CLASSICAL MOLECULAR DYNAMICS (MD) SIMULATION OF SALT AND SOLVENT SOLVATION EVENTS IN LITHIUM ION BATTERIES TO DETERMINE ENERGY FLUCTUATIONS

Hubertus Ngaderman, Ego Srivajawaty Sinaga, Benny Abraham Bungasalu

Abstract


This study looks at how salt and solvent mix, as shown by the final positions of particles in a simulation. The simulation uses Lennard-Jones parameters and runs in a closed system with fixed energy. The goal is to see if the particles follow the Maxwell velocity distribution. When lithium hexafluorophosphate salt mixes with ethylene carbonate, solvation occurs. The simulation runs for 100 and 2000 steps to get accurate results. At the start, no chemical reactions or outside forces are involved just the natural movement of particles. For fluorine, after 2000 steps, the particles start to group in one area, showing the system isn’t balanced yet. Since velocity is linked to kinetic energy, it's important to look at the most common speeds of lithium, phosphorus (P), fluorine (F), and lithium-oxygen carbonyl (Li-OC). At 100 steps, the speed data looks good for lithium, phosphorus, and fluorine, except for how fluorine interacts with itself. So, the number of steps was increased to 2000. But even then, the particles don’t spread out fully, which isn’t realistic nature doesn’t leave space. That’s why the simulation should run up to 3000 steps for better, more realistic results.


Keywords


Electrolyte; Maxwell velocity distribution; Lennard Jones potential

Full Text:

PDF

References


Septiana, Atut Reni, et al. Efek Penggunaan Cairan Ionik sebagai Aditif terhadap Konduktivitas Ionik Elektrolit Baterai Ion Litium. Indonesian Journal of Applied Physics. 2019; 9(02): 84-92.

Saputry, Agriccia Pangestica; Lestariningsih, Titik; Astuti, Yayuk. Pengaruh rasio LiBOB: TiO2 dari lembaran polimer elektrolit sebagai pemisah terhadap kinerja elektrokimia baterai lithium-ion berbasis LTO. Jurnal Kimia Sains dan Aplikasi, 2019; 22(4): 136-142.

Kostecki, Robert, et al. In Situ and Ex Situ Studies of Interfacial Processes on Intermetallic Li-ion Anodes. In: Electrochemical Society Meeting Abstracts ecee2019. The Electrochemical Society, Inc., 2019;(2): p. 108-108.

Hasa, Ivana, et al. Electrochemical reactivity and passivation of silicon thin-film electrodes in organic carbonate electrolytes. ACS applied materials & interfaces. 2020; 12(36): 40879-40890.

Sylvani, Miranti Maya, et al. A Review: Structure and Synthesis of Perovskite as Lithium-Ion Battery (LIB) Material. Bohr: Jurnal Cendekia Kimia. 2023; 2(01): 1-8.

Fu, Wenbin, et al. Materials and processing of lithium-ion battery cathodes. Nanoenergy Advances. 2023; 3(2): 138-154.

Gao, Tianhan; Lu, Wei. Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: A molecular dynamics study. Electrochimica Acta.2019;(323): 134791.

Ravikumar, Bharath; Mynam, Mahesh; Rai, Beena. Molecular dynamics investigation of electric field altered behavior of lithium ion battery electrolytes. Journal of Molecular Liquids. 2020; (300): 112252.

Kumar, Narendra; Seminario, Jorge M. Lithium-ion model behavior in an ethylene carbonate electrolyte using molecular dynamics. The Journal of Physical Chemistry C. 2016; 120(30): 16322-16332.

Ngaderman, Hubertus; Sinaga, Ego Srivajawaty. IDENTIFICATION OF THE INTERACTION OF LITHIUM HEXAFLUOROPHOSPHATE SALT AND ETHYLENE CARBONATE (EC) SOLVENT IN LITHIUM ION BATTERY REDOX EVENTS USING CLASSICAL MOLECULAR DYNAMICS (MD) SIMULATION. Jurnal Neutrino: Jurnal Fisika dan Aplikasinya.2024; 16(2): 60-70.

Nogales, Paul Maldonado, et al. Effects of Electrolyte Solvent Composition on Solid Electrolyte Interphase Properties in Lithium Metal Batteries: Focusing on Ethylene Carbonate to Ethyl Methyl Carbonate Ratios. Batteries.2024;10(6): 210.

Mikrajuddin Abdullah. Mekanika Statistik. Bandung: Institut Teknologi Bandung; 2017

Gao, Tianhan; LU, Wei. Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: A molecular dynamics study. Electrochimica Acta. 2019; (323): 134791.

Behara, Pavan Kumar, et al. Benchmarking Quantum Mechanical Levels of Theory for Valence Parametrization in Force Fields. The Journal of Physical Chemistry B. 2024; 128(32): 7888-7902.

Pierini, Adriano, et al. A Polarizable Forcefields for Glyoxal Acetals as Electrolyte Components for Lithium‐Ion Batteries. ChemistryOpen. 2024; 13(11): e202400134.

Choi, Sukyoung, et al. Lithium intercalated graphite with preformed passivation layer as superior anode for Lithium ion batteries. Applied Surface Science. 2018; (455): 367-372.

Naserifar, Saber; Goddard III, William A. Anomalies in supercooled water at∼ 230 K arise from a 1D polymer to 2D network topological transformation. The Journal of Physical Chemistry Letters. 2019; 10(20): 6267-6273.

Hossain, Md Jamil, et al. Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A ReaxFF reactive force field study. The Journal of chemical physics. 2020; 152(18):




DOI: https://doi.org/10.18860/neu.v17i2.29233

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Hubertus Ngaderman, Ego Srivajawaty Sinaga

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 


Published By:
Physics Study Pragramme, Faculty of Science and Technolgy, Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Jl. Gajayana No.50 Malang 65144
Telp./Fax.: (0341) 558933
Email: neutrino@uin-malang.ac.id

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

View My Stats