound scenarios.
This study investigates multiclass classification of chronic wound images, distinguishing DFU,
PU, and Normal Skin, using ResNet-50 and ResNeXt-50 architectures. A total of 2,146
publicly available images were stratified at the image level into training (70%), validation
(15%), and test (15%) sets. Both models were trained under an identical configuration using
data augmentation and class-weighted loss. On clean test images, ResNet-50 and ResNeXt-50
achieved strong and comparable performance, with accuracies of 0.9877 and 0.9938 and
macro-averaged F1-scores of 0.9866 and 0.9928, respectively. Robustness was evaluated by
applying Gaussian blur at the inference stage to simulate image defocus. Under stronger blur
(σ = 2.0), ResNeXt-50 maintained higher performance (accuracy 0.9723, macro-F1 0.9679)
than ResNet-50 (accuracy 0.9200, macro-F1 0.9123). These results highlight the contribution
of this study in evaluating robustness to blur in multiclass chronic wound image classification,
while emphasizing that robustness is limited to resistance against image blur or defocus.
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image classification.
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1. Introduction
Deep Learning (DL) is a subfield of Artificial Intelligence (AI) that deals with machine learning
methods, specifically those that focus on modeling neural networks [1]. The development of DL
in recent years has made it a leading approach in medical image processing due to its ability
to extract complex visual representations automatically and accurately. Recent studies have
shown that DL can improve the performance of image-based diagnosis, reduce the variability of
assessments between clinicians, and accelerate the process of analyzing visual data in clinical
contexts that require fast and consistent decision-making [2], [3], [4]. This advantage makes DL
a key technology in image-based diagnostic aiding systems.

Among the various DL architectures, the Convolutional Neural Network (CNN) is the most
commonly used architecture for analyzing medical images [5], [6], [7]. CNNs operate through
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convolutional layers, nonlinear activation functions, pooling, and fully connected layers, enabling
hierarchical feature learning without manual feature engineering [2], [8]. Transfer learning and
fine-tuning approaches further reinforce the effectiveness of CNNs, particularly in cases where
the availability of annotated data is relatively limited, such as in the chronic wound domain. The
ResNet-50 architecture is one of the CNN models that is widely used due to its residual design
[9], [10], which allows the network to be trained deeper without performance degradation [11],
[12]. ResNeXt-50 extends the ResNet-50 architecture by introducing the concept of cardinality
through grouped convolutions, enabling multiple residual transformation paths to be executed
in parallel to increase feature representation capacity without significantly increasing model
complexity [13]. Recent studies report that the ResNeXt-50 variant has been successfully applied
to medical image classification tasks, including the classification of white blood cells and chronic
wounds, with competitive performance compared to other CNN architectures [14], [15].

Chronic wounds such as Diabetic Foot Ulcer (DFU) and Pressure Ulcer (PU) remain significant
global health problems. DFU affects millions of people with diabetes each year and is associated
with an increased risk of infection, lower extremity amputation, and mortality. Epidemiological
reports indicate a DFU prevalence of 6–13% and a lifetime risk of nearly 30% [16], [17]. Meanwhile,
PU predominantly occurs in patients with limited mobility, with reported prevalence rates of
0.4–38% in hospitals and 2.2–39% in long-term care facilities [18], [19]. In clinical practice,
the assessment of these wounds still relies heavily on visual inspection, which is subjective and
often leads to inter-observer variability. Recent research also indicates that artificial intelligence-
based wound analysis systems can improve assessment consistency, reduce clinical workload, and
accelerate diagnostic workflows in chronic wound management [20], [21].

In the last five years, most CNN-based chronic wound classification studies have focused
on binary classification scenarios, such as distinguishing ulcer versus non-ulcer images or DFU
versus non-DFU cases, and have generally reported promising results [11], [22]. However, studies
that explicitly address the joint classification of DFU, PU, and Normal Skin within a single CNN
model remain limited. Beyond the scarcity of multiclass studies, additional challenges arise from
differences in dataset characteristics, including variations in image sources, ulcer appearance, and
class imbalance, which can hinder consistent performance on more diverse test data, particularly
Normal Skin images obtained outside the training distribution. Moreover, aspects of model
robustness to image-quality degradation, such as motion blur, camera defocus, or acquisition
device limitations, are still rarely investigated in the context of chronic wound classification.
These degradation conditions are commonly encountered in real clinical environments and can
substantially reduce the reliability of deep learning-based systems. Explainable AI techniques such
as Grad-CAM have therefore been widely adopted to provide heatmap visualizations highlighting
salient image regions, thereby improving model transparency [15], [23].

Despite recent advances, several research gaps remain unresolved. Most CNN-based chronic
wound classification studies continue to focus on binary classification, which does not fully
reflect real clinical settings where multiple wound types may coexist. Studies integrating
DFU, PU, and Normal Skin classification into a unified multiclass framework are still limited.
Furthermore, although high accuracy is often reported, model robustness to image-quality
degradation, particularly blur caused by camera motion or defocus, is rarely analyzed in a
systematic manner. In addition, model interpretability is frequently underexplored, despite its
importance for transparency and trust in medical artificial intelligence applications.

Based on these gaps, this study develops and compares two CNN architectures, namely
ResNet-50 and ResNeXt-50, for multiclass classification of chronic wound images distinguishing
DFU, PU, and Normal Skin. In addition, robustness is evaluated specifically in terms of resistance
to Gaussian blur applied at the inference stage. Finally, Grad-CAM is employed as a qualitative
interpretability tool to examine whether the resulting predictions focus on clinically relevant
lesion regions.
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2. Methodology
In summary, the research method’s flow is shown in Fig. 1. The process starts with the collection
and merging of the DFU, PU, and Normal Skin datasets, followed by preprocessing and splitting
into training, validation, and testing sets. In addition, two CNN-based models, ResNet-50 and
ResNeXt-50, that had been pre-trained on ImageNet were refined for three-class classification
tasks. After training, each model was evaluated on an internal test set derived from the merged
dataset. Robustness was further assessed by applying controlled Gaussian blur to the test images
at the inference stage. Finally, the Grad-CAM technique was used to visualize the image regions
contributing to the model predictions.

Figure 1: Research Method

2.1. Input Data
The dataset used in this study consists of three image classes, namely DFU, PU, and Normal Skin.
DFU and Normal Skin images were obtained from the DFU dataset developed by Alzubaidi et
al., which is publicly available on the Kaggle platform [24], [25], [26]. Meanwhile, PU images were
obtained from a set of PU images with severity annotations (stages 1–4); in this study, all the
stages were combined into one PU class because the focus of the analysis was the differentiation
between DFU, PU, and Normal Skin, not the classification of the severity of the wound [27].

No additional external dataset was used in this study. All robustness evaluations were
conducted using the internal test set derived from the main dataset by applying controlled
image-quality degradation. Specifically, Gaussian blur was introduced at the inference stage to
simulate realistic variations in image quality that may occur under clinical imaging conditions.

2.2. Data Preprocessing and Split Data
Data pre-processing is done to prepare the dataset that has been obtained before proceeding
to the next stage to be more structured and more accurate for data training. At this stage, all
DFU, PU, and Normal Skin images are first resized to a fixed size of 224 × 224 pixels to match
the input of the ResNet-50 and ResNeXt-50 architecture standards. Furthermore, the pixel
intensity on each RGB channel was normalized using the mean values and standard deviations of
ImageNet, so that the image distribution was more consistent with the pre-trained weights used
on the backbone. For each pixel on channel c ∈ {R, G, B}, normalization is defined in Eq. (1).

x′
i,c = xi,c − µc

σc
(1)

where x′
i,c denotes the normalized value of the i-th pixel in channel c, xi,c represents the original

value of the i-th pixel in the same channel, µc is the mean value of channel c (R, G, or B),
σc denotes the standard deviation of channel c, i refers to the pixel index in the image, and c
indicates the color channel index.

After pre-processing, all images were organized into class-specific folders (DFU, PU, and
Normal Skin) and then stratified into three subsets—approximately 70% for training, 15% for
validation, and 15% for testing—such that the original class proportions were preserved in each
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subset. Due to the absence of patient identifiers in the dataset, data splitting was performed at
the image level. This may introduce a potential risk of data leakage if multiple images from the
same patient appear in different subsets; this limitation is acknowledged in this study.

Training images are augmented during the training process using stochastic geometric and
photometric transformations, including small rotations, horizontal flips, brightness–contrast
adjustments, and random cropping and padding operations followed by resizing back to 224 × 224
pixels. Data augmentation is applied only to the training set, while validation and test images
undergo only resizing and normalization. The distribution of images for each class in the training,
validation, and test sets is presented in Table 1.

Table 1: Distribution of Dataset Images on Train, Validation, and Test Data
Class Train Val Test Total
DFU 358 76 78 512
PU 763 163 165 1091
Normal Skin 380 81 82 543
Total 1501 320 325 2146

2.3. Model Architecture and Training of ResNet-50 and ResNeXt-50
The two CNN architectures compared in this study are ResNet-50 and ResNeXt-50, both of
which are pre-trained on ImageNet. Broadly speaking, ResNet-50 is a deep residual network
consisting of 50 layers, composed of bottleneck blocks with convolutional sequences of 1 × 1,
3 × 3, and 1 × 1 filters complemented by shortcut connections that sum the inputs and outputs of
each block. This residual mechanism helps to overcome the problem of performance degradation
in deep networks by maintaining stable gradient flow during the training process [28].

ResNeXt-50 adopts the basic structure of ResNet-50 but replaces the standard residual
blocks with aggregated residual transformations based on grouped convolutions. Within each
block, the convolutional path is divided into several parallel transformations, with parameters
partitioned into groups, and then rejoined before being summed with an identity path. This
approach increases the capacity of feature representation through enhancement of cardinality
(the number of parallel paths) without significantly increasing the number of parameters [29].
Thus, ResNeXt-50 is expected to extract more diverse texture and structural patterns of chronic
wounds than ResNet-50 at comparable model complexity.

In this study, both backbones were used as the main feature extractors and modified at
the final layer to produce three output classes (DFU, PU, and Normal Skin). The last fully
connected (FC) layer converts the global average pooling feature vector into three logits, as
defined in Eq. (2).

z = WH + b (2)

where H ∈ Rd denotes the feature vector obtained from the global average pooling layer,
W ∈ RC×d represents the weight matrix of the final fully connected layer, and b ∈ RC is the
bias vector associated with the same layer. In this study, C = 3.

The resulting vector z = [z1, z2, . . . , zC ] contains the logit values, where each logit zc represents
the unnormalized score for class c. The predicted probability for each class is then computed
using the softmax function, as defined in Eq. (3).

pc = softmax(zc) = exp(zc)∑C
j=1 exp(zj)

(3)

where pc denotes the predicted probability for class c.
Training was performed using a fixed three-stage fine-tuning strategy for both models. All

input images were resized to 224 × 224 pixels and processed in mini-batches of size 16. Data
augmentation was applied only to the training set using fixed stochastic geometric and photometric
transformations, including random affine transformations with rotation in the range [−10◦, +10◦],
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translation up to 5% of the image size, and scaling in the range [0.9, 1.1]; random horizontal
flipping with probability p = 0.5; and random brightness adjustment in the range [−10%, +10%].
Validation and test images were not augmented and were only resized and normalized using
ImageNet statistics.

The training procedure consisted of exactly three stages. (1) A warm-up stage in which only
the fully connected classification layer was trained for 10 epochs while the backbone was frozen.
(2) A first fine-tuning stage in which the top convolutional block (layer4) was unfrozen and
jointly optimized with the classification head for 15 epochs. (3) A final fine-tuning stage in which
all remaining backbone layers were unfrozen and optimized for 15 epochs.

Thus, the maximum number of training epochs was fixed at 40. Early stopping was applied
based on validation accuracy with a patience of 7 epochs, and the checkpoint with the highest
validation accuracy was selected for evaluation.

Optimization was performed using the Adam optimizer with fixed parameters (β1 = 0.9,
β2 = 0.999, ε = 10−8) and no weight decay. Stage-wise learning rates were set to 1 × 10−3 for
the warm-up stage, 1 × 10−5 for the first fine-tuning stage, and 5 × 10−6 for the final fine-tuning
stage. Learning-rate scheduling employed a ReduceLROnPlateau scheduler monitoring validation
loss, with mode = “min”, factor = 0.5, and patience = 3.

To ensure reproducibility, all experiments were conducted using a fixed random seed (SEED =
42) and implemented in PyTorch 2.1.0 with CUDA support and Python 3.10.

Due to class imbalance in the training dataset, class weights were introduced to penalize
misclassification of minority classes more heavily. The class weight for class c is calculated based
on inverse class frequency, as defined in Eq. (4).

wc = Ntrain
C · nc

(4)

where wc denotes the weight assigned to class c, nc is the number of training samples belonging
to class c, Ntrain is the total number of training samples, and C is the number of classes.

Using these class weights, the weighted cross-entropy loss is formulated as shown in Eq. (5).

LWCE = − 1
N

N∑
i=1

C∑
c=1

wc yi,c log(pi,c) (5)

where N denotes the number of samples in a mini-batch, yi,c ∈ {0, 1} is the one-hot encoded
ground-truth label of sample i for class c, and pi,c is the predicted probability of class c for
sample i. This weighting strategy is commonly used in medical image classification tasks to
mitigate class imbalance and improve balanced performance across all classes [30].

2.4. Model Evaluation
After the training process is completed, the best-performing ResNet-50 and ResNeXt-50 models,
selected based on validation performance, are evaluated on the test set derived from the main
dataset. The evaluation is conducted using a confusion matrix for three classes, namely DFU,
PU, and Normal Skin. Standard classification metrics commonly used in medical image analysis
are employed, including Accuracy, Precision, Recall, and F1-score for each class, to assess overall
and class-wise performance.

Precision, Recall, and F1-score are computed based on the confusion matrix to evaluate
the correctness and completeness of the model predictions for each class. These metrics are
mathematically defined as shown in Eqs. (6)–(8). Overall classification accuracy is calculated to
measure the proportion of correctly classified samples across all classes, as defined in Eq. (9). To
address class imbalance, the macro-averaged F1-score is additionally employed by averaging the
F1-scores of all classes equally, regardless of sample size, as formulated in Eq. (10) [31].

Precisionc = TPc

TPc + FPc
(6)
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Recallc = TPc

TPc + FNc
(7)

F1c = 2 · Precisionc · Recallc
Precisionc + Recallc

(8)

Accuracy = Number of correct predictions
Total number of samples (9)

Macro-F1 = 1
C

C∑
c=1

F1c (10)

where TPc, FPc, and FNc denote the number of true positives, false positives, and false negatives
for class c, respectively, computed in a one-vs-rest manner, and C denotes the total number of
classes.

A comparison of confusion matrices, accuracy, and macro-averaged F1-score between ResNet-
50 and ResNeXt-50 is presented in the Results section and serves as the basis for the comparative
analysis of the two architectures. In medical image classification scenarios with class imbalance,
previous studies have shown that the macro-averaged F1-score is more appropriate than accuracy
alone, as it assigns equal importance to each class and prevents the performance of minority classes
from being dominated by majority classes [32]. Therefore, in addition to reporting accuracy, this
study uses class-wise F1-score and macro-averaged F1-score as the primary evaluation metrics.

2.5. Robustness Evaluation Using Gaussian Blur
To provide a visual overview of the robustness evaluation scenario used in this study, Fig. 2
shows an example of DFU and Normal Skin images before and after the application of Gaussian
blur to the test data. This example is presented to visually illustrate the effects of image quality
degradation, while quantitative evaluation is performed on all classes in a multiclass classification
scenario, namely DFU, PU, and Normal Skin.

Figure 2: Example of a clean test image and a test image with Gaussian blur (σ = 2.0) used to evaluate
model robustness to image-quality degradation.

To evaluate the model’s resistance to realistic image-quality degradation, additional testing
was performed by applying Gaussian blur to the test data. Gaussian blur is used to simulate less-
than-ideal clinical imaging conditions, such as camera defocus or mild motion disturbance during
image acquisition, which are commonly encountered in real clinical practice. Several studies
in medical image analysis have reported that image degradation such as blur can significantly
affect the performance of deep learning models if not explicitly evaluated. Therefore, robustness
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testing against Gaussian blur is an important aspect of assessing model reliability under degraded
imaging conditions that may occur in clinical environments [33], [34].

Mathematically, Gaussian blur is expressed as a convolution operation between the input
image and a Gaussian kernel, defined as shown in Eq. (11).

G(x, y) = 1
2πσ2 exp

(
−x2 + y2

2σ2

)
(11)

where σ denotes the standard deviation controlling the blur intensity. In this study, Gaussian
blur was applied at multiple levels (σ = 1.0, 1.5, and 2.0) at the inference stage without retraining
the models. After applying Gaussian blur, model performance was re-evaluated using the same
metrics as in the non-degraded test scenario, namely accuracy, precision, recall, and F1-score in
the multiclass classification setting. Comparisons between unblurred and blurred test results were
used to analyze changes in performance and predictive stability under image-quality degradation.
Robustness in this study is specifically defined as resistance to image blur or defocus simulated
using Gaussian blur and does not represent robustness to image degradation in general.

2.6. Grad-CAM Visualization
To assess the model’s interpretability and ensure that the predictions are not only numerically
strong but also clinically plausible, the Gradient-weighted Class Activation Mapping (Grad-CAM)
technique is applied to the last convolutional layer of the model [15]. Grad-CAM generates a
class-discriminative heatmap that highlights image regions contributing most strongly to the
prediction of a particular class.

In this study, Grad-CAM visualizations are used in the Results section to illustrate that
the models tend to focus on ulcer regions in DFU and PU images, while not emphasizing
irrelevant regions in Normal Skin images. This observation supports the claim that the proposed
classification system is not only accurate but also visually interpretable. Grad-CAM is employed
strictly as a qualitative interpretability tool to provide visual insight into model attention, rather
than as a quantitative localization or segmentation evaluation.

3. Results and Discussion
This section presents the experimental results and discussion of the proposed deep learning models
for multiclass chronic wound image classification. The evaluation focuses on the performance
of ResNet-50 and ResNeXt-50 models on the test dataset using standard classification metrics,
including accuracy, class-wise F1-score, and macro-averaged F1-score. In addition, a robustness
analysis is conducted by applying Gaussian blur with varying intensity levels to assess model
stability under image-quality degradation. Visual interpretability is further analyzed using
Grad-CAM to examine whether the models focus on clinically relevant regions when making
predictions. The results are discussed in terms of classification performance, robustness, and
comparative behavior between the two architectures.

3.1. Training and Validation Performance
The training and validation performance of the proposed models is evaluated to analyze their
learning behavior, convergence characteristics, and generalization capability. In this subsection,
the accuracy and loss curves of ResNet-50 and ResNeXt-50 are examined.

Fig. 3 presents the training and validation accuracy curves for both models. As shown in the
figure, the accuracy values increase consistently during training and stabilize before reaching
the maximum number of epochs due to the implementation of the early stopping criterion. This
behavior indicates stable convergence for both models. Notably, ResNeXt-50 converges faster and
achieves slightly higher validation accuracy than ResNet-50, suggesting superior generalization
performance.
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Figure 3: Training and validation accuracy curves for ResNet-50 and ResNeXt-50.

To further investigate the optimization behavior of the models, the training and validation
loss curves are analyzed, as illustrated in Fig. 4.

Figure 4: Training and validation loss curves for ResNet-50 and ResNeXt-50.

The loss curves in Fig. 4 demonstrate a consistent decrease throughout the training process
for both models, indicating effective optimization. The validation loss follows a similar decreasing
trend and converges smoothly, implying that neither model experiences significant overfitting. In
comparison, ResNeXt-50 attains a lower validation loss and stabilizes earlier than ResNet-50,
which aligns with its faster convergence and improved generalization performance observed in
the accuracy results.

3.2. Test Performance Evaluation
This subsection presents the classification performance of the proposed models on the test data
using standard evaluation metrics.

3.2.1. ResNet-50 Performance
The quantitative evaluation results of the ResNet-50 model on the test data are summarized
in Table 2.

Table 2: Results of ResNet-50 Model Evaluation on Test Data (overall accuracy: 0.9877).
Classes Precision Recall F1-score Support
DFU 0.9512 1.00 0.9750 78
Normal Skin 1.00 0.9878 0.9939 82
PU 1.00 0.9818 0.9908 165
Macro-averaged 0.9837 0.9899 0.9866 325
Weighted-averaged 0.9883 0.9877 0.9878 325

Based on the results presented in Table 2, the ResNet-50 model demonstrates strong classifica-
tion performance on the test dataset, achieving an overall accuracy of 0.9877 and a macro-averaged
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F1-score of 0.9866. These results indicate a high and well-balanced predictive capability across
all classes.

To further analyze the classification behavior of the model, the corresponding confusion
matrix is shown in Fig. 5.

Figure 5: Confusion matrix of ResNet-50 on the test dataset.

In the class-wise evaluation, the DFU class achieves a recall of 1.00, indicating that all DFU
samples are correctly identified, although its precision is slightly lower at 0.9512 due to a small
number of false positive predictions. The Normal Skin class shows excellent performance with
perfect precision (1.00) and a recall of 0.9878, reflecting accurate identification of healthy skin
images with minimal misclassification. The PU class also exhibits strong performance, achieving
perfect precision (1.00) and a high recall of 0.9818.

As illustrated by the confusion matrix, most predictions lie along the diagonal, confirming the
consistency of the classification results. The observed misclassifications primarily involve DFU
predictions arising from other classes, indicating a slight tendency of the model to over-predict
the DFU class rather than failing to detect DFU cases.

3.2.2. ResNeXt-50 Evaluation on Internal Test Data and Comparison with ResNet-50
The quantitative evaluation results of the ResNeXt-50 model on the test data are summarized
in Table 3.

Table 3: Results of ResNeXt-50 Model Evaluation on Test Data (overall accuracy: 0.9938).
Classes Precision Recall F1-score Support
DFU 0.9873 1.00 0.9936 78
Normal Skin 0.9878 0.9878 0.9878 82
PU 1.00 0.9939 0.9970 165
Macro-averaged 0.9917 0.9939 0.9928 325
Weighted-averaged 0.9939 0.9938 0.9939 325

Based on the results presented in Table 3, the ResNeXt-50 model demonstrates excellent
classification performance on the test data, achieving an overall accuracy of 0.9938 and a macro-
averaged F1-score of 0.9928. These results indicate strong and balanced performance across all
classes.

To further analyze the classification behavior of the model, the corresponding confusion
matrix is shown in Fig. 6.
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Figure 6: Confusion matrix of ResNeXt-50 on the test dataset.

In the class-wise evaluation, the DFU class achieves a recall of 1.00 with a high precision of
0.9873, indicating that all DFU samples are correctly identified with only a small number of false
positive predictions. The Normal Skin class shows stable performance, with precision, recall, and
F1-score values of 0.9878, reflecting consistent discrimination of healthy skin images. The PU
class exhibits the strongest performance, achieving perfect precision (1.00) and a recall of 0.9939,
resulting in an F1-score of 0.9970.

The confusion matrix shown in Fig. 6 further supports these quantitative results. Most
predictions are concentrated along the diagonal, confirming the high classification accuracy of
the model. Only a very small number of misclassifications are observed, primarily involving
occasional confusion between Normal Skin and ulcer classes. Overall, the confusion matrix
indicates that ResNeXt-50 is able to effectively distinguish between DFU, PU, and Normal Skin
categories.

3.2.3. Comparative Analysis
A comparative evaluation of ResNet-50 and ResNeXt-50 shows that both models achieve strong
performance in multiclass classification of DFU, PU, and Normal Skin images. Both models
demonstrate strong and comparable performance on clean test data, with ResNeXt-50 exhibiting
slightly higher accuracy and macro-averaged F1-score. While ResNet-50 demonstrates reliable
performance with high precision and recall values, particularly for the Normal Skin and PU
classes, it exhibits a slightly lower precision for the DFU class, as reflected in the confusion
matrix. In contrast, ResNeXt-50 achieves higher and more balanced class-wise performance, with
perfect recall for the DFU class and fewer misclassifications overall.

The slightly higher performance of ResNeXt-50 on clean test data may be related to its
architectural design; however, given the relatively small performance gap, both models can be
considered to perform comparably under non-degraded conditions. As a result, ResNeXt-50
demonstrates an enhanced capability in capturing complex wound characteristics, leading to
improved classification stability.

Overall, although both architectures perform competitively, ResNeXt-50 shows a consis-
tent advantage over ResNet-50 in terms of accuracy, robustness of predictions, and balanced
performance across classes.

3.2.4. Evaluation of Model Robustness Using Gaussian Blur
To evaluate the models’ resistance to image-quality degradation, additional tests were conducted
by applying Gaussian blur to the test data at several intensity levels (σ = 1.0, 1.5, and 2.0).
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This evaluation was performed on both CNN architectures, ResNet-50 and ResNeXt-50, without
retraining, to ensure a fair comparison.

Table 4: Robustness evaluation results using Gaussian blur.
Model Gaussian Blur (σ) Accuracy Macro-averaged F1-score
ResNet-50 0 (Clean) 0.9877 0.9866
ResNet-50 1.0 0.9754 0.9731
ResNet-50 1.5 0.9446 0.9396
ResNet-50 2.0 0.9200 0.9123
ResNeXt-50 0 (Clean) 0.9938 0.9928
ResNeXt-50 1.0 0.9877 0.9866
ResNeXt-50 1.5 0.9754 0.9725
ResNeXt-50 2.0 0.9723 0.9679

Table 4 presents the robustness evaluation results of ResNet-50 and ResNeXt-50 under
Gaussian blur at multiple intensity levels. All evaluations were conducted without retraining the
models to ensure consistent and fair comparisons.

The results indicate that increasing Gaussian blur intensity leads to a gradual decline in
performance for both models, as reflected in decreasing accuracy and macro-averaged F1-score
values. Under clean image conditions (σ = 0), ResNeXt-50 achieves the highest performance
with an accuracy of 0.9938 and a macro-averaged F1-score of 0.9928, slightly outperforming
ResNet-50.

As the blur intensity increases, ResNet-50 experiences a more pronounced performance
degradation. At σ = 2.0, its accuracy decreases to 0.9200 and its macro-averaged F1-score to
0.9123. In contrast, ResNeXt-50 demonstrates better resistance to image degradation, maintaining
an accuracy of 0.9723 and a macro-averaged F1-score of 0.9679 at the same blur level.

At σ = 1.0, ResNeXt-50 attains accuracy and macro-averaged F1-score values that numerically
match those obtained by ResNet-50 under clean image conditions. This numerical similarity
arises from independent evaluation outcomes and should be interpreted as coincidental rather
than indicative of identical model behavior. This observation suggests that low-intensity Gaussian
blur does not immediately degrade classification performance and that both architectures remain
stable under mild blur conditions.

Overall, these results indicate that ResNeXt-50 exhibits more stable feature representations
under increasing Gaussian blur compared to ResNet-50, potentially due to its grouped convolution
design and increased cardinality. The gradual degradation observed in both models further
suggests that the proposed approach captures both fine-grained texture information and more
global visual cues relevant to chronic wound assessment.

3.3. Visual Analysis of Model Prediction with Grad-CAM
Fig. 7 illustrates that the Grad-CAM heatmaps for the DFU and PU classes are strongly
concentrated around ulcer regions, with high activation overlapping lesion areas in the affected
skin. This indicates that the models tend to focus on visually relevant wound regions rather than
background skin when generating predictions.

Figure 7: Grad-CAM visualizations for DFU, PU, and Normal Skin images.

In contrast, Grad-CAM activation for Normal Skin images appears more diffuse across the
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skin surface, without a distinct focus on a specific region, which is consistent with the absence
of pathological lesions. These qualitative visual patterns are consistent with the quantitative
evaluation results and provide insight into the models’ decision-making processes. Overall, the
use of Grad-CAM supports qualitative interpretability and may help increase confidence in the
models’ predictions; however, further external and prospective validation would be required
before clinical deployment.

4. Conclusion
Overall, this study demonstrates that both ResNet-50 and ResNeXt-50, trained with data
augmentation and class-weighted loss, achieve strong performance in multiclass classification of
chronic wound images, including DFU, PU, and Normal Skin. Evaluation on clean test data
shows that the two models exhibit strong and comparable accuracy and macro-averaged F1-scores,
with balanced precision and recall across classes.

Robustness evaluation under Gaussian blur indicates that both models experience a gradual
performance decline as image quality degrades. However, performance remains high under light
to moderate blur levels (σ = 1.0 and 1.5), suggesting that the learned representations do not rely
solely on fine-grained texture details but also capture clinically relevant global visual information.
Compared to ResNet-50, ResNeXt-50 shows a smaller performance degradation under increasing
blur intensity and maintains higher accuracy and macro-averaged F1-scores at stronger blur
levels (σ = 2.0).

The observed robustness advantage of ResNeXt-50 under Gaussian blur conditions may be
attributed to its architectural design, particularly the use of grouped convolution and increased
cardinality, which can promote more diverse and stable feature representations under degraded
imaging conditions. In addition, qualitative Grad-CAM analysis indicates that both models
primarily focus on clinically relevant lesion regions in DFU and PU images, while showing diffuse
activation patterns for Normal Skin images, supporting the qualitative interpretability of the
predictions.

Despite these promising results, this study has several limitations that should be acknowledged.
First, the dataset was compiled from multiple public sources, which may introduce domain-specific
biases. Future work will address this limitation by incorporating larger and more diverse datasets
collected from different clinical settings. Second, robustness evaluation was limited to Gaussian
blur and did not consider other common image degradations such as noise or illumination
variation. To overcome this limitation, future studies will evaluate model robustness under a
wider range of realistic imaging degradations. Third, no external or prospective clinical validation
was conducted. Future work will therefore focus on external and prospective validation to assess
the generalizability and clinical reliability of the proposed approach. In addition, future research
will explore lighter network architectures for deployment on resource-constrained devices and
extend the classification task to include ulcer severity assessment.

In summary, the findings suggest that ResNeXt-50 offers improved robustness to Gaussian
blur compared to ResNet-50 in multiclass DFU–PU–Normal Skin classification. While not yet
intended for direct clinical deployment, the proposed approach shows potential as an explainable
computer-aided screening support tool, subject to further validation and refinement.
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