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ABSTRACT  

The aim of this paper is to is to generalize the discrete model with horizontal and vertical 
transmission. We use Euler method to approximate numerical solution of the model. We found 
two equilibrium points, that aredisease free and endemic equilibrium points. The existence of 
these points depend on basic reproduction number R0  and step size h. We found that if R0 < 1 then 
only disease free equilibrium points exists, while both points exists when R0 > 1. We also found 
that the stability of these equilibrium points depend on the value of step-size h. Some numerical 
experiments were presented as illustration  of the discussion result. 
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INTRODUCTION 

Recently, disease model has been studied widely by many authors [1], [2], [3].  In 
[1] the authors develop and anlyse two population-based model of the transmission 
dynamics of the worm parasite while in [2] the authors  introduced an IDEA (incidence 
decay with exponential adjustment) model that can be used for short-term 
epidemiological forecasting. The exact solution of SIR model an SVIR epidemic model with 
deadly deseases has been investigated by [3]. One tool to analyze the spreading of a 
disease is mathematical models. The common procedure in modelling disease spreading 
is by using compartment model. In compartment model, the population is divided into 
two different classes, that is susceptible and infected, called the SI model. If we assume 
that some of the infected individual will recover then we include recovered class called as 
SIR model.  

 The exact solution of many disease model can not be solved easily due to the 
complexity of the model. In this case, the numerical approach will do some help in finding 
the solution [4]. One of the useful numerical method that we can use is Euler method. This 
method give a good approximation in many works, such as in [5] and [6]. In [5] the method 
was applied to approximate SIRS epidemic model while in [6] it was applied to find the 
numerical solution of SIR Pairwise Epidemic model. Euler method is a simple scheme, but 
only works for a small step-size. In this paper, we use Euler method to develop discrete 
version of the model and analyze the stability around its equilibrium points. We use step-
size h as main parameter to determine the stability of those equilibrium points. Finally, 
we present stability of the each equilibrium points.    
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The organization of this paper is as follows. In Method section, we develop the 
discrete version of SIR disease model with vertical and horizontal transmission 
compartment model. In Results and Discussion section, we present sufficient conditions 
for stability of the disease free equilibrium and endemic equilibrium, followed by some 
numerical simulation to illustrate our theoretical finding. Finally, we conclude our result 
in the last section.  
 

METHODS  

The method we use in this paper is literature study. The model we use in this paper 
was proposed by [7] as follow. 
𝑑𝑆

𝑑𝑡
= –βSI – bS – (b – pd) I + b    

  (1) 
𝑑𝐼

𝑑𝑡
= βSI – pdI – rI   

 
where S(t) and I(t) denote the number of the susceptible and infective individual 

respectively. The susceptible become infectious at rate βI, where β is the contact rate; 
while b represent birth rate and d represent death rate. The infectious recover at the rate 
r; while p is the proportion of infective parents offspring that are susceptible individuals. 
All parameters are assumed to be positive. We assume that b = d and              0 < p < 1 as in 
[7]. Hence, the condition b – pd > 0 must hold. The basic reproduction number of model 

(1) is R0 =
𝛽

𝑝𝑑+r
 . Transfer diagram of model (1) can be seen in Figure 1. 

 
Figure 1. Transfer Diagram of the Model 

Next, we use Euler method to discretize the model and use h as step-size. We have 

 1n n
n n n n

S S
S I bS b pd I b

h
 

       
  

  (2) 

1n n
n n n n

I I
S I pdI rI

h
 

    
  

 
We can rewrite (2) as 

  1n n n n n nS S h S I bS b pd I b           

  (3) 

  1n n n n nI I h S I pd r I        
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Theorem 1 
There exists two equilibrium points of model (3), that is E0 = (1, 0) and Ee =

 

 
0

0 0

11
,

b R

R b pd R

 
    

. 

Proof: 
Let S* dan I* are equilibrium point of model (3), then we have 
S* = S* + h (−β S*I* – bS* – (b – pd) I* + b)      (4) 
I* = I* + h (β S* I* – (pd + r) I*)        (5) 
From equation (5), we have 
0 = h (β S*I* – (pd + r) I*) 
Since h > 0, we can conclude that 
0 = β S*I* – (pd + r) I* 
 =  I* (βS* − (pd + r)) 
Thus, I* = 0            (6) 
or 
βS* − (pd + r) = 0          (7) 
Subtituting (6) to (4) leads to S* = 1. So, the disease free equilibrium point is E0 = (1, 0).  

From (7), we have S* =
pd r




=

0

1

R
           (8) 

Subtituting (8) to (4) leads to I* =
 

 
0

0

1b R

b pd R



 
. So, the endemic equilibrium point is  

Ee=
 

 
0

0 0

11
,

b R

R b pd R

 
    

. Notice that I* =
 

 
0

0

1b R

b pd R



 
> 0 when R0 – 1 > 0, in other 

word R0 > 1.                     (Qed) 
 

RESULTS AND DISCUSSION  

In this section, we will discuss about stability of the model around those two 
equilibrium points and other phenomenon that occured. Let us rewrite equation (3) as 
follow.  
F(S, I) = (1 − hb) S – hβSI – h(b – pd) I + hb 
G(S, I) = I + hβSI – h (pd + r) I 
Jacobian matrix of equation (3) can be written as follow. 

J =

F F

S I

G G

S I

  
  
 
  

 
  

  (9) 

 

where 
F

S




= 1 – h (b + βI);  

F

I




= −h (βS + (b – pd));  

G

S




= hβI;  

G

S




= 1 + h (βS – (pd + r)). 

Now, we can analyze the stability of equilibrium points using matrix (9). 
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Lemma 2 

If R0 < 1 and h < min
  0

2 2
,

1b pd r R

  
 

   

 then E0 is locally asymptotically stable.  

Proof: 

Since R0 =
pd r




, we have 1 – R0 = 1 −

pd r




=
 pd r

pd r

 


. Hence,  

(pd + r) – β = (pd + r) (1 – R0). Clearly, (pd + r) – β > 0 if R0 < 1. Subtituting E0 = (1, 0) to 
matrix (9) lead us to 

0EJ =
  

  

1

0 1

hb h b pd

h pd r





    
 
    

=
  

  0

1

0 1 1

hb h b pd

h pd r R

    
 
    

  (10) 

It is easy to find that the eigenvalues of matrix (10) are λ1 = 1 – hb and λ2 = 1 − h (pd + r) 

(1 – R0). If h <
2

b
 then we have −1 < 1 – hb < 1 which lead us to |λ1| = | 1 – hb| < 1. In other 

hand, if h <
  0

2

1pd r R 
 then we have −1 < 1 − h (pd + r) (1 – R0) < 1, that is  |λ2| = |1 − 

h (pd + r) (1 – R0)| < 1. Hence E0 stable if and only if |λi| < 1, i = 1, 2, which is equivalent 

with h < min 
  0

2 2
,

1b pd r R

  
 

   

.                   (Qed) 

Again, by subtituting Ee to Jacobian matrix (9), we have 
   1

1eE

h b c h b r
J

hc

     
  
 

 

where c =
  

 
0 1b R pd r

b r

 


. Let τ = 1 – h (b + c) + 1 = 2 – h (b + c) and ∆ = (1 – h (b + c)) 

(1) – (hc) (−h (b + r)) = c (b + r) h2 – (b + c) h +1. Notice that since R0 > 1, then c (b + r) = b 
(R0 – 1) (pd + r) > 0. Now, we analyze the stability of Ee. We use the following theorem. 

 
Theorem 3 
The root of p(λ) = λ2 – τλ + ∆ satisfy | λi | < 1, i = 1, 2 if and only if the following conditions 
hold: 
1.  p(1) = 1 – τ + ∆ > 0 
2.  p(0) = ∆ < 1 
3.  p(−1) = 1 + τ + ∆ > 0    
We break these theorem into several lemmas as follow and apply them to model (3). 

 
Lemma 4 
If R0 > 1 then p(1) > 0. 

 
Proof: 
In model (3), it is clear that if R0  >1  then c (b + r) > 0. Hence, 
p(1) = 1 – (2 – h (b + c)) + (c (b + r) h2 – (b + c) h + 1) = c (b + r) h2 > 0            (Qed) 
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Lemma 5 

If R0 > 1 and h < 
 
b c

c b r




 then p(0) < 1. 

Proof: 
Suppose R0 > 1, then we have R0 – 1 > 0, so that 

 
b c

c b r




=

  
 

  
 

 

0

0

1

1

b R pd r
b

b r

b R pd r
b r

b r

  
  

 

  
 

 

 > 0. Thus, if h < 
 
b c

c b r




 then we have 

c (b + r) h2 − (b + c) h + 1 = ∆ < 1                   (Qed) 
 

For the last condition, notice that p(−1) = 1 + τ + ∆ = 1 + (2 – h (b + c)) + (c (b + r) h2 – (b + 
c) h + 1) = c (b + r) h2 – 2 (b + c) h + 4. Let f(h) = Ah2 + Bh + C, where A = c (b + r) > 0, B = –
2 (b + c), and C = 4. Solutions of f(h) = Ah2 + Bh + C = 0 is  

h1,2 =
2 4

2

B B AC

A

  
  

        =
        

 

2

2 2 4 4

2

b c b c c b r

c b r

       


 

        =
 

 

 

 
2

4
1 1

b c c b r

c b r b c

  
  
   

 

 
Lemma 6 
If one of the following condition is hold, they are: 

1. 
 

 
2

4
1

c b r

b c





< 0; or 

2. 
 

 
2

4
1

c b r

b c





= 0 and h ≠

 
b c

c b r




;or 

3. 
 

 
2

4
1

c b r

b c





> 0 and h < h1 or h > h2 

where h1 =
 

 

 

 
2

4
1 1

b c c b r

c b r b c

  
  
   

and h2 =
 

 

 

 
2

4
1 1

b c c b r

c b r b c

  
  
   

  

then  p(−1) > 0. 
 

Proof: 

1. Notice that 
 

 
2

4
1

c b r

b c





< 0 lead us to (b + c)2 < 4b (R0 – 1) (pd + r).  

It means that R0 > 1 +
 

 

2

4

b c

b pd r




> 1. Since 

 

 
2

4
1

c b r

b c





< 0 and A = c (b + r) > 0  
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then p(−1) = 1 + τ + ∆ = f(h) = Ah2 + Bh + C > 0 for all h > 0. 

2. It easy to find that 
 

 
2

4
1

c b r

b c





= 0 equivalent with R0 = 1 +

 

 

2

4

b c

b pd r




> 1.  

Since
 

 
2

4
1

c b r

b c





= 0, we have h =

 

 

b c

c b r




.  

Since A = c (b + r) > 0, if we set h ≠
 

 

b c

c b r




then  

p(−1) = 1 + τ + ∆ = f(h) = Ah2 + Bh + C > 0. 
 

3. We know that 
 

 
2

4
1

c b r

b c





> 0 equivalent with 1 < R0 <1 +

 

 

2

4

b c

b pd r




. 

Since 
 

 
2

4
1

c b r

b c





> 0, we have h1,2 =

 

 

 

 
2

4
1 1

b c c b r

c b r b c

  
  
   

. 

Let h1 =
 

 

 

 
2

4
1 1

b c c b r

c b r b c

  
  
   

and h2 =
 

 

 

 
2

4
1 1

b c c b r

c b r b c

  
  
   

 . 

Notice that if R0 > 1 then 0 < 
 

 
2

4
1

c b r

b c





< 1.  

Thus, 1 −
 

 
2

4
1

c b r

b c





> 0 and 1 +

 

 
2

4
1

c b r

b c





> 0.  

Since 0 < 1 −
 

 
2

4
1

c b r

b c





< 1 +

 

 
2

4
1

c b r

b c





, we can conclude that h1 < h2. 

We have A = c (b + r) > 0, if we set h < h1 or h > h2 then  
p(−1) = 1 + τ + ∆ = f(h) = Ah2 + Bh + C > 0.               (Qed) 
 
 
We can generate Lemma 4, Lemma 5, and Lemma 6 into Theorem 7. 
 
Theorem 7 
If R0 > 1 and one of the following condition hold: 

1. h <
 

 

b c

c b r




, or 

2. h < min
 

 

 

 

 

 
2

4
, 1 1

b c b c c b r

c b r c b r b c

     
   
      

 

then the equilibrium point Ee is locally asymptotically stable. 
 
We investigate the numerical solution of model (3) through some numerical 

experiment. We set parameters as in Table 1 below such that R0 < 1. 
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Table 1. Parameters for R0 < 1 

Parameters Value 
β 0.05 
b 0.9 

p 0.8 

d 0.9 

r 0.8 

h 0.1 

 
   From this case, we find that R0 = 0.0329 < 1, | λ1 | = 0.91 < 1 and | λ2 | = 0.853 < 1, and 

h = 0.1 < 1.36054. Figure 2 shows S-I plot of the model using parameters in Table 1. 
 

 
Figure 2. Plot of the model with β = 0.05, b = 0.9, p = 0.8, d = 0.9, r = 0.8, and h = 0.1 
 
We use three different initial conditions in Figure 1. We see that all solutions goes to 

E0 which means that E0 is locally asymptotically stable for such parameters. For the next 
experiment, we set parameters as in Table 2. 

Table 2. Parameters for R0 > 1 

Parameters Value 
β 2 
b 0.7 

p 0.9 

d 0.7 

r 0.8 

h 0.1 

 
From this case, we find that R0 = 1.3986 > 1, λ1 = 0.992 + 0.0224i and λ2 = 0.992 − 

0.0224i, and h = 0.1 < 2.8655. Figure 3 shows S-I plot of the model using parameters in 
Table 2. 
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Figure 3. Plot of the model with β = 2, b = 0.7, p = 0.9, d = 0.7, r = 0.8, and h = 0.1 

 
We use three different initial conditions in Figure 3. We see that all solutions goes to 

Ee which means that Ee is locally asymptotically stable for such parameters. For the last 

experiment, we set parameters as in Table 3. 

Table 3. Parameters for R0 > 1 

Parameters Value 
β 0.8 
b 1.2 

p 0.2 

d 1.2 

r 0.1 

h 0.1 

 

From this case, we find that R0 = 6.67 > 1, |λ1| = 0.89479 < 1 and |λ2| = 0.92244 < 1, and 

h = 0.1 < 1.9. Figure 4 shows S-I plot of the model using parameters in Table 3. 

 
Figure 4. Plot of the model with β = 0.8, b = 1.2, p = 0.2, d = 1.2, r = 0.1, and h = 0.1 
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Again, we use three different initial conditions in Figure 4. We see that all solutions 
goes to Ee which means that Ee is locally asymptotically stable for such parameters. 

CONCLUSIONS 

In this paper, we have investigated a discrete numerical solution of SIR model with 
horizontal and vertical transmission. Euler method is use to discretisize the model. We 
found two equilibrium points that are E0 and Ee. The stability of these equilibrium points 
are depend on a reproduction number R0 and step size h. It can be shown that the discrete 
model is dynamically consistent with its continuous model only for relatively small step-
size h. We only investigate for stable case (sink). Further works is needed to investigate 
for the unstable cases, such as saddle and source, including bifurcation phenomenon of 
the model. 
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