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A b s t r a c t 

The Drosophila Climbing Assay (DCA) is an essential assay for disease and 
other biological studies. This systematic literature review (SLR) aims to 
analyze DCA's distribution, treatment, and contribution during the 21st 
Century. VOS Viewer was also involved in analyzing the bibliometric and 
gap analysis in related studies. By using the Scopus database and limiting 
document types to journal articles, a total of 183 documents have been 
successfully collected in this SLR. After going through a selection process 
based on inclusion and exclusion criteria and eligibility assessment 
through the PRISMA procedure, 163 articles remain that can be analyzed. 
Behaviour, model, activity, expression, lifespan, and disease are terms 
that often equate to studies involving the DCA procedure. The U.S., 
China, and India are the three countries that most frequently report DCA. 
DCA has been involved intensively in behaviour, Parkinson's, and nervous 
system research. The co-occurrence analysis resulted in 5 clusters, and 
the DCA procedure to study the impact of nutrient stress and 
nanoparticles resulted from the identified gap analysis. 
 

1. INTRODUCTION 

 
Drosophila melanogaster, or the fruit fly, 

has become pivotal in advancing biological 
science [1], [2]. Its small size, short life cycle, 
high reproductive rate, and ease of observing 
traits in this organism have made D. 
melanogaster a favoured subject in biological 
experiments [3]. These insects have helped 

researchers study various concepts in the 
field of genetics [4]–[6] and development [7]. 
This model organism has also been involved 
in uncovering various complex biological 
phenomena in physiology [8] and 
neurobiology [9]. 

Until the last decade, Drosophila has 
continued to establish itself as one of the 
most popular model organisms in various 
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laboratories in many countries [1], [2], [4]–
[6]. Along with the development of 
bioinformatics and molecular biology 
techniques, researchers can condition 
Drosophila to become an organism capable 
of modelling various biological conditions [7], 
[10], [11]. Moreover, because its genome is 
similar to the human genome, this insect has 
significantly contributed to studying various 
human diseases [4]. To study various 
biological phenomena and diseases, 
researchers have developed various assays 
whose data can be used as essential 
indicators of various specific biological 
conditions. 

One of the assays that was developed 
and is often involved in research involving 
Drosophila is the Drosophila Climbing Assay 
(DCA) [12], [13]. This assay involves placing 
the flies in a vial and observing their ability to 
climb upward against gravity. Despite its 
simplicity, this assay informs about the 
locomotor function of the tested Drosophila 
and provides data related to their behaviour. 
Furthermore, this assay can serve as an 
indicator of the condition of the Drosophila 
nervous system. Given its cost-effectiveness 
and simplicity, along with its significance as a 
vital health indicator, the DCA has been 
incorporated into various biological research 
studies up to the present day. 

Although the DCA has been extensively 
documented in various scientific publications, 
these reports primarily consist of laboratory-
based experimental research and 
methodological development related to the 
DCA. On the other hand, comprehensive 

reviews assessing the utilization of DCA up to 
the present time are scarce. Given the 
multitude of studies incorporating DCA into 
their research designs, there is a compelling 
need for a systematic literature review (SLR) 
focused on using this assay. Therefore, this 
paper initiates an SLR specifically targeting 
the DCA. This SLR aims to provide a holistic 
perspective on the application, variations, 
and outcomes of DCA testing in studies 
conducted across different countries. It has 
the potential to unearth existing gaps, 
facilitate discussions concerning standardized 
protocols that researchers can adopt, and 
guide the direction of future DCA research. 

 
2. MATERIALS AND METHODS 

 
This SLR adheres to the Preferred 

Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines, the 
process of which is outlined in Figure 1. The 
primary research question posed in this SLR 
is, "How does the Drosophila Climbing Assay 
(DCA) contribute to the study of various 
biological conditions and diseases?" The 
selected database for this study is Scopus. All 
publications gathered encompass studies in 
which DCA is utilized as one of its data 
sources. The search query employed is 
presented in Table 1, and the inclusion and 
exclusion criteria are detailed in the same 
table. After collecting the relevant papers, 
the screening process commences by 
selecting papers based on the predefined 
inclusion and exclusion criteria (Table 1). 

 
Table 1. Search query, inclusion criteria, and exclusion criteria used 

Components Description 

Search query TITLE-ABS-KEY ("climbing ability" OR "climbing behaviour" OR "climbing 
assay" OR "negative geotaxis" OR "wall climbing") AND ALL ("drosophila" 
OR "fruit fly") AND ALL ("imago" OR "adult") 

Inclusion criteria  articles that were published before 2023, classified as journal articles, in 
the final publication stage, sourced from journals, written in English, and 
available as open access. 

Exclusion criteria paper reviews, full papers that were inaccessible, non-original article 
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Based on Figure 1, 331 publication titles 

emerged as search results using the search 
query provided in Table 1. Since no duplicate 
papers were identified, all papers proceeded 
to the screening stage. During this stage, 
papers published before 2023, categorized as 
journal articles, in the final publication stage, 
sourced from scientific journals, written in 
English, and open access in nature were 
retained, resulting in 183 titles. Furthermore, 
five full papers remained inaccessible, leaving 
176 papers eligible for evaluation. Among 
these, five papers merely demonstrated or 
introduced methods, assays, or tools, and 
eight papers did not involve Drosophila as the 
subject of their research. Consequently, 163 
papers remain for analysis in this systematic 
literature review (SLR). 

Data extraction was conducted on the 
remaining 163 papers during the data analysis 
phase. Based on the research questions 
posed in this systematic literature review 
(SLR), several key points were scrutinized in 
each paper, including the positioning of 
Drosophila as a model organism, the 
biological topic underlying the research 
problem, and the specific DCA techniques 
designed by the researchers. Data analysis 
was performed using a qualitative approach, 
and the results served as the foundation for 
data synthesis. Additionally, a bibliometric 
analysis was conducted to elucidate the 
relationships between concepts across all the 
collected publications. 

 
Figure 1. PRISMA steps in this SLR study 
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3. Results and discussion 

 

Based on the PRISMA-based selection 
process, out of the 183 papers obtained from 
the Scopus database, 163 papers remained 
eligible for further analysis. The first theme 
used for data extraction in this SLR pertains 
to the role of Drosophila as a model organism 

in the reviewed research. The results of this 
extraction are presented in Table 2. As 
indicated in Table 2, it is evident that 
Drosophila has been the subject of research 
modelling various conditions, spanning from 
modelling diverse diseases to exposure-
related conditions and ageing processes. 

 
Table 2. Data extraction for the model organism theme 
 

Model Organism Reference 

Disease Parkinson's Disease [14], [15], [24]–[33], [16], [34]–[38], [17]–[23], 
Alzheimer's Disease [39], [40], [49]–[54], [41]–[48], Huntington's disease 
[55]–[57], neurodegenerative disease (general) [58]–[60], Autism [61], 
Barth syndrome [62], Amyotrophic lateral sclerosis [63], Creutzfeldt-Jakob 
Disease [64], diastolic cardiac defects [65], galactosemia [66], Gerstmann–
Straussler–Scheinker syndrome [11], Hereditary spastic paraplegias [55], 
Myotonic Dystrophy [67], spinocerebellar ataxias [68], FARS2 deficiency 
[7], Sepsis [69], myopathy [70], diabetes [71] 

Medical condition Brain function [72], depression [73], Mitochondrial diseases [74], gene 
mutation [75]–[78], neurodegeneration [79], retinal degeneration [80], 
NT5C2 knockdown [81], Obesity [82], Oxidative stress condition [83], 
sensorineural hearing loss [84], Traumatic injuries [85]–[88], Obesity [71], 
Autophagy down expression [89], other [90]–[92] 

Aging age-dependent neurodegeneration [93], age-related behaviour [94], age-
related locomotor impairment [95], age-related muscle [10], aging 
(general) [96]–[100] 

Substance 
exposure 

acute exposure to ethanol [101], nanoparticle exposure [102]–[107], 
Chemotherapy [108], [109], stimulant drug consumption [110], toxicity and 
heavy metal exposure [111]–[114], herbicide exposure [115], [116], pest [117], 
pollutant exposure [118], [119], quercetin consumption [120] 

Alternative 
medicine 
consumption 

medical plant substance/traditional medicine evaluation [121]–[125], other 
[126] 

Diet Dietary restriction [127], [128], Dietary supplementation [129], dietary 
protein [130], AKG consumption [131], High Fat Diet [132]–[136], high-salt 
diet [137], MSG consumption [138], non-caloric artificial sweeteners 
consumption [139], probiotic expose [140] 

Physical activity Exercise training [141]–[144] 

Physical condition  Electromagnetic/geomagnetic field effect [145], [146], hypergravity [147], 
radiation exposure [148], [149], oxygen deprivation [150] 

Social condition male presence [151], predation exposure [152], Social space variation [153] 

Other Other conditions [5], [6], [162]–[171], [154]–[161] 
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Drosophila is capable of modelling various 
human diseases primarily due to the high 
degree of genetic conservation between this 
organism and humans [172], [173]. Numerous 
fundamental cellular and molecular pathways 
are highly conserved in Drosophila, enabling 
researchers to investigate various human 
diseases' genetic and physiological 
mechanisms [174], [175]. This genetic similarity, 
combined with the simplicity and well-
characterized genome of Drosophila, has 
facilitated researchers in identifying and 
manipulating specific genes relevant to various 
human disease conditions. Additionally, 
developing various molecular techniques, such 
as gene knockout, overexpression, and 
downregulation, has allowed researchers to 
condition Drosophila to model the health 
conditions under investigation [176]. 

In addition to modelling diseases, the short 
lifespan of Drosophila makes it easy for 
researchers to study the aging process in this 
organism [93], [94]. Researchers also easily 
observe various processes and conditions 
related to aging more quickly than other 
model organisms. Apart from that, because 
the generation time is short, but the number 
of derivatives is significant, researchers will be 
more efficient in carrying out drug testing on 
genetic screens on a large scale. 

Based on Table 2, the DCA has also been 
involved in studies positioning Drosophila to 
model the effects of physical activity [141]–
[144], physical factors [145]–[147], social 
factors [151]–[153], and dietary conditions 
[132]–[136]. Drosophila has innate locomotor 
abilities that are needed in studies where 
treatment involves physical activity. Apart 
from that, Drosophila also has various complex 
behaviours that certain physical activities can 
influence. Furthermore, Drosophila is also 
sensitive to various environmental conditions, 
including physical factors [145]–[147]. Because 
of the small size of the culture, researchers can 
easily manipulate various physical factors in 
their laboratories. Furthermore, their social 
behaviours, including courtship, aggression, 

and mating, are thoroughly documented and 
can be manipulated to explore the influence of 
social factors on gene expression, 
neurobiology, and overall health [177], [178]. 
These studies illuminate how social 
environments can shape biological outcomes. 
Lastly, Drosophila's responsiveness to dietary 
conditions is a consequence of their dietary 
adaptability and the ease of dietary control in 
laboratory settings [127], [128], [132]–[136]. 
Researchers can precisely tailor the 
composition of their food, simulating various 
dietary scenarios. This adaptability facilitates 
investigations into the effects of diet on 
metabolism, aging, and susceptibility to 
diseases. 

In the second theme, the SLR analysis was 
directed toward mapping the biological topics 
underpinning the research issues reported in 
the reviewed articles. Based on the extraction 
results, the Drosophila Climbing Assay (DCA) 
was most frequently involved in studies 
related to the nervous system [14], [15], [24]–
[33], [16], [34]–[43], [17], [44]–[53], [18], [54], 
[58]–[60], [19]–[23]. This climbing assay, a 
straightforward yet powerful behavioural test, 
provides researchers with valuable insights 
into the functional status of the nervous 
system and its modifications under various 
conditions or diseases. In this context, the 
primary role of the nervous system is to 
control motor activity. On the other hand, DCA 
serves as a robust indicator for assessing 
Drosophila's motor skills. 

Additionally, the DCA exhibits high 
sensitivity, making it suitable for detecting 
subtle changes in motor function. 
Furthermore, its non-invasive nature and 
capacity for high-throughput testing make it 
an attractive option for simultaneously 
assessing large groups of individuals or 
conditions, thereby minimizing stress on 
experimental subjects. Returning to Table 2 
and correlating with the result of data 
extraction in the second theme, Drosophila 
frequently models Parkinson's Disease [14], 
[15], [24]–[33], [16], [34]–[38], [17]–[23] and 
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Alzheimer's Disease [39], [40], [49]–[54], [41]–
[48], both of which are neurodegenerative 
diseases. The decline in negative geotaxis 
observed in aging flies or those modelling 
neurodegenerative diseases closely mirrors 
motor deficits seen in Parkinson's and 
Alzheimer's patients. 

The next theme extracted through this SLR 
pertains to researchers' application of the 
DCA. The extraction results reveal that various 
DCA designs have been reported in the 
methodology sections of the analyzed articles. 
The wide range of climbing assay designs and 
data collection methods in Drosophila studies 
can be attributed to the assay's adaptability to 
different research questions and experimental 
contexts. The diversity in assay formats and 
collected metrics underscores the flexibility of 
the climbing assay in assessing various aspects 
of locomotor behaviour. Researchers select 
different assay designs and metrics based on 
the specific objectives of their studies. Several 

studies designed a simple climbing assay with a 
basic procedure that involves recording the 
number of flies that successfully climb a 
specific height for a particular duration of time 
[11], [14], [136]. Some other studies involve 
more complex procedures and equipment, 
such as the RING assay [69], [108]. RING assay 
could capture nuanced aspects of climbing, 
such as the distance climbed or the speed of 
ascent, making it well-suited for studies 
focused on the genetic or molecular 
mechanisms underpinning climbing behaviour. 
Furthermore, the adaptability of the climbing 
assay lends itself to a broad spectrum of 
research areas beyond neurobiology, including 
toxicology, drug screening, and aging studies. 
This versatility proves particularly valuable for 
scientists seeking to comprehend the impacts 
of various factors, such as substance exposure, 
diet, or physical activity, on locomotor 
performance. 

 

 
Figure 2. Results of co-occurrence analysis of index keywords 

 
In addition to the systematic literature 

review (SLR), this paper also presents the 
results of bibliometric analysis conducted on 
the reviewed papers. With the assistance of 
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VOS Viewer, a co-occurrence analysis of index 
keywords within these papers was visualized 
(Figure 2). "Male" and "female" emerged as 
the keywords with the highest occurrence 
values. This finding indicates that the research 
encompasses aspects related to gender 
differences in the context of Drosophila. It 
underscores the significance of understanding 
how gender factors influence various 
biological conditions and bodily responses. 
Keywords such as "metabolism," "genetics," 
"model," and "protein" also stand out, 
signifying that the reviewed research is closely 
linked to an understanding of genetic and 
metabolic aspects within the Drosophila 
model. Additionally, keywords such as 
"locomotion," "physiology," "lifespan," and 
"phenotype" suggest that much of the 
research in the context of Drosophila is 
focused on comprehending movement, 
physiological function, lifespan, and related 
phenotypes. Keywords like "transgenic 
animal" and "genetically modified," with a high 
co-occurrence count, indicate that many 
studies in this review may involve genetic 
manipulations in Drosophila to create models 
relevant to the studied conditions. 

Meanwhile, keywords with lower total link 
strength, such as "body weight," "physical 
conditioning," "physiological stress," 
"sucrose," and "velocity," may indicate that 
research in the context of Drosophila may not 
explicitly encompass these aspects or may not 
yet have a substantial body of research to 
establish strong connections. The disparities in 
occurrence rates and total link strength 
between keywords reflect the research focus 
and trends within the reviewed Drosophila 
behavioural studies. Keywords with high 
occurrence rates mirror crucial aspects often 
serving as the primary research focus. In 
contrast, keywords with lower total link 
strength may reflect aspects that have not 
been fully explored or are not the primary 
focus of the research. 

 
 
 

4. CONCLUSION  

The systematic literature review (SLR) and 
bibliometric analysis offer valuable insights 
into the diverse research landscape 
surrounding Drosophila behaviour assays. 
These findings underscore the adaptability of 
Drosophila as a model organism capable of 
investigating a broad spectrum of topics, 
including neurodegenerative diseases, aging, 
genetic modifications, and the influence of 
various environmental factors. Notably, the 
analysis highlights keywords such as "male" 
and "female" with high occurrence, 
emphasizing the significance of considering 
gender differences in Drosophila research. 
Furthermore, keywords related to genetics, 
metabolism, and modelling take centre stage, 
reflecting the organism's pivotal role in genetic 
and metabolic studies. 

Conversely, keywords with lower total link 
strength, such as "body weight" and 
"physiological stress," may suggest areas 
within Drosophila behaviour research warrant 
further exploration. As a suggestion for future 
research, prioritizing investigations into the 
long-term and transgenerational effects of 
Drosophila behaviour assays is recommended, 
as these aspects still need to be explored. 
Gaining insights into how behaviours and 
phenotypes can be inherited across 
generations could yield valuable information 
about Drosophila's intricate interplay of 
genetic, environmental, and epigenetic factors 
and potentially shed light on broader biological 
phenomena 
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