The Role of Artificial Intelligence in the Influence of Auditor Abilities on Audit Quality
Abstract
Method: A quantitative approach was employed, utilizing questionnaires to collect data from 43 external and government auditors in Bengkulu City. The data were analyzed using Structural Equation Modeling Partial Least Square (SEM-PLS) to examine the relationships between variables.
Results: The findings reveal that auditor abilities have a significant and positive impact on audit quality. However, the moderating effect of AI on this relationship was found to be insignificant, indicating limited integration of AI in current auditing practices in the region.
Implications: The study underscores the importance of developing auditor skills and leveraging AI to potentially enhance audit quality in the future. It highlights the need for further technological adoption in auditing practices to fully realize AI's potential benefits.
Novelty: This research contributes to the literature by integrating AI into the discourse on auditor competence and audit quality, offering a fresh perspective on the interplay between human skills and technological advancements in the auditing domain.
Keywords
Full Text:
PDFReferences
Alotaibi, E. M., & Alnesafi, A. (2023). Assessing the impact of audit software on audit quality: Auditors' perceptions. International Journal of Applied Economics, Finance and Accounting, 17(1), 97–108. https://doi.org/10.33094/ijaefa.v17i1.1068
Appelbaum, D., Kogan, A., & Vasarhelyi, M. (2018). Analytical procedures in external auditing: A comprehensive literature survey and framework for external audit analytics. Journal of Accounting Literature, 40, 83–101. https://doi.org/10.1016/j.acclit.2018.01.001
Becker, G. S. (1993). Human capital: A theoretical and empirical analysis, with special reference to education (3rd ed.). University of Chicago Press. https://doi.org/10.7208/chicago/9780226041223.001.0001
Cao, M., Chychyla, R., & Stewart, T. (2021). Big data analytics in financial statement audits. Accounting Horizons, 35(4), 57-81. https://doi.org/10.2308/HORIZONS-19-101
Chen, X., Cheng, Q., & Wang, X. (2019). Institutional environment and auditor competence effect on audit quality: Evidence from China. International Journal of Auditing, 23(1), 95–115. https://doi.org/10.1111/ijau.12145
Cooper, L. A., Holderness, D. K., Jr., Sorensen, T. L., & Wood, D. A. (2024). Robotic process automation in auditing: Current and future applications. Journal of Emerging Technologies in Accounting, 21(1), 27-43. https://doi.org/10.2308/JETA-2022-035
Dai, J., & Vasarhelyi, M. A. (2022). Toward blockchain-based accounting and assurance. Journal of Information Systems, 36(3), 23-45. https://doi.org/10.2308/ISYS-2020-078
DeAngelo, L. E. (1981). Auditor independence, 'low balling', and disclosure regulation. Journal of Accounting and Economics, 3(2), 113–127. https://doi.org/10.1016/0165-4101(81)90009-4
DeFond, M., & Zhang, J. (2014). A review of archival auditing research. Journal of Accounting and Economics, 58(2), 275–326. https://doi.org/10.1016/j.jacceco.2014.09.002
Eulerich, M., Haustein, E., & Wood, D. A. (2023). The role of artificial intelligence in audit processes: A research framework and research agenda. International Journal of Accounting Information Systems, 48, 100594. https://doi.org/10.1016/j.accinf.2022.100594
Hariyanti, E., Janeswari, M. B., Moningka, M. M., Aziz, F. M., Putri, A. R., Hapsari, O. S., Sutha, N. A. A. D., Sinaga, Y. A. A., & Bendesa, M. P. (2023). Implementations of artificial intelligence in various domains of IT governance: A systematic literature review. Journal of Information Systems Engineering and Business Intelligence, 9(2), 305–319. https://doi.org/10.20473/jisebi.9.2.305-319
Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35, 100433. https://doi.org/10.1016/j.accinf.2019.100433
Hussein, F. E., & Hanefah, M. M. (2013). Overview of surrogates to measure audit quality. International Journal of Business and Management, 8(17), 84–92. https://doi.org/10.5539/ijbm.v8n17p84
IAASB. (2014). A framework for audit quality: Key elements that create an environment for audit quality. International Auditing and Assurance Standards Board. https://www.iaasb.org/publications/framework-audit-quality-key-elements-create-environment-audit-quality-3
IAPI (Institut Akuntan Publik Indonesia). (2024). Roadmap transformasi digital audit di Indonesia. Jakarta: IAPI.
Imansari, P. F., & Halim, A. (2016). Pengalaman dan etika auditor terhadap kualitas audit (Studi empiris pada auditor di perusahaan di Kota Malang). Jurnal Riset Mahasiswa Akuntansi (JRMA), 4(1), 1–9.
International Federation of Accountants. (2014). International accounting education standards board. IFAC.
Issa, H., Jabbouri, R., & Saleh, M. (2022). Artificial intelligence and audit quality: A literature review and future research directions. Accounting and Business Research, 52(6), 683-707. https://doi.org/10.1080/00014788.2021.2013665
Kokina, J., & Davenport, T. H. (2022). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 19(1), 1-23. https://doi.org/10.2308/JETA-2022-021
Lee, T., & Stone, M. (1995). Competence and independence: The congenial twins of auditing. Journal of Business Finance & Accounting, 22(8), 1169–1177. https://doi.org/10.1111/j.1468-5957.1995.tb00899.x
Lestari, A. D., & Ardiami, K. P. (2023). Pengaruh kompetensi, independensi, dan profesionalisme auditor terhadap kualitas audit. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, 5(3), 1022–1043. https://doi.org/10.47467/elmal.v5i3.4140
Manita, R., Elommal, N., Baudier, P., & Hikkerova, L. (2020). The digital transformation of external audit and its impact on corporate governance. Technological Forecasting and Social Change, 150, 119751. https://doi.org/10.1016/j.techfore.2019.119751
Marginson, S. (2022). Human capital in the digital age. Studies in Higher Education, 47(4), 748-763. https://doi.org/10.1080/03075079.2021.1987275
McCarthy, J. (2004). What is artificial intelligence? Stanford University. http://www-formal.stanford.edu/jmc/whatisai/
Meckling, W. H., & Jensen, M. C. (1976). Theory of the firm: Managerial behavior, agency costs, and ownership structure. Journal of Financial Economics, 3(4), 305–360. https://doi.org/10.1016/0304-405X(76)90026-X
Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167, 209-234. https://doi.org/10.1007/s10551-019-04407-1
Rahayu, S., & Suryono, E. (2022). Pengaruh kompetensi dan independensi auditor terhadap kualitas audit. Star, 12(2), 10–20. https://doi.org/10.55916/jsar.v12i2.70
Raphael, J. (2024). Augmented intelligence in professional services: The case of audit. Journal of Professional Services Marketing, 39(2), 112-134. https://doi.org/10.1080/15332969.2023.2251894
Renaldi, R., & Mawardi, R. (2021). Kompetensi auditor, independensi, skeptisme profesional dan kualitas audit. Akuntabilitas, 14(2), 153–168. https://doi.org/10.15408/akt.v14i2.22028
Sugiyono. (2018). Metode penelitian kuantitatif, kualitatif, dan R&D. CV. Alfabeta.
Schilit, T., & Berkovec, J. (2022). Artificial intelligence and agency theory: Implications for financial reporting. Journal of Accounting Research, 60(3), 897-928. https://doi.org/10.1111/1475-679X.12421
Schultz, T. W. (2023). Investment in human capital in the digital era. American Economic Review, 113(5), 1425-1451. https://doi.org/10.1257/aer.20211234
Sutrisno, P., Arifin, B., & Suhardjanto, D. (2023). Digital transformation challenges in Indonesian public accounting firms. Asian Journal of Accounting Research, 8(2), 145-162. https://doi.org/10.1108/AJAR-08-2022-0265
Sutton, S. G., Holt, M., & Arnold, V. (2023). The reports of my death are greatly exaggerated: Artificial intelligence and the future of the accounting profession. Accounting Horizons, 37(1), 191-211. https://doi.org/10.2308/HORIZONS-2021-156
Svanberg, J., & Öhman, P. (2019). Auditors' issue contingency of reduced audit quality acts: Perceptions of managers and partners. International Journal of Accounting, Auditing and Performance Evaluation, 15(1), 57–88. https://doi.org/10.1504/IJAAPE.2019.096740
Tiberius, V., & Hirth, S. (2023). Impacts of artificial intelligence on the governance of organizations. Journal of Business Research, 159, 113706. https://doi.org/10.1016/j.jbusres.2023.113706
Zahid, H., & Teuteberg, F. (2022). Towards a framework for understanding the adoption of artificial intelligence in auditing: A systematic literature review. Information Systems and e-Business Management, 20, 467-503. https://doi.org/10.1007/s10257-022-00553-y
Zhang, C. (2019). Intelligent process automation in audit. Journal of Emerging Technologies in Accounting, 16(2), 69–88. https://doi.org/10.2308/jeta-52653
DOI: https://doi.org/10.18860/em.v17i1.34970
Refbacks
- There are currently no refbacks.
Editorial Office:
Megawati Soekarnoputri Building
Accounting Department, Faculty of Economics
Jln. Gajayana 50 Telp (0341) 558881
E-mail: elmuhasaba@uin-malang.ac.id
Universitas Islam Negeri Maulana Malik Ibrahim Malang
E-ISSN 2442-8922
P-ISSN 2086-1249

This work is licensed under a CC BY SA 4.0 International License













