SCALAR INTERACTIONS IN THE MODIFIED LEFT-RIGHT SYMMETRY MODEL

Istikomah Istikomah, Nurul Embun Isnawati, Heni Sumarti, Sheilla Rully Anggita

Abstract


The Standard Model is a model of particle physics in which one Higgs particle has been confirmed with a mass of 126 GeV. In 2016 some discoveries made it possible to have other scalar particles similar to the Higgs. The modified left-right symmetric model extends the standard model with an expanded scalar sector. There are ϕ_L and Δ_L left sector scalar particles, ϕ_L and Δ_L right sector scalar particles and two singlet η and ξ scalar particles. Therefore, this research objective is to analyze of the possibility of a Higgs interaction with other scalar particles. The method of this research is using a Feynman diagram to describe the interaction terms at the Higgs Potential. The interaction probability is sought using the Feynman rule for Toy Theory. The decay rate uses the Golden Rule. When the universe's temperature reaches the mass of η, the scalar becomes non-relativistic and decays into ϕ_L and ϕ_R. The scalar ξ is scattered into ϕ_L through the η scalar propagator and into ϕ_R. The scalars Δ_L and Δ_R do not decay, they only scatter into ϕ_L and ϕ_R. The η and ξ scalars have transformed into ϕ_L in the left sector and ϕ_R in the right sector, and only ϕ_L in the sectors are likely to be detected as the Higgs Standard Model.

Keywords


Standard Model; Scalar Extension; Higgs Scalar; Modified Left-Right Symmetry

Full Text:

PDF

References


1. Ivanov IP. Building and testing models with extended Higgs sectors. Prog Part Nucl Phys. 2017;95:160–208.

2. Heister JA, Schael S, Barate R, Brunelière R, De Bonis I, Decamp D, et al. Search for the standard model higgs boson at LEP. Phys Lett Sect B Nucl Elem Part High-Energy Phys [Internet]. 2003;565(1–4):61–75. Available from: http://dx.doi.org/10.1016/S0370-2693(03)00614-2

3. The ATLAS Collaborations. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. 2013;716(May):1–29.

4. Aad G, Abajyan T, Abbott B, Abdallah J, Abdel Khalek S, Abdelalim AA, et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett Sect B Nucl Elem Part High-Energy Phys. 2012;716(1):1–29.

5. Higgs PW. Broken symmetries and the masses of gauge bosons. Phys Rev Lett. 1964;13(16):508–9.

6. Salam GP, Wang LT, Zanderighi G. The Higgs boson Turns Ten. 2022;1–16. Available from: http://arxiv.org/abs/2207.00478

7. CMS collaboration. Search for new physics in high mass diphoton events in 3.3 fb−1 of proton-proton collisions at √s = 13 TeV and combined interpretation of searches at 8 TeV and 13 TeV. Cms-Pas-Exo-16-018. 2016;

8. Salvio A, Mazumdar A. Higgs stability and the 750 GeV diphoton excess. Phys Lett Sect B Nucl Elem Part High-Energy Phys [Internet]. 2016;755:469–74. Available from: http://dx.doi.org/10.1016/j.physletb.2016.02.057

9. Reed RG. Search for resonances decaying to photon pairs in 3.2 fb^{-1} of pp collision at ps=13 TeV with the atlas detector. J Phys Conf Ser. 2016;755(1):3–8.

10. Allanach BC. Beyond the standard model. Cern Yellow Reports Sch Proc. 2017;5(June):123–52.

11. Adam AS, Ferdiyan A, Satriawan A. A New Left-Right Symmetry Model. Adances High Energy Phys. 2020;

12. Damanik A. Minimal left-right symmetry model for electroweak interaction. 2016;(April).

13. Haniah SR, Istikomah, Khalif MA, Kusuma HH. Scalar Field Mass Generation in the Gauge Theory SU(2)XU(1)XZ2. In: Journal of Physics: Conference Series. 2020.

14. Satriawan M. CP-mirror Extension of Standard Model in. 2015;(May).

15. Istikomah. Pembangkitan Massa Medan Skalar dan Boson Tera pada Model Simetri Kiri Kanan Termodifikasi Berdasarkan Grup Tera SU(3)⊗SU(2)_L⊗SU(2)_R⊗U(1)_Y. J Fis. 2020;10(2):35–41.

16. Satriawan M. A Multicomponent Dark Matter in a Model with Mirror Symmetry with Additional Charged Scalars. 2018;(1):1–9.

17. Akhmedov E, Lindner M, Schnapka E, Valle JWF. Dynamical Left-Right Symmetry Breaking. 1995;(September). Available from: http://arxiv.org/abs/hep-ph/9509255%0Ahttp://dx.doi.org/10.1103/PhysRevD.53.2752

18. Allahverdi R, Amin MA, Berlin A, Bernal N, Byrnes CT, Delos MS, et al. The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe. Open J Astrophys. 2021;4(1).

19. Joyce M, Prokopec T. Turning around the sphaleron bound: Electroweak baryogenesis in an alternative post-inflationary cosmology. Phys Rev D - Part Fields, Gravit Cosmol. 1998;57(10):6022–49.

20. Istikomah. Kendala Big Bang Nucleosynthesis Pada model Cermin Termodifikasi. Universitas Gadjah Mada; 2015.

21. Griffiths D. Introduction to Elemntary Particles. Second, Re. WILEY-VCH Verlag GmbH & Co. KGaA; 2008.

22. Wu YP, Yang L, Kusenko A. Leptogenesis from spontaneous symmetry breaking during inflation. J High Energy Phys. 2019;2019(12).

23. Robens T, Stefaniak T, Wittbrodt J. Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios. Eur Phys J C. 2020;80(2).

24. Tenkanen T. Dark Matter from Scalar Field Fluctuations. Phys Rev Lett. 2019;123(6):1–5.




DOI: https://doi.org/10.18860/neu.v16i1.20518

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Istikomah Istikomah, Nurul Embun Isnawati, Heni Sumarti, Sheilla Rully Anggita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 


Editorial Office of Jurnal Neutrino:
Department of Physics, Faculty of Sains and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Gajayana st. No.50 Malang 65144
Telp. +62 813-4090-1818
Email: neutrino@uin-malang.ac.id

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

View My Stats