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ABSTRACT  

A vertex-colored graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) is said to be rainbow vertex-connected, if for every two vertices 

𝑢 and 𝑣 in 𝑉(𝐺), there exists a 𝑢 − 𝑣  path with all internal vertices have distinct colors. The rainbow vertex-
connection number of 𝐺, denoted by 𝑟𝑣𝑐(𝐺), is the smallest number of colors needed to make 𝐺 rainbow 
vertex-connected. In this paper, we determine the rainbow vertex-connection number of star fan graphs. 
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INTRODUCTION  

All graph considered in this paper are finite, simple, and undirected. We follow the 

notation and terminology of Diestel [1]. A vertex-colored graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) is said 

to be rainbow vertex-connected, if for every two vertices 𝑢 and 𝑣 in 𝑉(𝐺), there exists a 
𝑢 − 𝑣  path with all internal vertices have distinct colors. The rainbow vertex-connection 
number of 𝐺, denoted by 𝑟𝑣𝑐(𝐺), is the smallest number of colors needed to make 𝐺 
rainbow vertex-connected. It was introduced by Krivelevich and Yuster [2]. 

Let 𝐺 be a connected graph, 𝑛 be the size of 𝐺, and diameter of 𝐺 denoted by 
𝑑𝑖𝑎𝑚(𝐺), then they stated that 
    𝑑𝑖𝑎𝑚(𝐺) − 1 ≤ 𝑟𝑣𝑐(𝐺) ≤ 𝑛 − 2    (1) 
Besides that, if 𝐺 has 𝑐 cut vertices, then  

𝑟𝑣𝑐(𝐺) ≥ 𝑐      (2) 
In fact, by coloring the cut vertices with distinct colors, we obtain  𝑟𝑣𝑐(𝐺) ≥ 𝑐. It is defined 
that     𝑟𝑣𝑐(𝐺) = 0 if 𝐺 is a complete graph 

There are many interesting results about rainbow vertex-connection numbers. 
Some of them were stated by Li and Liu[3] and Simamora and Salman[4] and Bustan [5]. 
Li and Liu determined the rainbow vertex-connection number of a cycle 𝐶𝑛 of order 𝑛 ≥
3. Based on it, they proved that for a connected graph 𝐺 with a block decomposition 
𝐵1, 𝐵2, … , 𝐵𝑘 and 𝑐 cut vertices, 𝑟𝑣𝑐(𝐵1) + 𝑟𝑣𝑐(𝐵2) + ⋯ + 𝑟𝑣𝑐(𝐵𝑘) + 𝑡.  In 2015 Simamora 
and Salman determined the rainbow vertex-connection number of pencil graph. In 2016 
Bustan determined the rainbow vertex-connection number of star cycle graph. 

In this paper, we introduce a new class of graph that we called star fan graphs and 
we determine the rainbow vertex-connection number of them. Star fan graphs are divided 
into two classes based on the selection of a vertex of the fan graph ie a vertex with 𝑛 degree 
and vertex with 3 degree. 
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Figure 1. 𝑆(6, 𝐹6, 𝑣𝑖,1)   

 

 
Figure 2. 𝑆(6, 𝐹6, 𝑣𝑖,7) 

 

RESULTS AND DISCUSSION  

Definition 1. Let 𝑚 and 𝑛 be two integers at least 3, 𝑆𝑚 be a star with 𝑚 + 1 
vertices. 𝐹𝑛 be a fan with 𝑛 + 1 vertices, 𝑣 ∈ 𝑉(𝐹𝑛) and 𝑣 is a vertex with 𝑛 degree. A star 
fan graph is a graph obtained by embedding a copy of 𝐹𝑛 to each pendant of 𝑆𝑚, denoted 
by 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1) 𝑖 ∈ [1, 𝑚], such that the vertex set and the edge set, respectively, as 

follows. 

𝑉 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) = {𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑚 + 1]} ∪ {𝑣𝑚+1},    

𝐸 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) = {𝑣𝑚+1𝑣𝑖,1|𝑖

∈ [1, 𝑚]} ∪ {𝑣𝑖,1𝑣𝑖,𝑗| 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [2, 𝑚 + 1]} ∪ {𝑣𝑖,𝑗𝑣𝑖,𝑗+1| 𝑖 ∈ [1, 𝑚], 𝑗

∈ [2, 𝑚]}  
 



The Rainbow Vertex-Connection Number of Star Fan Graphs  

Ariestha Widyastuty Bustan 114 

Theorem 1. Let 𝑚 and 𝑛 be two integers at least 3 and 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1) be a star fan graph, 

then 

𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1))=𝑚 + 1 

Proof. 
Based on equation (2), we have 

 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) ≥ 𝑐 = 𝑚 + 1    (3) 

 

In order to proof 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) ≤ 𝑚 + 1, define a vertex-coloring 

𝛼: 𝑉(𝑆(𝑚, 𝐹𝑛, 𝑣𝑖1)) → [1, 𝑚 + 1] as follows. 

𝛼(𝑣𝑖,𝑗) = {
𝒊,   𝑓𝑜𝑟 𝑗 = 1 

𝒎 + 𝟏,   𝑜𝑡ℎ𝑒𝑟𝑠
 

 

We are able to find a rainbow path for every pair vertices 𝑢 and 𝑣 in 𝑉 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) as 

shown in table 1 
 

Tabel 1. The rainbow vertex 𝑢 − 𝑣 path for graph 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1) 

𝒖 𝒗 Condition Rainbow-vertex path 
𝑢 is adjacent to v Trivial 

𝒗𝒊,𝒋 𝒗𝒌,𝒍 𝒊, 𝒌 ∈ [𝟏, 𝒎] 
𝒋, 𝒍 ∈ [𝟏, 𝒎 + 𝟏] 

𝒗𝒊,𝒋, 𝒗𝒊,𝟏, 𝒗𝒎+𝟏, 𝒗𝒌,𝟏,𝒗𝒌,𝒍 

 
So we conclude that 

 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) ≤ 𝑚 + 1    (4) 

 

From equation (3) and (4), we have 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,1)) = 𝑚 + 1 

 
Definition 2. Let 𝑚 and 𝑛 be two integers at least 3, 𝑆𝑚 be a star with 𝑚 + 1 

vertices. 𝐹𝑛 be a fan with 𝑛 + 1 vertices, 𝑣 ∈ 𝑉(𝐹𝑛) and 𝑣 is a vertex with 3 degree. A star 
fan graph is a graph obtained by embedding a copy of 𝐹𝑛 to each pendant of 𝑆𝑚, denoted 
by 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗) 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [2, 𝑚] such that the vertex set and the edge set, respectively, 

as follows. 

𝑉 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) = {𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑚], 𝑗 ∈ [, 𝑚 + 1]} ∪ {𝑣𝑚+1},    

𝐸 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) = {𝑣𝑚+1𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑚], 𝑗

∈ [2, 𝑚 + 1]} ∪ {𝑣𝑖,1𝑣𝑖,𝑗| 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [2, 𝑚 + 1]} ∪ {𝑣𝑖,𝑗𝑣𝑖,𝑗+1| 𝑖 ∈ [1, 𝑚], 𝑗

∈ [2, 𝑚]} 
Theorem 2. Let 𝑚 and 𝑛 be two integers at least 3 and 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗) be a star fan graph, 

then 

𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗))=𝑚 + 2 

Proof. 
 Case 1. 𝒎 = 𝟑 

Based on equation (1), we have 𝑟𝑣𝑐 (𝑆(3, 𝐹3, 𝑣𝑖,4)) ≥ 𝑑𝑖𝑎𝑚 − 1 = 6 − 1 = 5. We may 

define a rainbow vertex 5-coloring on  𝑆(𝑚, 𝐹, 𝑣𝑖,7) as shown in Figure 2. 
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Figure 3. 𝑆(3, 𝐹3, 𝑣𝑖,4) 

 Case 2. 𝒎 ≥ 𝟒 

Based on equation (2), we have 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) ≥ 𝑚 + 1. Suppose that There is a 

rainbow vertex 𝑚 + 1-coloring on 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗). Without loss of generality, color the 

vertices as follows: 
 𝛽′(𝑣𝑚+1) = 𝑚 + 1 
 𝛽′(𝑣𝑖,𝑚+1) = 𝑖, 𝑖 ∈ [1, 𝑚] 

 
Look at the vertex 𝑣1,2 and 𝑣2,2 who can not use the same color. To obtain rainbow vertex 
path between them, should be passed the path of 𝑣1,2, 𝑣1,1, 𝑣1,𝑚+1, 𝑣𝑚+1, 𝑣2,𝑚+1, 𝑣2,1, 𝑣2,2. 

Certainly 𝑣1,1 should be colored by the color which used at the cut vertices, beside color 
1, 𝑚 + 1 and 2. Suppose that 𝑣1,1 being color with 𝑘. It’s impacted there is no rainbow 
vertex path between vertex  𝑣𝑘,2 and 𝑣𝑖,2 for 𝑖 ≠ 𝑘. So that, graph 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗) cannot be 

colored with 𝑚 + 1 colors, so we obtain 

𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) ≥ 𝑚 + 2    (5) 

In order to proof 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) ≤ 𝑚 + 2, define a vertex-coloring 

𝛽: 𝑉 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) → [1, 𝑚 + 2] as follows. 

𝛽(𝑣𝑚+1) = 𝑚 + 2 
𝛽(𝑣𝑖,𝑗) = (𝑖 + 𝑗)𝑚𝑜𝑑(𝑚 + 1), 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑚 + 1] 

We are able to find a rainbow path for every pair vertices 𝑢 and 𝑣 in 𝑉 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) as 

shown in table 2. 

Tabel 2. The rainbow vertex 𝑢 − 𝑣 path for graph 𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗) 

𝒖 𝒗 Condition Rainbow-vertex path 
𝑢 is adjacent to v Trivial 
𝒗𝒊,𝒋 𝒗𝒌,𝒍 𝒊, 𝒌 ∈ [𝟏, 𝒎] 

𝒋, 𝒍 ∈ [𝟏, 𝒎 + 𝟏] 
𝒌 ≠ 𝒊 + 𝒍, 𝒌 ≠ 𝒊 − 𝒍, 𝒌

∈ [𝟐, 𝒎 − 𝟏] 
If 𝒊 = 𝟏, 𝒌 ≠ 𝒎 
others 

𝒖, 𝒗𝒊,𝒋+𝟏, 𝒗𝒊,𝒋+𝟐, … , 𝒗𝒊,𝒎+𝟏, 𝑣𝒎+𝟏,𝒗𝒌,𝒎+𝟏, 𝒗𝒌,𝟏, 𝒗 

 
 
 

𝒖, 𝒗𝒊,𝟏 , 𝒗𝒊,𝒎+𝟏, 𝒗𝒎+𝟏,𝒗𝒌,𝒎+𝟏, 𝒗𝒌,𝟏, 𝒗 

 
So we conclude that 
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𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) ≤ 𝑚 + 2     (6) 

From equation (5) and (6), we have 𝑟𝑣𝑐 (𝑆(𝑚, 𝐹𝑛, 𝑣𝑖,𝑗)) = 𝑚 + 2 

 
Figure 4. 𝑆(6, 𝐹6, 𝑣𝑖,7) 
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