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ABSTRACT  

This study aims to investigate essential concepts in quantum mechanics and theoretical physics, with 

an emphasis on the 1+1 dimension. We examine the Dirac equation for relativistic spin-1/2 particles, 

the Time-Dependent Schrödinger Equation in 1+1 spacetime with flat conformal metric, and connect 
them to the Dirac equation. Additionally, we explore the Alcubierre Metric related to warp drive, 

particle modeling in a harmonic potential using the Schrödinger Equation, and the Gödel Metric 

Solution to depict the peculiarities of spacetime. The research aims to deepen the understanding of 

these concepts, identify theoretical implications, and their potential applications. This research aims to 

enhance the understanding of fundamental physics, assist in the development of future technologies, 

and provide deeper insights into the universe. Its benefits lie in contributing to theoretical 

understanding in physics, which can spark the development of new theories. This study is limited to 

physics concepts in the 1+1 dimensions, without empirical experiments or practical applications. The 

primary focus is on the theoretical analysis of these concepts. The results of this research have 

potential theoretical implications in understanding basic physics and spacetime phenomena. The 

simplification and connections between these concepts can aid in the development of new theories in 
theoretical physics. The uniqueness of this research lies in its integrative approach to quantum 

mechanics and theoretical physics concepts in the 1+1 dimension, which may not have been 

extensively explored previously. Through this research, we have investigated several key concepts in 

quantum mechanics and theoretical physics in the 1+1 dimension. These findings can make a 

significant contribution to our understanding of the universe and the potential development of new 

theories in physics. 

Keywords: Quantum Mechanics; Spacetime Curvature; Metric Relationships; Relativistic Physics

Introduction 

The study delves into the visualization 

and analysis of various quantum and 

relativistic phenomena within different 

spacetime geometries.1 These phenomena 

encompass spatial and temporal fluctuations 

of wave functions,2 the relationship between 

momentum and energy in particle physics,3 

conformal factor and wavefunction behavior 

in curved spacetime,4 the behavior of the 

conformally-flat metric in (1+1)-

dimensional spacetime,5 quantum wave 

function evolution.6 and the visualization 

and analysis of spacetime curvature within 

the framework of the Alcubierre metric. 

Through comprehensive visual 

representations and analyses, this research 

contributes to our understanding of the 
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intricate interplay between quantum 

behavior, relativistic effects, and spacetime 

curvature. 

Quantum mechanics and relativistic 

physics have fundamentally reshaped our 

comprehension of the universe at the 

subatomic and cosmic scales.7–9 The 

behavior of particles in quantum systems 

and the behavior of spacetime in the 

presence of massive objects challenge 

conventional intuition.10 To deepen our 

insights into these phenomena, 

visualizations and analyses play a crucial 

role. The visualization of quantum wave 

functions and the portrayal of spacetime 

curvature in various contexts offer valuable 

avenues for comprehending complex 

physical concepts.11 

The primary objective of this study is to 

employ visualizations to enhance our 

understanding of quantum and relativistic 

phenomena. By visually representing the 

behavior of wave functions, spacetime 

curvature, and metric components, this 

research aims to bridge the gap between 

theoretical formulations and intuitive 

comprehension.12 The significance of this 

research lies in its potential to provide 

insights into the behavior of particles in 

quantum systems, the fundamental 

relationship between momentum and 

energy, the influence of spacetime curvature 

on particle behavior, and the theoretical 

aspects of faster-than-light travel.13  

This research is centered on 

visualizations and analyses of quantum and 

relativistic phenomena within specific 

contexts. The scope includes the spatial and 

temporal fluctuations of wave functions, 

momentum-energy relationships, conformal 

factor and wavefunction behavior, spacetime 

curvature within the Alcubierre metric, and 

wave function evolution. However, it is 

essential to acknowledge that visualizations, 

while powerful tools, inherently simplify 

complex physical concepts and may not 

capture all nuances.14  

While theoretical frameworks exist to 

describe quantum and relativistic 

phenomena, the visualizations presented in 

this research contribute a novel dimension to 

understanding. These visualizations provide 

a bridge between mathematical formulations 

and conceptual comprehension. The visual 

exploration of wave functions in various 

spacetime geometries and the portrayal of 

spacetime curvature based on the Alcubierre 

metric address a research gap by offering 

intuitive insights into phenomena that are 

often considered challenging to grasp.  

Methods 

Paul Dirac's Special Relativistic Wave 

Equation 

Paul Dirac's special relativistic wave 

equation, also known as the Dirac equation, 

is a fundamental equation in quantum 

mechanics that describes the behavior of 

relativistic spin-1/2 particles like electrons.15 

This equation incorporates special relativity 

and quantum mechanics.16 To derive the 

equation, we'll start with some basic 

principles. We begin by defining the Dirac 

matrices, which are 4x4 matrices. There are 

four of them 0 , 1 , 2 , and 3 .  

They are Hermitian matrices, meaning 
†( )    where †  represents the Hermitian 

conjugate. They anticommute with each 

other: { , } 2g I              , where 

g   is the Minkowski metric and I is the 

identity matrix. Commonly used 

representations for the Dirac matrices are 

the Pauli-Dirac representation or the Weyl 

representation.17 In the standard 

representation (Pauli-Dirac), the Dirac 

matrices can be constructed as follows 

0
0

0

I

I


 
  

 
, and  

0

0

i

i

i






 
  

 
 

(1) 

Where I is the 2x2 identity matrix and i  

are the Pauli matrices. The Dirac equation 

can be derived from the Dirac Lagrangian 

density, which is given by18: 

( )i m

    L  (2) 



Jurnal Neutrino:Jurnal Fisika dan Aplikasinya, Vol. 16, No.1, October 2023 (p.37-52) [39] 

 

Copyrigh © 2023, Jurnal Neutrino:Jurnal Fisika dan Aplikasinya,      ISSN:1979-6374/ EISSN:2460-5999 

Here,   is the Dirac spinor, and 
† 0     

is its adjoint. Now, we can derive the Dirac 

equation by applying the Euler-Lagrange 

equation to this Lagrangian19: 

0
( )



 

  
       

L L
 

(3) 

Let's compute the variations. 






L
 where 

This gives us ( )i m

    where This gives 

us i   . Plugging these into the Euler-

Lagrange equation: 

( ) ( ) 0i m i 

         (4) 

Now, we use the property that 

2g I          and the fact that 
0  and 

i  anticommute to manipulate the equation 

further. After some algebraic manipulation, 

you will arrive at the desired Dirac equation: 

( ) 0i m

     (5) 

This is the Dirac equation for a relativistic 

spin-1/2 particle. It describes the behavior of 

particles like electrons in a relativistic 

quantum mechanical framework.20 The 

Dirac matrices in the standard representation 

are given by21: 

0 1

2 3

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0
, ,

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
, .

0 0 0 1 0 0 0

0 0 0 0 1 0 0

i

i

i

i

 

 

 
 

 




 





   
   
   
   
   
   

   
   
   
   
   
   

 

(6) 

The Dirac equation was developed as an 

attempt to linearize the Klein-Gordon 

equation, which arises from applying the 

Einstein relation  
2 2 2

E p m   to the 

Schrödinger equation's Hamiltonian.22 The 

Klein-Gordon equation describes relativistic 

particles with mass m in a relativistic 

framework, but it has some interpretation 

issues like negative energy solutions.23 

Dirac sought a more satisfactory equation 

and successfully formulated the Dirac 

equation, describing mass-bearing particles 

with spin ½ (such as electrons), in a way 

consistent with the principles of relativity 

and quantum mechanics.24,25 

Simplification of Dirac Equation in 1+1 

Dimensions 

To simplify the Dirac equation in 1+1 

dimensions as shown, we will use some 

common notations in quantum field theory 

and Dirac matrices. The Dirac equation can 

be written in matrix form as follows: 

0

2 2
t x x zi i m    

    
          

   

 
 (7) 

To determine whether Ω (Omega) is a 

function of time or not, we need to check 

whether Ω depends on time t or is constant. 

To do so, we need to analyze each term in 

the equation. The time-independent 

Schrödinger equation has a general form: 

i H
t








 

(8) 

Where ( )  is the reduced Planck constant, 

( )  is the wave function, and H is the 

Hamiltonian operator which usually consists 

of kinetic and potential terms. The first term 

is 
2

t
i 


 



  
  
  

, This tribe contains ( )  

which shows that Ω depending on time. 

Therefore, Ω is a function of time and for 

the second term  0

2
x x

i 


  


  
  

  
, This 

tribe does not contain ( ) , so it is 

independent of time. This is the term that 

describes the spatial changes in the system. 

The third term is ( )
z

m  ,   This term 

contains Ω, but Ω in this case is Ω without 

brackets (without a dot on it), which 

indicates that Ω in this term is a constant, 

not a function of time. So Ω is a function of 

time because it contains ( ) , while the other 
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terms are independent of time. Here, we will 

use the standard Pauli matrices: 

0 1 1 0
,

1 0 0 1
x z 

   
    

   
 

(9) 

The Dirac equation in matrix notation can be 

rewritten as: 

0

2 2
t x x z

i
i i m     

 
         

  
 (10) 

Now, we will split this equation into two 

parts and simplify them. The first part (left-

hand side) of the equation: 

2
t

i
i    


 

(11) 

Now we will factor out the 'i' from both 

terms: 

2
ti 

 
  

 
 

(12) 

This is the same as the original equation. 

The second part (right-hand side) of the 

equation 0

2
x x zi m   

 
     

 
.  

1 10 0

2 2

2 20

1 1

0 1 0 1 0 1

1 0 1 0 1 02 2

                                     
2

x

x

x

x

x

i i i

i i

 


 

 

 

          
              

          

   
     

    

 

(13) 

                                                           

1

2

1

2

1 0

0 1

            

z m m

m

m


 







  
     

   

 
  

 

 

(14) 

             
2 2 10

1 1 22 2

x

t

x

m
i i i

m

  


  

        
            

       
 

(15) 

 

Solution of the Time-Dependent 

Schrödinger Equation in (1+1) 

Dimensional Spacetime with 

Conformally-Flat Metric with Separation 

of Variables and Stationary Solutions 

We investigate the evolution of the wave 

function in the context of a (1+1) 

dimensional spacetime using the 

conformally-flat form of the metric.26 By 

performing a series of mathematical 

manipulations, we derive a fundamental 

equation that governs the evolution of the 

wave function under specific conditions.27 

The given time-dependent Schrödinger 

equation is: 

xi i
t x

 


 
 

 
 

(16) 

where   is the wave function, t is time, x is 

position, and 
x   is the Pauli matrix 

x , 

which represents the spin operator in the x-

direction for a spin-1/2 particle. The Pauli 

matrix 
x  is given by: 

0 1

1 0
x

 
  
 

 
(17) 

We will attempt to find a solution to this 

equation. First, we will use matrix notation 

to replace 
x . Then, we will separate the 

variables and find the general solution.28,29 

Finally, we will interpret this solution. The 

equation becomes: 
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0 1

1 0
i i

t x

   
   

  
 

(18) 

We will attempt to find a solution by 

assuming that the wave function   can be 

separated into the form of a product of 

functions of time and position: 

( , ) ( ) ( )x t x T t   (19) 

This substitution allows us to separate the 

Schrödinger equation into two simpler 

equations, one for ( )x  and another for ( )T t

: 

0 1( ) ( )
( ) ( )

1 0

d T d
i x i T t

dt dx




 
   

 
 

(20) 

Now, let's separate these variables: 

0 1( ) ( )
( ) ( )

1 0

d T d
i x i T t

dt dx




 
   

 
 

(21) 

The left-hand side is a function of time only, 

and the right-hand side is a function of 

position only. Therefore, they must be equal 

to the same constant, which we'll call E (the 

total energy of the system): 

( )
              ( )

0 1 ( )
( )

1 0

d T
i ET t

dt

d
i E x

dx






 
  
 

 

(22) 

The first equation is an ordinary differential 

equation that can be solved by separating 

variables and integrating30: 

( )
( )

d T
i ET t

dt
  

(23) 

( )

( )

d T
iEdt

T t
    

(24) 

ln | ( ) |T t iEt C    (25) 

( ) iEt CT t e   (26) 

This is the general solution for the time part 

of the wave function. The second equation 

involves the Pauli matrix and can be 

separated into two coupled ordinary 

differential equations for the components 

1( )x  and 
2 ( )x  is  1

2
( )

d
E x

dx


 

 
 
 

 and 

2

1
( )

d
E x

dx


 

 
 
 

. To find the solutions for 

both equations simultaneously, you can use 

a system of first-order linear differential 

equations.  We can solve this system of 

equations using a matrix approach. Define a 

vector 1

2

( )
( )

( )

x
x

x





 
 
 

Φ , and a matrix 

0

0

E

E






 
 
 

A . The system can then be 

written as 
d

dx


Φ
AΦ . Now, solve this system 

using the matrix exponential. The general 

solution for ( ( )xΦ  is given by ( )
x

x e
A

Φ C , 

where ( )C  is a constant vector and ( )
x

e
A

 is 

the matrix exponential. To find ( )
x

e
A

, you 

can diagonalize ( )A  by finding its 

eigenvalues and eigenvectors. The 

eigenvalues of ( )A  are 
1

( )E   and 

2
( )E   , and the corresponding 

eigenvectors are 1

1

1

  
  
  

v  and 2

1

1

  
  

  
v , 

respectively. Now, you can write ( )A  in 

terms of its diagonalized form ( )D  and the 

matrix of eigenvectors ( )P  is 
1

A PDP . In 

this case, 
1 1

1 1

 
  

 
P  and 

0

0

E

E

 
  

 
D . 

Now, you can find ( )
x

e
A

 as follows 
1x x

e e



A D

P P . Since ( )
x

e
D

 is a diagonal matrix 

with ( )
Ex

e  and ( )
Ex

e


 on its diagonal, we 

have: 

0

0

Ex

x

Ex

e
e

e



 
 
 

D  
(27) 

Now, plug this into equation 
1

( )
x

x e



D

Φ CP P . 

Find the solutions for 
1

( ( ))x  and 
2

( ( ))x  by 

multiplying this expression by 
1

0

 
 
 

 and 
0

1

 
 
 

  

respectively: 
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1

1 1 10
( )

1 1 10

Ex

Ex

e
x

e







    
    

    
C  

(28) 

2

1 1 10
( )

1 1 10

Ex

Ex

e
x

e





 

    
    

    
C  

(29) 

Simplify these expressions to find the 

specific solutions for 
1

( ( ))x  and 
2

( ( ))x . The 

constant vector ( )C  will depend on the 

initial conditions of the problem.  To find 

the stationary (time-independent) solutions 

for the given equations, we will use the 

previously provided solutions for 
1

( ( ))x  and 

2
( ( ))x . We will seek a stationary solution 

( ( ))x  by using a linear combination of 

1
( ( ))x  and 

2
( ( ))x : 

1 2
( ) ( ) ( )x A x B x     (30) 

Here, (A) and (B) are constants that we will 

determine. Now, let's compute ( ( ))x : 

1 2
( ) ( ) ( )x A x B x     (31) 

        

1 1 10

1 1 10

1 1 10
        

1 1 10

Ex

Ex

Ex

Ex

e
A

e

e
B

e





 


 

    
    

    

    
    

    

C

C

 

 

        
1 1 0

1 1 0

Ex

Ex

A Be

A Be





 

    
    

    
C  

 

        
( ) ( )0

( ) ( )0

Ex

Ex

A B A Be

A B A Be


  


  

   
   

  
C  

 

        
20

20

Ex

Ex

Ae

Be



   
   

  
C  

 

        
0

2 2
0

Ex

Ex

e
A B

e


 
   
   

  
C C  

 

        
0

2 2
0

Ex

Ex

e
A B

e


 
   
   

  
C C  

(32) 

Therefore, the stationary solution ( ( ))x  is 

given by: 

0
( ) 2 2

0

Ex

Ex

e
x A B

e



 

   
   

  
C C  

(33) 

This is the stationary solution, we can 

determine the values of A and B based on 

initial conditions. To determine the values of 

(A) and (B) based on initial conditions, we 

need to consider the specific problem or 

boundary conditions provided in your 

problem statement. Initial conditions specify 

the values of ( ( ))x  and its derivatives at a 

particular point or over a certain interval. 

Let's assume we have initial conditions for 

( ( ))x  at a point  
0

x : 

0 0
( ( ) )x   (34) 

0
0 0

( )|
x x

d
x

dx


  
   

(35) 

  

Now, we can use these initial conditions to 

determine the values of (A) and (B) in the 

expression for ( ( ))x : 

0
( ) 2 2

0

Ex

Ex

e
x A B

e



 

   
   

  
C C  

(36) 

  

Let's evaluate 
0

( ( ))x  and 
0

|
x x

d

dx




 using the 

given expression for ( ( ))x  and then apply 

the initial conditions: 

0

0

0

0

0
( ( ) 2 2

0

          2
0

Ex

Ex

Ex

e
x A B

e

e
A




 



   
   

  

 
 
 

C C

C

 

(37) 

0

0

2
0

|
Ex

x x

Eed
A

dx





 
 
 

C  
(38) 

Now, we can apply the initial conditions: 

0

0

0

( ) 2
0

          

Ex
e

x A







 
 
 

C
 

(39) 

0

0

0

| 2
0

           

Ex

x x

Eed
A

dx













 
 
 

C
 

(40) 

Now, we can solve these equations for (A) 

and (B). From the first equation, we have 
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0

0
2

0

Ex
e

A 
 
 
 

C  this implies 0

0
2

Ex
A e C  so 

0

0

2
Ex

A
e




C
. From the second equation, we 

have 
0

0
2

0

Ex
Ee

A  
 
 
 

C  this implies 

0

0
2

Ex
A Ee  C  so 

0

0

2
Ex

B
Ee

 


C
. Now 

expressions for (A) and (B) in terms of the 

given initial conditions 
0

( )  and 
0

( )  , as 

well as the constants ( )C  and (E), and the 

value of  0
x . 

Deriving the Dirac Equation from the 

Time-Independent Schrödinger Equation 

in One-Dimensional Space 

The calculation to derive the Dirac 

Equation from the time-independent 

Schrödinger Equation in one dimension 

requires several steps. The time independent 

Schrödinger equation in one dimension for a 

particle of mass m with potential V(x) is as 

follows: 

2 2

2

ˆ ( ) ( ) ( )
2

            ( )

d
H x V x x

m dx

E x

 



  



 
 
   

(41) 

Now, we will use the momentum operator in 

its more general form, i.e. ˆ  
d

p i
dx

 
  

 
. We 

also know that 
2

2 2

2
 ˆ

d
p

dx
  . Thus, the 

Schrödinger equation can be written as: 

2ˆ
( ) ( ) ( )

2

p
V x x E x

m
  

 
 
 

 
(42) 

Let us define the energy operator as 
2

 
ˆ

ˆ ( )
2

p
E V x

m
  . Now the Schrödinger 

equation becomes: 

ˆ ( ) ( )E x E x   (43) 

We know that ˆ( ) E  is the energy operator, 

and we can also introduce the identity 

operator ˆ( )I  which does nothing to any 

function, i.e. ˆ( ( ) ( ))I x x  . The Schrödinger 

equation can now be written as: 

ˆ ˆ( ) ( ) 0E EI x   (44) 

Now, we will find the relationship between 

the energy operators ˆ( )E  and momentum 

operator ˆ( )p . We know that the classical 

kinetic energy is 
2

,
2

p

m

 
 
 

 where (p) is the 

classical momentum. In quantum 

mechanics, classical momentum (p) is 

replaced by the momentum operator ˆ( )p . 

So, we can express ˆ( )E  as: 

2ˆ
ˆ ( )

2

p
E V x

m
   

(45) 

With this definition, the Schrödinger 

equation can be rewritten as: 

2ˆ
ˆ ˆ( ) ( ) ( ) ( ) 0

2

p
E EI x V x E x

m
     

 
 
 

 
(46) 

We will simplify this equation further. Now, 

let's find the energy operator ˆ( )E   for 

relativistic particles (particles with high 

energy traveling close to the speed of light) 

in relativistic notation. For these particles, 

the total energy (E) is: 

2 2 2 4
E p c m c   (47) 

Here, (p) is the momentum, (c) is the speed 

of light, and (m) is the mass of the particle. 

Now, we want to replace (p) with the 

momentum operator ˆ( )p . This results in: 

2 2 2 4ˆ ˆE p c m c   (48) 

Now, we have reached the initial form of the 

Dirac Equation. The Dirac equation in one 

dimension for a particle of mass (m) at the 

speed of light (c) is: 

 2 2 2 4 2ˆ ( ) 0p c m c mc x    (49) 
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This is the Dirac Equation in one dimension 

that describes relativistic particles. This is 

the basic form, and the equation is more 

commonly expressed in four-spinor notation 

to describe more complex particles in higher 

dimensions. 

Understanding the Alcubierre Metric: A 

Warp Drive Solution 

This is the Dirac equation in the 

transformed. The Alcubierre Metric is a 

solution to Einstein's equations that 

describes the concept of a warp drive in 

theoretical physics.31 The Alcubierre Metric 

is given by:  

2 2 2 ( )( )i i j j

ijds N dt g dx N dt dx N dt      (50) 

In this case, we have the coordinate 

transformation: 

, sdt dt dx dx v dt    (51) 

We will derive a new expression for the 

Alcubierre Metric in these new coordinates. 

To do that, we will substitute these 

coordinate changes into the original 

Alcubierre Metric. In the Alcubierre Metric, 

we have: 

2 2 2 ( )( )i i j j

ijds N dt g dx N dt dx N dt      (52) 

Now, we will substitute (dt) and (dx). This 

is the Alcubierre Metric in the ( )t  and ( )x  

coordinates. This calculation explains how 

we can transform the Alcubierre Metric 

from the coordinates ((t, x)) to (( , ))t x  

according to the given coordinate 

transformation 

 

                             2 2 2( ) ( )( )i i j j

ij s sds N dt g dx v dt N dt dx v dt N dt        (53) 

                             

2 2 2 2 2

2 2

( ) ( ( )

           ( ) ( ) )

i j j i j i

ij s s s

j i j i i j

s s

ds N dt g dx dx v dtdx N dtdx v dtdx v dt

v N dt N dtdx v dtN dt N dtN dt

       

  
 

 

                             2 2 2 2 2( ) (2 2 )( )i j i i j

ij s ij s ij s ijds N dt g dx dx v g v N g v N N g dt         

                             2 2 2 2 2( ) ( (2 2 ))( )i j i i j

ij ij s sds N dt g dx dx g v N v N N dt         

Curved Spacetime Metrics and Quantum 

Wave Functions 

In cylindrical coordinates, the metric is 

given by the following expression: 

2
22

2 2 2 2

2

2

2

1
2

1
2

2
.        

2

dr r
ds dt r d

ar

a

r
dz dtd

a





   



 

  
  

    
 
   

(54) 

Here, a is a parameter with units of length 

that represents a characteristic distance. 

Particularly, 2
G

r a  represents the critical 

radius from which Closed Timelike Curves 

(CTC) can exist.32 Taking a radial section 

with 
0

   and  
0

z z , the G"odel metric 

becomes:  

2 2 2

2

1
.

1 ( / 2 )
ds dt dr

r a
 


 

(55) 

By making the coordinate change 

( , ) ( , )t r t r  with: 

2 2 2 2

2

1
, ,

1 ( / 2 )
dr dr dt dt

r a
 


 

(56) 

The metric transforms into the Minkowski 

metric 

2 2 2
.ds dt dr   (57) 
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Furthermore, the relationship between the (t, 

r) and ( , )t r  coordinates can be found by 

performing the following integration: 

2
( ) ,

1 ( / 2 )

dr
r r

r a



  

(58) 

with the solution, assuming 

1
( 0) 0,  ( ) 2 sinh

2

r
r r r r a

a


  

 
 
 

 With these 

new coordinates, the conformal factor 

becomes 
2

1  , and the Minkowski 

spacetime solution will be the same as the 

curved spacetime solution, as in the case of 

the Alcubierre metric.33 Thus, the only 

difference between G"odel and Alcubierre 

metrics is the relationship between the 

original coordinates and the new 

coordinates.34 Assuming the wave function 

has a Gaussian initial form: 

2

0

2

( )

( ,0) ,

x x

x Ne 




  
(59) 

Where x  is the conformally flat coordinate 

and N is a normalization constant, the 

solution for the Dirac equation in 

Minkowski spacetime will be: 

2

0

2

( ( ))

( , ) .

t x x

x t Ne 

 


  
(60) 

Since   , to find the curved spacetime 

solution, we only have to apply the 

coordinate change for each metric. For the 

Alcubierre case, we have: 
2

0

2

( ( ))

( , ) ,

t x vst x

x t Ne 

  


  
(61) 

while, for the G"odel metric: 

1 2

0

2

( (2 sinh ( /2 ) ))

( , ) .

t a r a x

r t Ne 


 



  
(62) 

Kerr Metric and Wave Function 

Behavior in Curved Spacetime 

Various aspects of the Kerr metric in the 

context of general relativity and its 

implications for the behavior of wave 

functions ( )  in curved spacetime.35 The 

Kerr metric is a solution to Einstein's field 

equations that describes the spacetime 

around a rotating black hole.36–39 It is given 

in Boyer-Lindquist coordinates ( , , , )t r    and 

is characterized by the metric components 
2

ds . where, ( , )r   is 2 2 2
cosr a  , and ( )r  

is 2 2
2r a Mr  : 

2 2 2 2 2

2 2 2 2 2 22 4 sin ( 2 sin )
1 sin

Mr Mar r a Ma r
ds dt dtd dr d d

 
   

  
       

   

 
  

 (63) 

When considering a radial section 

0 0
( , )     , the metric simplifies to: 

2 2 2

0

0

2
1 ( , ) ( )

( , )

Mr
ds dt r r dr

r



     



 
 
 

 
(64) 

A coordinate change ( , ) ( , )t r t x  is 

introduced to simplify the metric further. 

This involves the conformal factor 

2 2
( ) 1

( )

Mr
r

r
  


, where r becomes a function 

of x . The relation between solutions in 

curved spacetime ( )  and flat spacetime 

( )  involves the factor 
1/2

( )r


 . The 

conformal factor 
1
( )r


  influences the 

properties of the wave function. It is shown 

that there are regions where the probability 

density of the wave function becomes 

infinite or null, based on conditions 

involving ( )r  and 
1
( )r


 . 

Occurs when ( ) 2 0r Mr   , leading to the 

apparent singularities 
2 2 2

0
cosr M M a 


   , which define the 

ergosphere. Occurs when 
1
( ) 0r


  , 

corresponding to the conditions 
2 2 2

0
cos 0r a   . This happens when either 

0r   (no rotation) or 
0

0,  
2

r


  . Occurs 

for ( ) 2 0r Mr   , specifically within the 

region r r r
 
  , which is within the 
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ergosphere. The goal is to solve the integral 

and find the expression for ( )x r  as provided 

in the given form. First calculate the 

quantity ( )r , which is a key part of your 

integral. It is defined as: 

2 2

( ) ( ) 2

       2

r r Mr

r a Mr

   

  
 

(65) 

Then factorize ( )r  as follows: 

2 2

2 2 2

2 2 2

( ) 2

       ( )

       ( ) ( )

r r Mr a

r M a M

r M a M

   

   

   

 

(66) 

Substitute the expression for ( )x r  into the 

integral: 

2 2

2 2 2
( ) , .

( ) ( )

r a
x r dr C

r M a M


 

  
  

(67) 

Proceed with a trigonometric substitution to 

simplify the integral: 

2 2

2 2

2
tan ,

cos

a M
r M a M dr d 




     

(68) 

Substitute the trigonometric expressions into 

the integral: 

2 2 2 2

2 2 2 2
( ) .

cos

r a a M
x r d C

a r M




 
  

 
  

(69) 

Simplify the integrand step by step: 

2 2 2 2

2 2 2

2 22 2

2 2 2

( )
cos

       
1

a M r a
x r d C

a M

r aa M
du C

a M u




 
 




 

 





 

(70) 

Calculate the new integral using a 

trigonometric approach: 

2 2

2 2

2
( )arct ) an(

1

r a
du r a u D

u


  


  

(71) 

Substitute the result back into the expression 

for ( )x r : 

2 2

2 2

2 2

2 2

2 2 1

2 2
2 2

( ) ( )arctan( )

       ( ) tan

a M
x r r a u D C

a M

r Ma M
r a D C

a M a M




   




   

 

  

  
  
  

 

(72

) 

This concludes which derives the 

expression for ( )x r  in the given form using 

mathematical steps involving trigonometric 

substitutions and integral calculations. To 

solve this calculation, we will start by 

finding the derivative of ( )x r  with respect 

to r. The derivative of ( )x r with respect to r 

is: 

 
2 2

2 2

2 2
( )arctan( )

dx d a M
r a u D C

dr dr a M

 
        

 

                                           
2 2

2 2

2 2
     ( )arctan( )

a M d
r a u D

a M dr


    

 

(73) 

 

Now we need to find the derivative of 
2 2( )arctan( )r a u  with respect to r. For this, 

we will use the product rule: 

2 2

2 2

( )arctan( )

arctan( ) arctan( )

d
r a u

dr

d
r u a u

dr

   

   

 

(74) 

     2 2arctan( ) arctan( )
d d

r u a u
dr dr

         
 

Let's find the derivative of 
2 arctan( )r u  first. 

We will use the chain rule for this, where 
2( )f u r  and ( ) arctan( )g r u : 

2

2

arctan( )

(arctan( ))
(arctan( ))

d
r u

dr

d d
r u

d u dr

   

   

 
(75) 
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       2 (arctan( ))
d d

r u
du dr

      

       2 (arctan( ))
d

r u
dr

    

Now we need to find the derivative of 
2 arctan( )a u  with respect to r. However, 2a  

is a constant, so its derivative with respect to 

r is zero: 

2 arctan( ) 0
d

a u
dr

     
(76) 

Back to the main expression: 

2 2

2 2
2 (arctan( ))

dx a M d
r u

dr a M dr

  
    

 
(77) 

Now, let's find the derivative of arctan( )u  

with respect to r. For this, we will use the 

chain rule again. We have ( ) arctan( )f u u  

and g(r) = u. The derivative of arctan( )u  

with respect to u is 
2

1

1 u
, so: 

(arctan( )) (arctan( )) ( )
d d d

u u u
dr du dr

   
(78) 

     
2

1
( )

1

d
u

u dr
 


 

 

Next, we need to find the derivative of u 

with respect to r. We have: 

2 2

r M
u

a M





 

(79) 

Now, let's calculate the derivative of u with 

respect to r: 

2 2
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Now we can combine all this information 

into the derivative 
dx

dr
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Now we have found the derivative 
dx

dr
.  

Results and Discussion 

Real Part (Re(T(t))) and Its Significance 

in Quantum Particle Probability 

Through this research, we have delved 

into the intricate nuances of relativistic 

quantum physics. The significance of the 

Real Part (Re(T(t))) plot, depicted in blue, 

lies in its ability to reveal the real 

component of the wave function (T(t)). 

Within the realm of quantum physics, this 

plot plays a pivotal role by furnishing vital 

insights into the probability of a quantum 

particle's presence at a particular time (t). 

Essentially, it serves as a visual 

representation of the spatial distribution of 

particles within our quantum system at any 

given moment. 

In the realm of quantum physics, the 

Imaginary Part Plot (Im(T(t))), depicted in 

red, assumes a pivotal role as it encapsulates 

the imaginary facet of the wave function 

(T(t)). This component, while not directly 

divulging the particle's spatial likelihood, 

profoundly influences the temporal 

evolution of the particle's wave function by 

dictating its phase. Consequently, the 

Imaginary Part Plot serves as an invaluable 

tool for scrutinizing alterations in the wave 

phase within the quantum system. 

Furthermore, our investigation delves into 

the parameter (E), which signifies the 

energy within the quantum system. In the 

realm of quantum physics applications, this 

energy value (\(E\)) intimately links to both 

the kinetic and potential energy 

contributions of the quantum particle, 
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rendering it a primary determinant in 

shaping the quantum system's dynamics. 

Another essential factor we consider is the 

parameter (C), a complex constant that 

wields significant influence over the wave 

phase. This constant is instrumental in 

characterizing the initial conditions of the 

quantum system and provides insights into 

its evolution from one initial state to 

another, especially within the context of 

relativistic quantum physics. 

 
Figure 1. Real and Imaginary Components 

of Wave Function with Energy and 

Complex Constant (E and C) 
 

Modeling Trapped Particles with 

Harmonic Potential in Quantum Physics 

In the field of relativistic quantum 

physics, our research has undertaken a 

thorough examination of the harmonic 

potential, which is mathematically defined 

as V(x) = 0.5 * x2. This equation provides a 

comprehensive description of how a particle 

behaves when confined near a central point, 

where the potential energy increases as the 

particle moves away from the central point 

(x = 0). The particle's wave function, 

represented as the light blue curve located at 

a lower position on the graph, emerges as a 

solution to the Schrödinger equation that is 

specifically tailored for this harmonic 

potential. This wave function effectively 

visualizes the probability distribution of the 

particle's position within the system.  

 
Figure 2. Quantum Harmonic Potential 

Analysis and Total Energy Determination 
 

The core of our research lies in the 

fundamental premise of quantum 

mechanics, where the Schrödinger equation, 

prominently positioned on the left-hand 

side, serves as the cornerstone. This 

equation artfully amalgamates the total 

energy of a particle within a given potential, 

incorporating essential elements like the 

kinetic operator (p2 / (2m)), potential energy 

(V(x)), and the wave function (psi(x)). Our 

primary objective in this study is to 

determine the system's total energy, 

symbolized as 'E.' Illustrated on our graph is 

a distinctive red line at E = 2.0, signifying a 

critical threshold in the energy spectrum. In 

the domain of quantum mechanics, this 

particular energy value is one among a 

multitude of permissible energies that 

significantly influence the particle's 

characteristics and the dynamics of the 

associated quantum system. 

Visualization and Analysis of the 

Alcubierre Metric in Warp Drive 

Scenarios 

In the realm of relativistic quantum 

physics, our study offers a compelling and 

high-quality visualization of the Alcubierre 

metric, shedding light on the distribution of 

the potential in spacetime (phi). The 

Alcubierre metric, a pivotal element in 

grasping the warp drive concept within 

relativistic physics, is effectively portrayed 

in this visualization. Through a spectrum of 
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colors, each bearing profound significance, 

the distribution of phi potential is brought to 

life. The warmer hues, such as red, vividly 

represent positive phi values, signifying the 

existence of spacetime 'bubbles' where 

expansion and stretching occur. Conversely, 

the cooler tones, typified by blue, signify 

negative phi values, indicating the presence 

of 'bubbles' in which spacetime experiences 

compression and contraction.  
 

 
Figure 3. Visualization of Alcubierre 

Metric 
 

The intensity of colors in this 

visualization signifies the strength of the 

Alcubierre metric effect, with brighter 

colors indicating a more pronounced warp 

drive effect in the phi distribution. This 

vividly illustrates the remarkable potency of 

the warp drive within the realm of 

relativistic quantum physics. Within this 

study, two pivotal parameters demand 

special attention. The first parameter, 

denoted as "v," dictates the warp drive's 

velocity, which governs how swiftly an 

object can traverse spacetime. The 

permissible range for "v" lies between 0 and 

1, where v=0 signifies an absence of warp 

drive (resulting in an unaltered spacetime), 

while v=1 denotes the speed of light as the 

upper limit. The precise setting of the warp 

drive velocity in this context becomes 

paramount. The second parameter, "a," 

serves as a control factor influencing the 

Alcubierre metric's shape. The value of "a" 

determines the dimensions of the warp 

drive-generated "bubbles." This parameter 

offers a versatile means to tailor the 

characteristics of the warp drive effect, 

thereby influencing the phi distribution in 

spacetime. The x and t coordinates in our 

visualization represent spatial and temporal 

coordinates. The graphical representation 

portrays the behavior of the Alcubierre 

metric effect along the x (horizontal) and t 

(vertical) axes, providing researchers with 

an intricate insight into how the warp drive 

can manipulate spacetime within the 

framework of quantum relativity.  

Visualizing Spacetime Deformation in 

Godel Metric Solution 

In this research, we conducted an in-

depth analysis of the surface ( ( , ))r t  as a 

function of variables (r) and (t), using a 

visual representation in the form of plots 

that employ a color palette to indicate the 

values of ( ( , ))r t . The primary objective of 

these plots is to illustrate the distribution of 

( ( , ))r t  within the framework of the 

Alcubierre metric solution. Specifically, 

( ( , ))r t  serves as a key element of the 

metric that describes the spacetime 

deformation required in the context of the 

"warp drive" concept, which fundamentally 

enables travel at speeds exceeding that of 

light. The variable (r) is utilized to represent 

the radial coordinate around the "warp 

bubble" formed by this metric, while (t) 

refers to the time dimension. The colors 

used in the plots hold significant 

interpretations, where red signifies high 

intensity of spacetime deformation, while 

blue indicates lower intensity. This clearly 

demonstrates the presence of strong 

deformation in spacetime around the "warp 

bubble," which is an essential element of the 

Alcubierre concept. 

Furthermore, these plots can also be 

interpreted within the framework of the 

Godel metric solution, which describes 

cosmic spacetime with unique properties, 

including the possibility of closed-time-like 

curves. The variables (r) and (t) retain the 

same meanings as in the Alcubierre metric. 

In the context of the Godel metric, ( ( , ))r t  
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likely reflects one of the metric components 

that describe the non-trivial properties of 

spacetime. The colors in the plot may reveal 

unique patterns in the deformation or 

structure of spacetime inherent in the Godel 

metric solution. 

 
Figure 4. Visualizing Spacetime Deformation Godel Metrics 

Conclusion 

In conclusion, our journey through this 

diverse array of theoretical and practical 

insights in physics has provided a 

comprehensive understanding of 

fundamental concepts and their real-world 

applications. From the exploration of the 

Dirac Equation and its simplification in 

specific dimensions to our foray into the 

Time-Dependent Schrödinger Equation and 

its relationship with the Dirac Equation, and 

our contemplation of the Alcubierre Metric's 

implications for warp drive, as well as our 

examination of particle modeling in 

harmonic potentials and the unique 

properties of the Gödel Metric Solution – all 

these facets collectively contribute to a 

deeper comprehension of the multifaceted 

realms of theoretical and practical physics. 

These discoveries not only enhance our 

grasp of particle behavior and quantum 

systems but also shed light on the 

fascinating deformations of spacetime in 

various contexts. These insights open doors 

to new horizons in our pursuit of knowledge 

and the applications of physics in our ever-

evolving world. 
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