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ABSTRACT  

The types of particles used in this research are Fermion particles and Boson particles. So to describe the 

movement of Fermion and Boson particles, the Dirac equation and Klein-Gordon equation are used. 

These two equations combine relativity and quantum principles. In this research, we will replace flat 

spacetime in the Dirac equation and Klein-Gordon equation with Kerr spacetime. Kerr spacetime 

describes the effects of gravity on Fermino and Boson particles. To determine the effect of gravity, a 

neutron interferometer is used through the principle of phase shift. The Hamiltonian value will be 

obtained. In the Dirac equation, the effect of gravity only appears on the Hamiltonian 𝐻1, 𝐻5 and 𝐻6. The 

phase shift values are  Δ𝛽1 = 1.03091 × 10−33 , Δ𝛽5  − 0.71764 × 10−39 dan Δ𝛽6 = 7.2827496 ×
10−36. In the Klein-Gordon equation, the effect of gravity only appears on the Hamiltonian 𝐻1. The 

phase shift value is Δ𝛽1 = 1.03091 × 10−33. The Dirac equation contains more Hamiltonian terms that 

are not found in the Klein-Gordon equation. The more Hamiltonian terms, the more confounding 

Hamiltonian is in it. Confounding Hamiltonian will appear when the calculation involves the quantum 

part. From the calculation results, it is found that the Dirac equation has better accuracy than the Klein-

Gordon equation when viewed from the calculation results of each phase shift. 

Keywords: Dirac Equation; Klein-Gordon Equation; Kerr Geometry; Neutron Interferometer.  

Introduction  

The equations that can combine gravity and 

quantum are the Dirac equation and the Klein-

Gordon equation in the form of the relativity 

wave equation. The Dirac equation was 

derived by Paul Dirac in 1928. The Dirac 

equation is derived from the Schrödinger 

equation, which is a partial differential 

equation of the wave function. The Dirac 

equation can explain the movement of 

particles with spin, such as electrons, protons, 

neutrinos, muons, quarks and their 

antiparticles. The Klein-Gordon equation was 

derived by Oskar Klein and Walter Gordon in 

1926. This equation can explain the 

movement of spherical spin particles such as 

photons, gluons, phonons, W bosons and Z 

bosons.1 

The quantum mechanics approach is 

mostly done with theoretical experiments, 

such as the search for solutions to the Dirac 

equation in Kerr-Newman spacetime.2 

However, as technology developed, it was 

possible to experiment in the laboratory and 

try to interpret quantum mechanics. It would 

be interesting to link gravity and quantum 

mechanics. So, in this case, the development 

of the neutron interferometer has an 

influential role. However, it does not yet have 

a fundamental amalgamation of quantum 

mechanics and gravity. So, it is necessary to 

observe the effects of gravity on quantum 

mechanics. 

Research conducted by Overhauser and 

Colella (1974) proposed an experiment to 

examine the effect of the gravitational field 

from the earth on phase shift. This experiment 

was successfully carried out using a neutron 

interferometer. Based on the experiments that 

have been carried out, the phase difference in 

the gravitational potential produces the same 

value as the theoretical prediction with an 

error of 1% without distinguishing the inertial 
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mass of the gravitational mass of the neutron. 

These results support the correctness of the 

equivalence principle at the quantum level. 

The atomic interferometer approach will 

increase the accuracy of a measurement. The 

Colella-Overhauser-Werner experiment using 

a quantum interferometer produces a 

sensitivity of 10−2 g, where g is the 

acceleration due to gravity.3 

The gravitational effect applied to the 

quantum interferometer will produce a 

disturbance phenomenon. The phenomenon 

of disturbance is fundamentally different in 

classical and quantum physics. Quantum 

perturbation has a large impact on phase shift 

because the observed phase shift provides 

information on the external field that distorts 

the wave function of the particle. The 

importance of phase shifts by presenting 

electromagnetic potentials suggested by 

Ahanrov and Bohn on quantum perturbations 

was later proven experimentally.4 

Research has shown that other effects are 

caused by the rotation of the earth and have 

been detected by Dresden and Yang (1979). 

This effect is similar to the Sagnac effect in a 

quantum interferometer. With this theoretical 

approach, other types of effects have been 

derived, such as optical analogies,5 the eiconal 

relativity approach, the WKB approach,6 the 

Doppler effect of media displacement,7 and 

the analogous Aharnovon-Bohn effect. 

Anandan and Chiao proposed a gravitational 

radiation antenna using the Sagnac effect. The 

detection of gravity does not only state the 

proof of general relativity. But it also opened 

a new understanding of astronomical 

observations. 

The phase shift effect has been derived 

using various approaches. Research 

conducted by Anandan (1977) calculated the 

phase shift caused by gravity and rotation in 

quantum disturbances using the 

Schwarzschild field,8 Dresden and Yang 

(1979) also carried out the same thing but with 

a different approach. This study calculates the 

phase shift caused by the rotation of the 

neutron / optical interferometer derived from 

the Doppler effect caused by the displacement 

of the source and the displacement of the 

crystal reflection.5 The reduction of the phase 

shift in quantum mechanics was also carried 

out by Sakurai (1980) by being influenced by 

the rotation of the earth.9 Wajima et al. (1997) 

used the Schrödinger equation derived from 

spherical spin particles and half spin particles. 

This research resulted in the gravitational 

effect of the rotating earth on a quantum 

interferometer.10 

The effect of gravity applied to a neutron 

interferometer can be carried out using two 

different types of equations. This research will 

study the effect of gravity on the neutron 

interferometer using the Dirac equation, 

which represents fermion particles and the 

Klein-Gordon equation for the boson particle. 

Then, we will look for an equation that 

represents the effect of gravity on fermion and 

boson particles. This equation will be applied 

to the neutron interferometer to determine the 

effect of gravity on the phase shift. This study 

uses Kerr Geometry, which will represent the 

effects of Earth's gravity and its rotation. 

These two disturbance effects use two 

different equations, so the differences will be 

analyzed. 

Methods 

The method used in this research is the 

analytical method by deriving the Dirac 

equation and Klein-Gordon equation in Kerr 

spacetime. 

1. Changing the spacetime structure of 

the Dirac equation and the Klein-

Gordon equation into a curved 

spacetime form 

2. Determine the effect of gravity using 

the phase shift equation of the neutrino 

interferometer 

3. Comparing the gravitational effect 

between the Dirac equation and the 

Klein-Gordon equation. 

Result and Discussion 

1. The Dirac equation in Kerr spacetime 

1.1 Kerr Spacetime 

The gravitational field that appears is 

caused by the object rotating. We assume that 
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the Kerr metric represents the external field of 

this object. Variable limitation is done on slow 

rotation, weak field, metric form, and 

coordinate form (3+1) 

𝑑𝑠2 = [𝑐2 + 2𝜙 − 𝜔𝑜
2(𝑥2 + 𝑦2) +

2𝜙2

𝑐2

+
8𝐺𝑀𝑅2

5𝑐2
𝜔𝑜𝜔𝑠(𝑥2 + 𝑦2)

+
2𝜙

𝑐2
𝜔𝑜

2(𝑥2 + 𝑦2)] 𝑑𝑡2 

                        − [𝜔𝑜 − 2
𝜙

𝑐2
𝜔𝑜 −

4𝐺𝑀𝑅2

5𝑐2𝑟3
𝜔𝑠] 

                        (𝑥𝑑𝑦 − 𝑦𝑑𝑥)𝑑𝑡 − (1 −
2𝜙

𝑐2
) 

                        (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)    

(1.1) 

Using the metrics above, we can calculate 

the Christoffel symbol. The Christoffel 

symbol will be used to define the components 

of the connection spin. 

Using the form (3+1) then the metric form 

𝑔𝛼𝛽 in equation (1.1) is separated by 

following the following equation 

𝑔𝑜𝑜 = 𝑁2 − 𝛾𝑖𝑗𝑁𝑖𝑁𝑗 (1.2) 

𝑔𝑜𝑖 = −𝛾𝑖𝑗𝑁𝑗 ≡ −𝑁𝑖 (1.3) 

𝑔𝑖𝑗 = −𝛾𝑖𝑗  (1.4) 

where 𝑁 is the Lapse function, 𝑁𝑖is the vector 

shift, and 𝛾𝑖𝑗 is the spatial metric on the 3D 

hypersurface. Define 𝛾𝑖𝑗 the inverse matrix of 

𝛾𝑖𝑗. Mertik 𝑔𝛼𝛽 can be separated according to 

the following equation 

𝑔𝑜𝑜 =
1

𝑁2
 (1.5) 

   𝑔𝑜𝑖 = −
𝑁𝑖

𝑁2
 (1.6) 

 𝑔𝑖𝑗 = −
𝑁𝑖𝑁𝑗

𝑁2
− 𝛾𝑖𝑗 (1.7) 

 

Equation (1.1) can be separated from the lapse 

parts, vector shifts, and spatial metrics to be11 

𝑁 =  𝑐 (1 +
𝜙

𝑐2
+

𝜙2

2𝑐4
) (1.8) 

 𝑁𝑥 =  − (𝜔𝑜 −
4𝐺𝑀𝑅2

5𝑐2𝑟3
𝜔𝑠) 𝑦 (1.9) 

𝑁𝑦 =  (𝜔𝑜 −
4𝐺𝑀𝑅2

5𝑐2𝑟3
𝜔𝑠) 𝑥 (1.10) 

  𝑁𝑧 =  0 (1.11) 

        𝛾𝑖𝑗 = (1 −
2𝜙

𝑐2
) 𝛿𝑖𝑗 (1.12) 

to calculate the spin component of the 

connection, we need the following tetrads: 

       𝑒(0)
𝜇

= 𝑐 (
1

𝑁
, − 

𝑁𝑖

𝑁
 ) (1.13) 

𝑒(𝑘)
𝜇

= (0, 𝑒(𝑘)
𝜇

 ) (1.14) 

where the spatial three  𝑒(𝑘)
𝑖  is defined as 

       𝛾𝑖𝑗 = 𝑒(𝑘)
𝑖 𝑒(𝑙)

𝑗
= 𝛿𝑘𝑙 (1.15) 

by inserting equations (1.8) - (1.12) into 

equations (1.13) and (1.14), we get tetrads 

with a certain index 

       𝑒(0)
0 = 1 −

𝜙

𝑐2
 (1.16) 

       𝑒(0)
1 = (𝜔𝑜 −

𝜙

𝑐2
𝜔𝑜 −

4𝐺𝑀𝑅2

5𝑐2𝑟3
𝜔𝑠) 𝑦 (1.17) 

       𝑒(0)
2 = − (𝜔𝑜 −

𝜙

𝑐2
𝜔𝑜 −

4𝐺𝑀𝑅2

5𝑐2𝑟3
𝜔𝑠) 𝑥 (1.18) 

       𝑒(0)
3 = 0 (1.19) 

       𝑒(𝑗)
𝑖 = (1 +

𝜙

𝑐2
) 𝛿𝑗

𝑖 (1.20) 

From the above equation, the components of 

the spin connection can be calculated.11 

1.2 Covariant Differentiation 

By connecting the local inertial coordinate 

system with the general non-inertial 
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coordinate system, we get the theoretical 

expansion of a field in curved spacetime. In 

accordance with the same strong principle, it 

states that all natural laws in an inertial 

coordinate system will be the same as in a 

Cartesian coordinate system that is not 

accelerated or does not have the influence of 

gravity. This approach is worth considering 

and using. 

By using the tetrad form and forming a 

local inertial coordinate system 𝜉𝑥
𝑎 at each 

point in spacetime 𝑋. The metric in the non-

inertial coordinate system takes the form. 11 

𝑔𝛼𝛽(𝑥) =  𝑒𝛼
(𝑎)(𝑥)𝑒𝛽

(𝑏)(𝑥) 𝜂𝑎𝑏  (1.21) 

    where 

𝑒𝛼
(𝑎)(𝑋) ≡ (

𝜕𝜉𝑥
𝑎(𝑥)

𝜕𝑥𝛼
)

𝑥=𝑋
 (1.22) 

The equivalence principle in general 

relativity must be applied to all local inertial 

frames with scalar field components 𝐴̅𝑎, 𝐵̅𝑎
𝑏, 

and so on. The scalar field definition can be 

chosen freely in the local inertial coordinate 

system but must contain a vector or tensor 

satisfying the Lorentz transformation Λ𝑏
𝑎 (𝑥)  

on 𝑥: 

𝐴̅𝑎(𝑥) → Λ𝑏
𝑎 (𝑥)𝐴̅𝑏(𝑥) (1.23) 

𝐵̅𝑎
𝑏(𝑥) → Λ𝑐

𝑎(𝑥)Λ𝑏
𝑑(𝑥)𝐵̅𝑐

𝑑(𝑥) (1.24) 

In general the field 𝜓̅𝑚(𝑥) is defined in the 

local inertial coordinate system which 

changes in the following way 

𝜓̅𝑚(𝑥) → ∑[𝑈(Λ(𝑥))]𝑚𝑛

𝑛

𝜓̅𝑛(𝑥) (1.25) 

Where 𝑈(Λ(𝑥) is the matrix of the Lorentz 

grub, for example if 𝜓̅ is the covariance of 

vector 𝐴̅
𝑎, so 𝑈(Λ(𝑥)) is equal to 

[𝑈(Λ(𝑥))]𝑎
𝑏 = Λ𝑎

𝑏 (𝑥) (1.26) 

whereas for the contravariant tensor 𝑇̅𝑎𝑏 

 [𝑈(Λ(𝑥))]𝑐𝑑
𝑎𝑏 = Λ𝑐

𝑎(𝑥)Λ𝑑
𝑏 (𝑥) (1.27) 

The vector coordinates are transformed 

into the generalized coordinate transformation 

→ 𝑥′ : 

𝜕

𝜕𝑥𝛼
→

𝜕

𝜕𝑥′𝛼
=

𝜕𝑥𝛽

𝜕𝑥′𝛼

𝜕

𝜕𝑥𝛽
  (1.28) 

Transformed scalar coordinate derivative 

with general field using Lorentz transform 

rule (4.47) 

   𝑒(𝑎)
𝛼 (𝑥)

𝜕

𝜕𝑥𝛼
𝜓̅(𝑥)

→ Λ𝑎
𝑏 (𝑥)𝑒(𝑏)

𝛼
𝜕

𝜕𝑥𝛼
{𝑈(Λ(𝑥))𝜓̅(𝑥)}

= Λ𝑎
𝑏 (𝑥)𝑒(𝑏)

𝛼 (𝑥) [𝑈(Λ(𝑥))
𝜕

𝜕𝑥𝛼
𝜓̅(𝑥)

+ {
𝜕

𝜕𝑥𝛼
𝑈(Λ(𝑥))} 𝜓̅(𝑥)] 

(1.29) 

We define an operator 𝐷̅𝑎 that satisfies a 

position-dependent Lorentz transformation. 

This operator satisfies the transformation law 

𝐷̅𝑎𝜓̅(𝑥) → Λ𝑎
𝑏 (𝑥)𝑈(Λ(𝑥))𝐷̅𝑏𝜓̅(𝑥) (1.30) 

By replacing 𝜕𝑎𝜓̅(𝑥) in the field equation 

in flat spacetime to 𝐷̅𝑎𝜓̅(𝑥) we will get a field 

equation that does not depend on the inertial 

coordinate system.10 

By considering equation (1.29), it will be 

obtained the scalar coordinates of the 

derivative of the Lorentz vector 𝐷̅𝑎 with the 

form: 

 𝐷̅𝑎𝑒(𝑎)
𝛼 ≡ [

𝜕

𝜕𝑥𝛼
− Γ𝛼] (1.31) 

Where Γ𝛼 is a matrix that satisfies Lorentz 

transformation law 

Γ𝛼(𝑥)

→ 𝑈(Λ(𝑥))Γ𝛼(𝑥)𝑈−1(Λ(𝑥))

+ [
𝜕

𝜕𝑥𝛼
𝑈(Λ(𝑥))] 𝑈−1(Λ(𝑥)) 

(1.32) 

The results of this derivation discuss a 

general field containing a spinor inserted into 

curved spacetime. 
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1.3 Connection 

Using the Lorentz transform law a field 

denoted by 𝜓𝑚 is transformed using the 

Lorentz transform by Λ𝑏
𝑎  

𝜓′𝑚 = ∑[𝑈(Λ)]𝑚𝑛

𝑛

𝜓𝑛 (1.33) 

Considering a small Lorentz group, we use 

a Lorentz transform that satisfies the 

following identity equation : 

Λ𝑏
𝑎 (𝑥) = δ𝑏

𝑎 + ω𝑏
𝑎(𝑥),       |ω𝑏

𝑎| ≪ 1 (1.34) 

The matrix describing 𝑈(Λ) must be very 

close to the following Identity : 

𝑈(1 + 𝜔(𝑥)) = 𝟏 +
1

2
𝜔𝑎𝑏(𝑥)𝜎𝑎𝑏) 

(1.35) 

If we consider the covariance vector 𝐴̅
𝑎, we 

get 

[𝜎𝑎𝑏]𝑐
𝑑 =  𝜂𝑎𝑐𝛿𝑏

𝑑 − 𝜂𝑏𝑐𝛿𝑎
𝑑 (1.36) 

The matrix 𝜎𝑎𝑏 must be limited by the law 

of multiplication of grub 𝑈(Λ1)𝑈(Λ2) =
𝑈(Λ1Λ2). If it is applied to the product 

Λ(1 + 𝜔)Λ−1 then : 

𝑈(Λ)𝑈(1 + 𝜔)𝑈(Λ−1) = 𝑈(1 + Λ𝜔Λ−1)  (1.37) 

with minimize 𝜔  

𝑈(Λ) 𝜎𝑎𝑏 𝑈(Λ−1) = 𝜎𝑐𝑑Λ𝑎
𝑐 Λ𝑏

𝑑  (1.38) 

If grouped according to Λ = 1 + 𝜔 and Λ−1 =
1 − 𝜔, we get 

𝜔𝑐𝑑[𝜎𝑎𝑏,𝜎𝑐𝑑] = 𝜔𝑐𝑑  (𝜂𝑐𝑏𝜎𝑎𝑑 − 𝜂𝑐𝑎𝜎𝑏𝑑 

                         +𝜂𝑑𝑏𝜎𝑐𝑎 − 𝜂𝑑𝑎𝜎𝑐𝑏) 

(1.39) 

Then we get the commutation form 

[𝜎𝑎𝑏, 𝜎𝑐𝑑] =  𝜂𝑐𝑏𝜎𝑎𝑑 − 𝜂𝑐𝑎𝜎𝑏𝑑 + 𝜂𝑑𝑏𝜎𝑐𝑎

− 𝜂𝑑𝑎𝜎𝑐𝑏 

(1.40) 

and the contravariant tensor 𝑇̅𝑎𝑏 

[𝜎𝑎𝑏]𝑒𝑓
𝑐𝑑 =  𝛿𝑎

𝑐𝜂𝑏𝑒𝛿𝑓
𝑑 − 𝛿𝑏

𝑐𝜂𝑎𝑒𝛿𝑓
𝑑 + 𝛿𝑎

𝑑𝜂𝑏𝑓𝛿𝑒
𝑐

− 𝛿𝑏
𝑑𝜂𝑎𝑓𝛿𝑒

𝑐 

(1.41) 

Using the transformation in equation (1.32) 

by fulfilling the Lorentz Infinitesimal 

transformation (1.34), the connecting form Γ𝛼 

transforms to10 

Γ𝛼(𝑥) → Γ𝛼(𝑥) +
1

2
𝜔𝑎𝑏(𝑥) [𝜎𝑎𝑏, Γ𝛼(𝑥)]

+
1

2
𝜎𝑎𝑏  

𝜕

𝜕𝑥𝛼
𝜔𝑎𝑏(𝑥) 

(1.42) 

defined form of connection 

Γ𝛼(𝑥) →
1

2
𝐶𝛼

𝑎𝑏(𝑥)𝜎𝑎𝑏  (1.43) 

𝐶𝛼
𝑎𝑏(𝑥) is antisymmetric in 𝑎 and 𝑏. By using 

the transformation law (1.42) and the 

commutation relationship (1.41), we get 

𝐶𝛼
𝑎𝑏(𝑥) 

𝐶𝛼
𝑎𝑏(𝑥) → 𝐶𝛼

𝑎𝑏(𝑥) + 𝜔𝑐
𝑎(𝑥)𝐶𝛼

𝑐𝑏(𝑥) 

                     +𝜔𝑐
𝑏(𝑥) 𝐶𝛼

𝑎𝑐 +
𝜕

𝜕𝑥𝛼
𝜔𝑎𝑏(𝑥) 

(1.44) 

The derivative relationship of 𝐷̅𝑎 and tetrad 

𝑒(𝑎)𝛼. 

𝐷̅𝑎𝑒(𝑏)𝛼 ≡ 𝑒(𝑎)
𝜇

[
𝜕

𝜕𝑥𝜇
𝑒(𝑏)𝛼 − 𝜂𝑏𝑐𝐶𝜇

𝑐𝑑 𝑒(𝑑)𝛼] (1.45) 

Then the total derivative of covariance 𝐷̅𝑎 

is defined as10 

𝐷̅𝑎𝑒(𝑏)𝛼 ≡ 𝑒(𝑎)
𝜇

[
𝜕

𝜕𝑥𝜇
𝑒(𝑏)𝛼 − 𝜂𝑏𝑐𝐶𝜇

𝑐𝑑𝑒(𝑑)𝛼

− Γ𝛼𝜇
𝑣  𝑒(𝑏)𝑣] 

(1.46) 

If derived in the same way in the tetrad 𝑒𝛼
(𝑎)

 

then we get 

𝐷̅𝑎𝑒𝛼
(𝑏)

≡ 𝑒(𝑎)
𝜇

[
𝜕

𝜕𝑥𝜇
𝑒𝛼

(𝑏)
− 𝜂𝑏𝑐𝐶𝜇

𝑐𝑑𝑒𝛼
(𝑏)

− Γ𝛼𝜇
𝑣  𝑒𝛼

(𝑏)
] 

(1.47) 

the covariance derivative of the metrics 𝑔𝛼𝛽 is 

zero 
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∇𝜇𝑔𝛼𝛽 ≡ 0  (1.48) 

therefore from equation (1.21) becomes 

 𝑒𝜇
(𝑎)

[(𝐷̅𝛼𝑒𝛼
(𝑏)

)𝑒(𝑏)𝛽 + 𝑒𝛼
(𝑏)

(𝐷̅𝛼𝑒(𝑏)𝛽)] = 0 (1.49) 

The simple solution of the above equation is 

𝐷̅𝛼𝑒𝛼
(𝑏)

= 𝐷̅𝛼𝑒(𝑏)𝛼 = 0 (1.50) 

Using this condition, we will look for the 

relationship Γ𝛼   and tetrad e(𝑎)𝛼 from 

equations (1.46) and (1.47) 

𝐶𝛼
𝑎𝑏(𝑥) = −𝜂𝑎𝑐𝜂𝑏𝑑𝑒(𝑐)

⋋ ∇𝛼𝑒(𝑑)⋋ (1.51) 

therefore, the connector Γ𝛼   

   Γ𝛼(𝑥) = −
1

2
𝜎𝑎𝑏𝑔𝜇𝑣𝑒(𝑎)

𝜇
∇𝛼𝑒(𝑏)

𝑣  (1.52) 

according to the small Lorentz transform 

(4.59) the tetrad 𝑒(𝑎)𝛼 changes accordingly 
e(𝑎)𝛼(𝑥) → e(𝑎)𝛼(𝑥) + 𝜔𝑎

𝑏(𝑥)e(𝑏)𝛼(𝑥) (1.53) 

so 

𝑒(𝑎)
⋋ (𝑥)∇(𝛼)e(𝑏)⋋(𝑥) → 𝑒(𝑎)

⋋ (𝑥)∇(𝛼)e(𝑏)⋋(𝑥) 

                                +𝜔𝑎
𝑐(𝑥)𝑒(𝑐)

⋋ ∇(𝛼)e(𝑏)⋋(𝑥)

+ 𝜔𝑏
𝑐 (𝑥)𝑒(𝑎)

⋋ ∇(𝛼)e(𝑐)⋋(𝑥)

−
𝜕

𝜕𝑥𝛼
𝜔𝑎𝑏(𝑥)   

(1.54) 

1.4 Dirac equation in Kerr spacetime 

The covariance derivative 𝐷̅𝑎 is used to 

derive the Dirac equation in curved spacetime. 

This equation is formed from the inertial 

coordinates 𝜉𝑥
𝑎 

[𝑖ℏ 𝛾(𝑎)  
𝜕

𝜕𝜉𝑥
𝑎

− 𝑚𝑐] 𝜓̅(𝜉) = 0  (1.55) 

Replacing the derivative 𝜕/𝜕𝜉𝑥
𝑎 with the 

covariant derivative 𝐷̅𝑎 in equation (1.55) to 

replace flat spacetime into curved spacetime 

[𝑖ℏ 𝛾(𝑎)𝑒(𝑎)
𝛼  (

𝜕

𝜕𝑥𝛼
− Γ𝛼) − 𝑚𝑐] 𝜓̅(𝜉) = 0  (1.56) 

then the Dirac equation can be derived in the 

form of the general covariance.10 

  [𝑖ℏ𝛾(𝑎)𝐷𝑎 − 𝑚𝑐] 𝜓(𝑥) = 0 (1.57) 

Transforming the spinor using the Lorentz 

transformation Λ then we get 

𝜓′(𝑥) = 𝑆(Λ)𝜓(𝑥) (1.58) 

Where 𝑆(Λ) is the matrix of the Lorentz grub. 

Then equation (1.57) becomes 

[𝑖ℏ𝑆(Λ)𝛾(𝑎)𝑆−1(Λ)(Λ−1)𝑎
𝑏  𝜕𝑏′

− 𝑚𝑐] 𝜓′(𝑥) = 0 

(1.59) 

In order for the Dirac equation to be a 

covariant form that satisfies the Lorentz 

transformation, it must follow the following 

relationship 

𝑖ℏ𝑆(Λ)𝛾(𝑎)𝑆−1(Λ) = (Λ−1)𝑏
𝑎𝛾(𝑏) (1.60) 

using Lorentz infinitesimal transformation 

(1.34) then 𝑆(Λ) must be written in the 

following form 

𝑆(Λ) = 1 +
1

2
𝜔𝑎𝑏𝜎𝑎𝑏 (1.61) 

from equation (1.60) can be derived by 

following the following conditions 

      
1

2
𝜔𝑎𝑏[𝜎𝑎𝑏 , 𝛾(𝑐)] = −𝜔𝑑

𝑐 𝛾(𝑑) (1.62) 

In the case of a spinor, this condition is set by 

𝜎𝑎𝑏 =
1

4
[𝛾(𝑎), 𝛾(𝑏)] (1.63) 

from equation (1.52) we get spin 

connection.10  

   Γ𝛼(𝑥) = −
1

8
[𝛾(𝑎), 𝛾(𝑏)]𝑔𝜇𝑣𝑒(𝑎)

𝜇
∇𝛼𝑒(𝑏)

𝑣  (1.64) 

1.4 Equation of Schrödinger-type 

Derive the Schrödinger type equation from 

the Dirac covariance equation (1.57) using a 

certain tetrad, then the Dirac covariance 

metric 𝛾𝛼 can be written as 
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𝛾0 = 𝛾(𝑎)𝑒(𝑎)
0 = 𝛾(0)

𝑐

𝑁
 (1.65) 

𝛾0 = 𝛾(𝑎)𝑒(𝑎)
𝑖 = −𝛾(0)

𝑐

𝑁
𝑁𝑖 + 𝛾(𝑗)𝑒(𝑗)

𝑖  (1.66) 

Replacing 𝐷𝑎 with (
𝜕

𝜕𝑥𝛼 − Γ𝛼) then the 

Dirac covariance equation in equation (1.57) 

becomes 

[𝑖ℏ𝛾(𝑎)
𝜕

𝜕𝑥𝛼
− 𝑖ℏ𝛾(𝑎)Γ𝛼 − 𝑚𝑐]  𝜓(𝑥) = 0  (1.67) 

The equation above is a Dirac equation 

whose spacetime has been converted into Kerr 

spacetime. This equation describes a fermion 

particle that moves in a curved spacetime and 

undergoes a rotation. Equation (1.67) needs to 

be separated from the space and time terms in 

order to obtain an equation of the Schrödinger 

type by entering equation (1.65) and equation 

(1.66) 

𝑖ℏ𝛾(0)
𝑐

𝑁

𝜕

𝜕𝑡
𝜓 = [(−𝛾(0)

𝑐

𝑁
𝑁𝑖

+ 𝛾(𝑗)𝑒(𝑗)
𝑖 ) (−𝑖ℏ

𝜕

𝜕𝑥𝑖

+ 𝑖ℏΓ𝑖) + 𝑖ℏ𝛾(0)
c

N
Γ0

+ 𝑚𝑐] 𝜓 

(1.68) 

Multiplying by 𝛾(0)𝑐𝑁, we get the 

Schrödinger type equation which has separate 

terms between the space and time parts. 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 = [(𝛾(0)𝛾(𝑗)𝑐𝑁𝑒(𝑗)

𝑖 − 𝑁𝑖)(𝒑𝒊̅

+ 𝑖ℏΓ𝑖) + 𝑖ℏΓ0

+ 𝛾(0)𝑚𝑐2𝑁]𝜓 

(1.69) 

The Dirac equation in Kerr spacetime 

describes a fermion particle that moves in a 

curved and rotating spacetime. While the 

usual Dirac equation only moves in flat 

spacetime. 

1.6 Non-relativistic Hamitonian 

The spinor and the Hamiltonian are 

redefined as follows 

𝜓′ = 𝛾
1
4 𝜓, 𝐻′ = 𝛾

1
4𝐻𝛾−

1
4 (1.70) 

where γ is the determinant of the spatial 

matrix 

𝛾 = det(𝛾𝑖𝑗) (1.71) 

because it produces a scalar invariant then 

(𝜓, 𝜑) ≡ ∫ 𝜓̅ 𝜑√𝛾𝑑3𝑥  (1.72) 

The definition of a scalar product is the 

same as in flat spacetime with the following 

redefinition 

〈𝜓′, 𝜑′〉 ≡ ∫ √𝜓′̅̅ ̅ 𝜑′𝑑3𝑥  (1.73) 

Then, the non-relativity Hamiltonian will 

be obtained using the FWT transformation on 

the Hamiltonian 𝐻′. 

  𝐻̅′ = (
𝐻̅′

+ 0

0 𝐻̅−

) + 𝑂 (
1

𝑐4
) (1.74) 

Then the Hamiltonian is defined by 

subtracting 

𝐻+ ≡ 𝐻̅+ − 𝑚𝑐2 (1.75) 

Using the above definition, we get the 

Schrödinger equation with general relativity 

correction for the large component 

𝑖ℏ
𝜕

𝜕𝑡
Φ

= ⌊
𝒑̅𝟐

2𝑚
+ 𝑚𝜙 − 𝝎. (𝑳 + 𝑺)

+
1

𝑐2
(

4𝐺𝑀𝑅2

5𝑟3
𝜔. (𝑳 + 𝑺) −

𝒑̅4

8𝑚3

+
1

2
𝜙2 +

3

2𝑚
𝒑̅. 𝜙𝒑̅)

+
1

𝑐2
(

3𝐺𝑀

2𝑚𝑟3
𝑳. 𝑺

+
6𝐺𝑀𝑅2

5𝑟5
𝑺. [𝒓 𝑥 (𝒓𝑥𝝎)])⌋ Φ 

(1.76) 
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Following the canochial quantity 

procedure, a non-relativity Hamiltonian will 

be obtained with 𝑺 = 𝟎 

𝑖ℏ
𝜕

𝜕𝑡
𝜙′ = [

𝒑̅𝟐

2𝑚
+ 𝑚𝜙 − 𝝎 ∙ 𝑳

+
1

𝑐
(

4𝐺𝑀𝑅2

5𝑟3
𝜔 ∙ 𝑳

−
𝒑̅𝟒

8𝑚3
+

1

2
𝑚𝜙2

+
3

2𝑚
𝒑̅. 𝜙𝒑̅)] 

(1.77) 

1.5 Gravitational Effects in Neutron 

Interferometer 

The neutron interferometer describes the 

movement of fermion particles through a 

curved and rotating spacetime. Curved 

spacetime is caused by gravity. The total 

Hamiltonian of the Dirac equation in Kerr 

spacetime consists of several terms 

  𝑖ℏ
𝜕

𝜕𝑡
𝜙′ = [

𝒑̅𝟐

2𝑚
+ 𝑚𝜙 − 𝝎 ∙ 𝑳

+
1

𝑐
(

4𝐺𝑀𝑅2

5𝑟3
𝜔 ∙ 𝑳

−
𝒑̅𝟒

8𝑚3
+

1

2
𝑚𝜙2

+
3

2𝑚
𝒑̅. 𝜙𝒑̅)] 

(1.78) 

If we use the wave function Φ0 in the 

Schrödinger equation, we can solve it by the 

following equation 

𝑖ℏ
𝜕

𝜕𝑡
Φ0 = 𝐻0 Φ0 (1.79) 

The total Hamiltonian in the Schrödinger 

type equation (1.77) can be solved using the 

wave function 

Φ = Φ0 exp (𝑖 ∑ 𝛽𝑘

𝑘

) (1.80) 

where 𝛽𝑘 contains the Hamiltonian of the 

disturbance term 

𝛽𝑘 =
1

ℏ
∫ Δ𝐻𝑘𝑑𝑡

𝑡

 (1.81) 

Two neutron waves that pass through the 

ABD path and the ACD path meet at point D. 

the meeting point at D the phase shift can be 

calculated as follows 

Δ𝛽𝑘 = 𝛽𝑘(𝐴𝐶𝐷) − 𝛽𝑘(𝐴𝐵𝐷) = −
1

ℏ
∮ Δ𝐻𝑘𝑑𝑡 (1.82) 

each Hamiltonian term of equation (1.77) will 

be calculated the phase shift using equation 

(1.81). Then will be evaluated the part that 

causes the phase shift.10 

           Δ𝛽0 = 0 (1.83) 

           Δ𝛽1  ≅
𝑚2𝑔𝐴𝜆

2𝜋ℏ2
sin 𝜑 (1.84) 

           Δ𝛽2 =  
2𝑚

ℏ
𝛀 ∙ 𝑨 (1.85) 

           Δ𝛽3  =
1

5
Δ𝛽2

𝑟𝑔

5𝑅
[1 −

3

𝝎
(

𝑹

𝑅
𝜔)

𝑹

𝑅
𝑨 ] (1.86) 

           Δ𝛽4 = 0 (1.87) 

           Δ𝛽5 = −
1𝑟𝑔

2𝑅
Δ𝛽1 (1.88) 

           Δ𝛽6 =
3

2
(

𝜆𝑐

𝜆
)

2

Δ𝛽1 (1.89) 

2. Klein Gordon Equation in Kerr 

Spacetime 

 2.1 Klein Gordon equation in Kerr spacetime 

The Klein-Gordon equation describes the 

Boson particle, which has zero spin. If the 

spacetime of the Klein-Gordon equation is 

replaced by the Kerr spacetime, it will affect 

the Boson particle. To find out the effect, we 

will first derive the form of the Klein-Gordon 

equation in Kerr spacetime, and then the 

equation will be applied to the Neutron 

interferometer. Starting with the Lorenz 

covariance equation from the Klein-Gordon 

equation 
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𝛁𝜇𝛁𝜇𝜙 − (
𝑚𝑐

ℏ
)

2

𝜙 = 0 (2.1) 

With 𝑚𝑐2 = 0 in the case of rest energy then 

−
1

𝑐2

𝜕2𝜓

𝜕𝑡2
+ 2𝑖

𝑚

ℏ

𝜕𝜓

𝜕𝑡
 + ∇2𝜓 = 0 (2.2) 

where 𝛁𝟐 the Lapasian operator, three-

dimensional. The relative order of the first 

term in the other (4.147) equation is 𝑂((𝑣/
𝑐)2), where 𝑣 represents the speed 

characteristic of the wave packet or is 

equivalent to 𝑂((𝜆0/𝜆)2). Where 𝜆0 is the 

Compton wavelength and 𝜆 is the de Broglie 

wavelength of the particle.11 

Equation (2.2) can be reduced to the 

ordinary Schrödinger equation.12 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓  (2.3) 

Assuming the external gravitational field 

of the earth with the metric Kerr. At Boyer-

Lindquist coordinates given the equation of 

the line 

𝑑𝑠2 =  −
∆

𝜌2
(𝑐𝑑𝑡 − 𝑎 sin2 𝜃 𝑑𝜙)2  

+
sin2 𝜃

𝜌2
[(𝑟2 + 𝑎2)𝑑𝜙 − 𝑎𝑐𝑑𝑡]2 

+𝜌2 (
𝑑𝑟2

∆
+ 𝑑𝜃2)   

(2.4) 

The form of the d'Alembertian operator in 

Boyer-Linduquist coordinates can be 

calculated by the form 

□𝑔 =
1

|𝑔|1/2

𝜕

𝜕𝑥𝒂
(|𝑔|1/2𝑔𝒂𝒃

𝜕

𝜕𝑥𝒃
)  (2.5) 

where |g| is |det g | then get 

      □𝑔 =
𝜎2

Δ𝜌2

𝜕2

𝜕𝑡2
+

4𝑎𝑀𝑟

Δ𝜌2

𝜕2

𝜕𝑡𝜕𝜑
 

−
1

𝜌2

𝜕

𝜕𝑟
(Δ

𝜕

𝜕𝑟
) −

1

𝜌2 sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
 

      −
𝜌2 − 2𝑀𝑟

𝜌2 sin2 𝜃

𝜕2

𝜕𝜑2
 

(2.6) 

Then the form of the three-dimensional 

Laplacian operator is 

  ∇2= −
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) 

         −
1

𝑟2
(

1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
+

1

sin2 𝜃

𝜕2

𝜕𝜑2
) 

         −
2𝑀𝑟

(𝑟2 sin2 𝜃 + 𝑎2 cos2 𝜃 sin2 𝜃)

𝜕2

𝜕𝜑2
 

(2.7) 

Entering equation (2.7) into equation (2.3) 

then the Klein Gordon equation becomes 

𝑖ℏ𝜕𝜓

𝜕𝑡

= −
ℏ2

2𝑚 
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
 )

−
1

𝑟2ℏ2
(

1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
 

+
1

sin2 𝜃

𝜕2

𝜕𝜙2
)] 𝜓 

−
𝐺𝑀𝑚

𝑟
𝜓 +

2𝐺𝑀𝑎

𝑟3𝑐
(−𝑖ℏ

𝜕

𝜕𝜙
 ) 𝜓 

(2.8) 

Transformation of coordinates ϕ → ϕ −
ωt, where ω is the angular velocity of the 

earth, the equation (2.8) becomes 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=  −

ℏ2

2𝑚
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) −

𝐿2

𝑟2ℏ2
 ] 𝜓 

−
𝐺𝑀𝑚

𝑟
𝜓 − 𝜔𝐿𝑧𝜓 +

2𝐺𝑀𝑎

𝑟3𝑐
𝐿𝑧𝜓 

(2.9) 

2.1 Gravitational Effects in Neutron 

Interferometer 

The effect of gravity on the Klein-Gordon 

equation can be seen by applying equation 

(2.9) to the neutron interferometer. Equation 

(2.9) consists of two types of Hamiltonian, 

namely the main Hamiltonian and the 

confounding Hamiltonian 

𝐻0 = −
ℏ2

2𝑚

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

𝐿2

2𝑚𝑟2
 (2.10) 
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        𝐻1 = −
𝐺𝑀𝑚

𝑟
≡ 𝑉𝑔 (2.11) 

        𝐻2 = −𝜔𝐿𝑧 (2.12) 

        𝐻3 =
2𝐺𝑀𝑎

𝑟3𝑐
𝐿2 (2.13) 

The wave entering the neutron 

interferometer is defined as follows 

𝛽𝑘 =
1

ℏ
∫ Δ𝐻𝑘𝑑𝑡

𝑡

 (2.14) 

At the meeting point at D, the phase shift can 

be calculated as follows: 

Δ𝛽𝑘 = 𝛽𝑘(𝐴𝐶𝐷) − 𝛽𝑘(𝐴𝐵𝐷) = −
1

ℏ
∮ Δ𝐻𝑘𝑑𝑡 (2.14) 

Each Hamiltonian is calculated using 

equation (2.14), so the value of is obtained 

        Δ𝛽0 = 0 (2.15) 

        Δ𝛽1 =
𝑚2𝑔𝐴𝜆

ℏ2
sin 𝜑 (2.16) 

       Δ𝛽2 =
2𝑚

ℏ
𝛀 ∙ 𝑨 (2.17) 

        Δ𝛽3 =
1

5
Δ𝛽2

𝑟𝑔

5𝑅
[𝑨 −

3

𝝎
(

𝑹

𝑅
)

𝑹

𝑅
𝑨 ] (2.18) 

Based on the results of the research, the 

form of the Dirac equation in Kerr spacetime  

takes the following form  

  [𝑖ℏ𝛾(𝑎)
𝜕

𝜕𝑥𝛼
− 𝑖ℏ𝛾(𝑎)Γ𝛼 − 𝑚𝑐]  𝜓(𝑥)

= 0    

(2.19) 

Equation (3.1) is Dirac's equation with 

spacetime that has been converted into Kerr 

spacetime. This equation describes fermion 

particles that move in curved spacetime and 

experience rotation. When compared with the 
Dirac equation in flat spacetime, there is a 

difference in the Connection term Γ𝛼 which 

causes curved spacetime Geometry. The Γ𝛼 

connection has a connection spin component 

resulting from the line equation 𝑑𝑠2 in 

Geometry Kerr. If we do an approximation 

with Γ𝛼 = Γ0, we get the Dirac equation in flat 

spacetime again. 

Entering the values in equation (1.83)-

(1.89) from the experimental results, the value 

of the phase shift will be obtained as follows 

           Δ𝛽0 = 0 (2.20) 

           Δ𝛽1 = 1.03091 × 10−33 (2.21 

           Δ𝛽2  = 5.631229 (2.22) 

           Δ𝛽3 = −1.0726 × 10−9 (2.23) 

           Δ𝛽4 = 0 (2.24) 

           Δ𝛽5 = −0.71764 × 10−39 (2.25) 

           Δ𝛽6 = 7.2827496 × 10−36 (2.26) 

The value of the phase shift above can be 

divided into two types based on the cause, 

namely the phase shift caused by the effect of 

gravity and the phase shift caused by rotation. 

The emergence of these two effects is due to 

the curved and rotating spacetime. In this 

study only focus on the effect of gravity only. 

So only on the Hamiltonian 𝐻1, 𝐻5, and 𝐻6 

which appears the influence of gravity, the 

rest is influenced by rotation.  

Although the value of the phase shift is 

very small, this value is enough to show that 

gravity can affect the fermion particles. Then, 

the results of the above phase shift 

calculations will be compared with the phase 

shift values from the Klein-Gordon equation. 

This comparison is the basis for determining 

the equation that experiences the greatest 

gravitational influence. 

 The form of the Klein-Gordon equation  in 

Kerr spacetime  takes the following form  

     𝑖ℏ
𝜕𝜓

𝜕𝑡
=  −

ℏ2

2𝑚
[

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
)

−
𝐿2

𝑟2ℏ2
 ] 𝜓 −

𝐺𝑀𝑚

𝑟
𝜓

− 𝜔𝐿𝑧𝜓 +
2𝐺𝑀𝑎

𝑟3𝑐
𝐿𝑧𝜓 

(2.27) 
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Equation (2.27) is the Klein-Gordon 

equation in Kerr spacetime. Using a non-

relativistic approach, the form of the above 

equation is almost the same as the Schrödinger 

equation, with space and time terms separated. 

The difference between the Klein-Gordon 

equation in flat spacetime and the Klein-

Gordon equation in Kerr spacetime lies in the 

metric. This metric represents the shape of 

spacetime. 

Entering the values in equation (2.15)-

(2.18) from the experimental results, the phase 

shift values will be obtained as follows: 

        Δ𝛽0 = 0 (2.28) 

        Δ𝛽1 = 1.031 × 10−33 (2.29) 

        Δ𝛽2 = 5.631229 (2.30) 

        Δ𝛽3 = −1.0726 × 10−9 (2.31) 

The above phase shift values can be 

divided into two types based on the cause, 

namely the phase shift caused by the effects of 

gravity and the phase shift caused by rotation. 

The appearance of these two effects is due to 

the curved and rotating spacetime. In this 

study, it only focuses on the influence of the 

gravitational effect. So only the Hamiltonian 

𝐻1 shows the influence of gravity. The rest is 

influenced by rotation. 

The phase shift value obtained is the same 

as the phase shift in the Dirac equation but 

differs only in the amount. The phase shift 

calculations show that the Dirac equation 

experiences a greater gravitational influence 

than the Klein-Gordon equation. The Dirac 

equation contains more Hamiltonian terms 

which are not found in the Klein-Gordon 

equation. The more Hamiltonian terms 

indicate that there are more Hamiltonian 

confounders in it. The disturbing Hamiltonian 

will appear when the calculation involves 

quantum terms. 

Pergeseran fase Δ𝛽0 merupakan pergeseran 

fase yang dihasilkan dari Hamiltonian klasik 

(non-kuantum) dilihat dari suku 

Hamiltoniannya yang memuat hamiltoninan 

klasik, sedangkan sisanya merupkan 

Hamiltonian kuantum dan Hamiltoninan 

relativistik. Perbedaan antara ruang waktu 

datar dan melengkung bisa dilihat dari nilai 

masing-masing pergeseran fasenya. Jika 

pergesern fase bernilai nol maka partikel 

berada pada ruang waktu datar sedangkan jika 

memiliki nilai maka partikel berada di ruang 

waktu melengkung. 

The phase shift Δ𝛽0 is a phase shift resulting 

from the classical Hamiltonian (non-quantum) 

seen from its Hamiltonian term, which 

contains classical Hamiltonian. At the same 

time, the rest are quantum Hamiltonian and 

relativistic Hamiltonian. The difference 

between flat and curved spacetime can be seen 

from the value of each phase shift. If the phase 

shift is zero, the particle is in a flat spacetime, 

whereas if it has a value, it is in a curved 

spacetime. 

Conclusion 

The effect of gravity causes a phase shift in 

the Dirac equation and Klein Gordon equation 

which is observed through the neutron 

interferometer. In the Dirac equation the effect 

of gravity is on the Hamiltonian terms 

𝐻1, 𝐻5, dan𝐻6. The phase shift values are  

Δ𝛽1 = 1.03091 × 10−33 , Δ𝛽5  − 0.71764 × 

10−39 dan Δ𝛽6 = 7.2827496 × 10−36. 

In the Klein-Gordon equation,  the effect of 

gravity is on the Hamiltonian term 𝐻1 only. 

The phase shift value is Δ𝛽1 = 1.03091 ×
10−33. The results of the phase shift 

calculation show that the Dirac equation has a 

greater gravitational effect than the Klein-

Gordon equation. 
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