STROKE SEVERITY ANALYSIS THROUGH CT-SCAN IMAGE TEXTURE ANALYSIS OF THE BRAIN WITH GRAY LEVEL RUN LENGTH MATRIX METHOD
Abstract
The condition of a stroke is when the blood supply to the brain is disrupted due to a blockage (ischemic
stroke) or rupture of a blood vessel (hemorrhagic stroke). This condition causes certain areas of the
brain to be deprived of the supply of oxygen and nutrients resulting in the death of brain cells. This
study aims to determine the process of ischemic stroke assistance and hemorrhagic analysis through CT
Scan image texture GLRLM brain method with the classification method using discriminant analysis
and determine the level of accuracy. In this study there are 3 stages, namely preprocessing, learning
stages and testing stages. The results of the assessment of stroke in the ischemic and hemorrhagic
categories through texture analysis of CT scan images using the GLRLM brain method with a
classification accuracy of 100%.
Keywords
Full Text:
PDFReferences
1. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke. 2019;14(8):806–17.
2. Qiu W, Kuang H, Teleg E, Ospel JM, Sohn S Il, Almekhlafi M, et al. Machine Learning for Detecting Early Infarction in Acute Stroke with Non–Contrast-enhanced CT. Radiology. 2020;294(2):638–44.
3. Marbun JT, Seniman, Andayani U. Classification of stroke disease using convolutional neural network. J Phys Conf Ser. 2018;978(1).
4. Chin CL, Lin BJ, Wu GR, Weng TC, Yang CS, Su RC, et al. An automated early ischemic stroke detection system using CNN deep learning algorithm. Proc - 2017 IEEE 8th Int Conf Aware Sci Technol iCAST 2017. 2017;2018-Janua(iCAST):368–72.
5. Bershad EM, Rao CPV, Vuong KD, Mazabob J, Brown G, Styron SL, et al. Multidisciplinary protocol for rapid head computed tomography turnaround time in acute stroke patients. J Stroke Cerebrovasc Dis. 2015;24(6):1256–61.
6. Nurhayati OD. Analisis Citra Digital CT Scan dengan Metode Ekualisasi Histogram dan Statistik Orde Pertama. J Sist Komput. 2015;5(1):1–4.
7. Heranurweni S, Destyningtias B, Kurniawan Nugroho A. Klasifikasi Pola Image Pada Pasien Tumor Otak Berbasis Jaringan Syaraf Tiruan ( Studi Kasus Penanganan Kuratif Pasien Tumor Otak ). Elektrika. 2018;10(2):37.
8. Adi dan Catur Edi Widodo K. Analisis Citra Ct Scan Kanker Paru Berdasarkan Ciri Tekstur Gray Level Co-Occurrence Matrix Dan Ciri Morfologi Menggunakan Jaringan Syaraf Tiruan Propagasi Balik. Youngster Phys J. 2016;5(2):417–24.
9. Marita V, Nurhasanah, Sanubaya I. Identifikasi Tumor Otak Menggunakan Jaringan Syaraf Tiruan Propagasi Balik pada Citra CT-Scan Otak. Prism Fis. 2014;V(3):117–22.
10. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys. 2015;42(11):6725–35.
11. Imran B. Content-Based Image Retrieval Based on Texture and Color Combinations Using Tamura Texture Features and Gabor Texture Methods. Am J Neural Networks Appl. 2019;5(1):23.
12. Belsare AD, Mushrif MM. Images using Texture Feature Analysis. Ieee. 2015;
13. Nabizadeh N, Kubat M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng. 2015;45:286–301.
14. Riana D, Widyantoro DH, Mengko TL. Extraction and classification texture of inflammatory cells and nuclei in normal pap smear images. Proc - 2015 4th Int Conf Instrumentation, Commun Inf Technol Biomed Eng ICICI-BME 2015. 2016;65–9.
15. Sarioglu O, Sarioglu FC, Capar AE, Sokmez DFB, Topkaya P, Belet U. The role of CT texture analysis in predicting the clinical outcomes of acute ischemic stroke patients undergoing mechanical thrombectomy. Eur Radiol. 2021;31(8):6105–15.
16. Kim HS, Kim YJ, Kim KG, Park JS. Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer. Sci Rep. 2019;9(1):1–9.
17. Mulyono A. Correlation of Manus Radiograph Image Texture Value With Bone Mineral Density Lumbar Spine Value. J Neutrino. 2022;14(2):44–9.
DOI: https://doi.org/10.18860/neu.v16i2.26261
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muthmainnah M.Si
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published By:
Program Studi Fisika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Jl. Gajayana No.50 Malang 65144
Telp./Fax.: (0341) 558933
Email: neutrino@uin-malang.ac.id
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
View My Stats