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Abstract: The increasing penetration of plug-in electric vehicles (PEVs) introduces significant challenges to distribution
networks, particularly in terms of power losses, voltage deviation, and transformer loading. Proper planning of fast charging
station locations is therefore essential to ensure reliable and efficient grid operation. This paper proposes a Hybrid Genetic
Algorithm—Particle Swarm Optimization (HGAPSO) method to determine the optimal placement of level-3 PEV charging
stations in a radial distribution network. The proposed approach combines the global search capability of Genetic
Algorithms with the fast convergence characteristics of Particle Swarm Optimization to balance exploration and
exploitation while avoiding premature convergence. The optimization objective considers minimization of real and reactive
power losses and voltage deviation, subject to system constraints such as bus voltage limits and transformer capacity. The
method is validated using a real 20 kV distribution feeder from PLN in South Surabaya. Simulation results demonstrate
that the HGAPSO method outperforms conventional GA and PSO approaches by achieving lower power losses while
requiring fewer charging heads. These results indicate that the proposed HGAPSO provides an effective and practical
solution for optimal PEV charging station planning in distribution systems.
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1. Introduction

An electric vehicle, commonly referred to as a
plug-in electric vehicle (PEV), is powered by an
electric motor that draws energy from an onboard
battery. The global adoption of electric vehicles has
increased significantly in recent years, driven by
environmental concerns and energy transition
policies. Previous studies reported that electric
vehicles were expected to account for approximately
10% of global vehicle sales by 2020 [1]. In Indonesia,
the acceleration of electric vehicle adoption is
formally regulated under Presidential Regulation No.
55 of 2019, which emphasizes not only vehicle
deployment but also the development of public
charging infrastructure [2]. These policy initiatives
highlight the growing importance of reliable and
well-planned charging systems to support large-scale
PEV penetration.

According to the International Electrotechnical
Commission (IEC), electric vehicle charging systems
are categorized into three main levels based on
voltage, current, and charging speed. Level 1
charging utilizes single-phase AC supply, typically
rated at 120 VV/16A in North America and 230 V/16A
in Europe and Southeast Asia. Level 2 charging
employs single-phase or three-phase AC supply with

voltage levels ranging from 208 V to 240 V and
current ratings up to 80 A. Level 3 charging,
commonly referred to as fast or rapid charging,
operates using high-voltage DC supply in the range
of 300-500 V with current levels between 125 A and
250 A, enabling significantly reduced charging times
[3].

Charging at home or in workplace parking
facilities using Level 1 or Level 2 chargers is suitable
for long-duration parking; however, such charging
methods are impractical for users traveling long
distances due to extended charging times, which may
range from two to eight hours. In contrast, Level 3
fast charging technology can typically recharge an
electric vehicle battery within 30 minutes, making it
more attractive for public and highway charging
applications. The widespread acceptance of electric
vehicles is therefore closely linked to the availability
of strategically located fast charging stations that
align with user travel patterns. Nevertheless, fast
charging stations impose substantial power demands
on the electrical grid and must be carefully planned
to ensure adequate supply and system reliability [4].

The integration of fast charging stations
introduces new technical challenges for distribution
networks, including increased power losses, voltage
deviations, and potential overloading of network
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components. Consequently, determining the optimal
placement of fast charging stations with minimal
adverse impacts on the existing distribution
infrastructure has become an important research
topic. Several studies have investigated charging
station placement at substations to minimize network
losses and voltage violations [5]. Other works have
incorporated transportation factors such as driving
distance and traffic flow into the placement strategy
[6], while some studies have explored the co-
optimization of charging stations and renewable
energy sources to enhance system sustainability [7].
In addition, various heuristic and metaheuristic
optimization techniques, including Particle Swarm
Optimization (PSO), have been widely applied to
address this complex planning problem [8]. More
recently, hybrid optimization approaches that
combine multiple algorithms have been proposed to
improve solution quality and convergence
performance [9].

In this study, the focus is placed on the optimal
placement of Level 3 fast charging stations on a
single feeder within a distribution system network. A
Hybrid  Genetic  Algorithm—Particle ~ Swarm
Optimization (HGAPSO) method is employed to
determine the optimal charging station locations
while minimizing power losses and maintaining
acceptable voltage profiles.

2. Problem Formulation

Finding the best location for charging stations
while reducing power losses and voltage deviation is
the primary goal of this study.

Fig. 1 shows a representation of the electrical power
system with the voltage drop calculation shown in
equation (2).
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Figure 1. Simple Distribution System
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From Eg. (1) when we add the electric vehicle
charging system to the electric power system then the
equation will become the Eq. (2)

Fig. 2 depicts a power system with a charging station
load.
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Figure 2. Power System with Charging Station Load
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Calculations of power losses and voltage deviation
shown on Eq. 3 and Eqg. 4

N
Pioss = Zi=bl|1|2 R; 3)
Vrated—Vi
Vd = Maxl-"zlz (#jed) (4)

The system's rated voltage, denoted by Vrated, is
1.0 pu. The voltage on the bus, denoted by i, and the
total number of buses on the system, denoted by m.
The goal of this study is
Min(f) = §V=b1(Ploss +Va) ®)

Then the second objective of optimizing the
placement of charging stations is to maximize the
coverage area for PEVs to charge their batteries on
the network. The more charging stations installed on
the system, the easier it will be for PEV users to
charge, but the more charging stations will increase
the load on the system beyond the maximum capacity
of the installed transformer.

Max(Nrast) = Peharger + Nie1 Pexisting (6)

Some restrictions or limitations on the system
must also be taken into account during the entire
optimization process. Among these limitations are
maximum load and bus voltage shown in equation (7)
and (8).

p(%%cand = Z?:Z(Pload + Pcharger)i (7)
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< Vi < Vmax (8)

Vmin
3. Research Method

Finding the issue that forms the foundation of the
research background is the first stage in this process.
Additionally, literature studies are carried out by
looking through relevant books and periodicals. To
ascertain the state of the system both prior to and
following PEV penetration, load flow analysis is
performed. The Newton Raphson method is
employed to determine the power flow of the 20 kV
distribution system. The Newton-Raphson technique
of power flow analysis seeks to determine the
channel's voltage drop and power losses.

In order to meet the demand of plug-in electric
vehicle users to charge on the highway without
experiencing a battery drain during the journey, the
number and location of charging stations on the
electricity distribution system network must not
surpass the installed distribution transformer's
maximum capacity. The process of placing a
charging station involves first randomly positioning
it on one of the buses, followed by a power flow
analysis using the Newton-Raphson method. If the
placement of the charging station is found to be out
of constraint, the next iteration will be carried out at
random and power flow analysis will be used again
until the results converge.

This problem has a local minimum since the
allocation mechanism is discrete. A heuristic method
is a suitable option for this problem in order to
optimize this objective function. This paper proposes
particle swarm optimization and genetic algorithms.
The objective function and the fitness function are
regarded as identical. Which bus stops will have
charging outlets placed depends on the
chromosomes. In order to display the optimal choice,
the GA and PSO algorithms work together to prevent
the algorithm from becoming stuck in a local
minimum. The HGAPSO method's parameters are
provided to determine the ideal charging station
position and size. GA will then compute a number of
suboptimal solutions and forward them to PSO for
additional improvement, enhancing the traditional
PSO algorithm's operational capability. The ideal
solution is obtained by further fine-tuning the
solution set using the suggested HGAPSO approach.
To enable the algorithm to strike a balance between
exploration and exploitation, the particle speed limit
prevents the suggested HGAPSO from becoming
stuck in a local minimum.
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4. Solving Algorithm
4.1 Genetic Algorithm

The following is a description of the steps
involved in optimizing PEV charging coordination.
a. Step L

The software receives all input data. These data

include PEV data, network data, bus data, line

data, and existing load data.

b. Step 2:
Setting the maximum number of iterations and
GA optimization parameters.

c. Step 3:

Use the Newton-Raphson approach to analyze

load flow and create random charging station

locations on the network.
d. Step 4:

Use a roulette wheel to select parents
e. Step5:

To obtain the most recent answer, perform

crossover and mutation.
f. Step 6:

Use Newton-Raphson to do power flow analysis

once more, then show the network's power loss

data.

Repeat the Step 4 through Step 6 optimization
phases until an ideal solution is identified if the
optimization results deviate from the constraints.

Figure 3. Genetic Algorithm-Based Charging Station
Placement Optimization Flowchart
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4.2 Particle Swarm Optimization

The following outlines the procedures for placing

the PEV charging station as efficiently as possible.

a.

Step 1:

The software receives all input data. These data
include PEV data, network data, bus data, line
data, and existing load data.

Step 2:

Enter the maximum iteration settings and
initialize the PSO optimization parameters.

Step 3:

Setting up the iteration for the PSO algorithm i =
1 to determine the best place for a charging
station.

. Step 4:

Determine network losses and conduct power
flow analysis for the current load network using
the Newton-Raphson method.

Step 5:

Update the velocity and position of the particles
using Eq.7.

velf{; = wivel ; + ciry (pbestf, — x{ ) +
cory(gbest!y — xtq) (7

Where the weight of the particle determined by
Eq. 8.

(Wmax—wWmin)

W = Wmax —
(n-1)

X (iter — 1) (8)
Step 6:

Perform load flow analysis again with Newton-
Raphson and show the network losses

Step 7:

If the losses violate the allowed network
constraints, repeat the iteration until an optimal
solution is found.

Received:
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Figure 4. Particle Swarm Optimization-Based Charging

Station Placement Optimization Flowchart

4.3 Hybrid Genetic Algorithm-Particle Swarm

Optimization

The following outlines the procedures for placing

the PEV charging station as efficiently as possible.

a.

Step 1:

The software receives all input data. These data
include PEV data, network data, bus data, line
data, and existing load data.

Step 2:

Type in the optimization parameters for GA and
PSO.

Step 3:

Use the Newton-Raphson method to analyze load
flow and determine the network's power losses.
Step 4:
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Set up a random solution for the network's
charging station locations.

e. Step5:
Use the roulette wheel to choose the parents.

f. Step 6:
To find a solution, perform crossover and
mutation.

g. Step7:
Link the GA's best results to the PSO operator

h. Step 8:
Rerun the Newton-Raphson load flow analysis
based on the less-than-ideal outcomes.

i. Step9:
Particle position and velocity updates from the
PSO operator

j. Step 10:
Next, select parents and perform crossover and
mutation.

k. Step 11:
Repeat the Newton-Raphson power flow analysis
until you obtain Pbest and Gbest.

|. Step 12:
Continue iterating until you find the ideal
charging station position.

m. Step 13:
Repeat until you find the best option if the
outcome still deviates from the limitation.

5. Result & Discussion
5.1 Load Flow Analysis

This study optimizes the coordination of plug-in
electric vehicle (PEV) charging stations in a 20 kV
distribution network using real system data obtained
from PT. PLN APJ South Surabaya, which consists
of 18 substations. The Basuki Rahmat feeder,
interconnected with the Simpang and Kupang
substations, is selected as the case study.

The Basuki Rahmat feeder is supplied by
Transformer 1 at GI Kupang with a capacity of 60
MVA and a current limit of 360 A. The feeder
employs All Aluminum Alloy Conductor (AAAC)
cables and has a total length of 2.901 km with 30
buses. Each distribution line is characterized by
resistance and reactance values, which are converted
into per-unit (p.u.) values to facilitate load flow
calculations.

The single-line diagram of the Basuki Rahmat
feeder is shown in Fig. 5.
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Figure 5. Basuki Rahmat Feeder Single Line Diagram

Load flow analysis of the existing system, without
the integration of charging stations, is performed
using the Newton—-Raphson method. The analysis
results indicate that the total real power loss is 0.009
MW, while the reactive power loss is 0.005 MVAR.
The voltage magnitudes at all buses remain within
acceptable operating limits, as summarized in Table
1.

Table 1. Load Flow Analysis Results

Bus Voltage Angle Load
no. | Magnitude | Degree | P (MW) | Q (Mvar)
1 1.000 0 0 0
2 0.995 0.059 0 0
3 0.994 0.069 0 0
4 0.994 0.070 0.095 0.129
5 0.994 0.069 0.010 0.001
6 0.994 0.069 0.001 0.003
7 0.993 0.077 0 0
8 0.993 0.076 0.111 0.016
9 0.993 0.080 0.198 0.243
10 0.993 0.077 0.022 0.004
11 0.993 0.077 0.009 0.003
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12 0.992 0.081 0 0

13 0.992 0.080 0.009 0.003
14 0.992 0.083 0.151 0.188
15 0.991 0.079 0 0

16 0.991 0.079 0.003 0

17 0.991 0.078 0 0

18 0.991 0.079 0.104 0.135
19 0.991 0.075 0 0

20 0.991 0.075 0.034 0.005
21 0.991 0.075 0.022 0.006
22 0.991 0.072 0.035 0.005
23 0.990 0.069 0.029 0.009
24 0.990 0.068 0.050 0.007
25 0.990 0.067 0.043 0.009
26 0.990 0.066 0.026 0.004
27 0.990 0.066 0.030 0.004
28 0.990 0.065 0.029 0.004
29 0.990 0.065 0.010 0.001
30 0.990 0.065 0.012 0.003

5.2 Genetic Algorithm Based Charging Station
Location Optimization

Using the optimization framework described in
the previous section, the Genetic Algorithm (GA) is
applied to determine the optimal placement of
charging stations within the distribution network.
After several iterations, the voltage profile for each
bus is obtained, as illustrated in Fig. 6.

Voltage Profile per Bus

Figure 6. Voltage Profile Each Bus After Optimization
with Genetic Algorithm

The GA-based optimization results in a real power
loss of 0.015 MW and a reactive power loss of 0.007
MVAR. The charging stations are optimally placed at
buses 6, 14, 21, 23, 24, 26, 27, and 28. Among these,
buses 14 and 23 are allocated two charging heads
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each, while the remaining buses are assigned one
charging head. In total, ten charging heads are
installed, as shown in Fig. 7.

Head Charge per Bus
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Figure 7. Number of Head Chargers Installed on The Grid
After Genetic Algorithm Optimization Performed

Although the GA successfully identifies feasible
charging station locations while satisfying system
constraints, the resulting power losses and the
number of installed charging heads indicate that
further improvement is possible.

5.3 Particle Swarm Optimization Based Charging
Station Location Optimization

The Particle Swarm Optimization (PSO)
algorithm is subsequently employed to solve the
charging station placement problem using the same
system configuration. The resulting voltage profile
after optimization is presented in Fig. 8.

Voltage Profile per Bus
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Figure 8. Voltage Profile Each Bus After Optimization
with Particle Swarm Optimization
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The PSO-based solution yields a real power loss
of 0.013 MW and a reactive power loss of 0.006
MVAR. Charging stations are optimally located at
buses 5, 8, 10, 14, 21, 23, 25, and 26. Buses 14, 23,
and 26 are assigned two charging heads each, while
the remaining buses are equipped with one charging
head. Consequently, a total of eleven charging heads
are installed, as depicted in Fig. 9.

Head Charge per Bus
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Figure 9. Number of Head Chargers Installed on the Grid
After Particle Swarm Optimization Performed
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Compared to the GA approach, PSO achieves
lower real power losses. However, this improvement
is accompanied by an increased number of charging
heads, which may impose higher infrastructure and
operational costs.

5.4Hybrid Genetic Algorithm-Particle Swarm
Optimization Charging Station Location
Optimization

The proposed Hybrid Genetic Algorithm—Particle
Swarm Optimization (HGAPSO) method is then
applied to determine the optimal charging station
placement. This hybrid approach integrates the global
search capability of GA with the fast convergence
characteristics of PSO.
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Figure 10. Voltage Profile Each Bus After Optimization
with Hybrid Genetic Algorithm-Particle Swarm
Optimization

Head Charge per Bus
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Figure 11. Number of Head Chargers Installed on the
Grid After Hybrid Genetic Algorithm-Particle Swarm
Optimization Performed

The voltage profile obtained after HGAPSO
optimization is shown in Figure 10. The results
indicate a real power loss of 0.012 MW and a reactive
power loss of 0.006 MVAR. Charging stations are
optimally placed at buses 14, 21, 23, 25, 26, and 28.
Bus 14 is allocated two charging heads, while the
remaining buses are assigned one charging head
each, resulting in a total of seven charging heads, as
illustrated in Fig. 11.

Compared to both GA and PSO, the HGAPSO
method achieves the lowest real power loss while
utilizing the fewest charging heads. This
demonstrates that HGAPSO provides a more
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efficient trade-off between system performance and
infrastructure requirements.

A comparison of the three optimization
techniques indicates that the proposed HGAPSO
method outperforms the conventional GA and PSO
approaches. While GA offers strong global
exploration capabilities, it converges more slowly
and results in higher power losses. PSO improves
convergence speed and reduces losses but tends to
allocate a larger number of charging heads.

The superior performance of HGAPSO can be
attributed to its ability to combine the strengths of
both algorithms. GA effectively explores diverse
solution spaces, while PSO refines promising
solutions through local exploitation. This synergy
enables HGAPSO to avoid local optima and
premature convergence, leading to improved voltage
profiles, reduced power losses, and a more
economical charging station deployment.

6. Conclusion

Improper placement of fast charging stations in
distribution systems can lead to increased power
losses and unacceptable voltage deviations. This
study proposed a Hybrid Genetic Algorithm—Particle
Swarm Optimization (HGAPSO) approach to
optimally determine the locations and number of
level-3 PEV charging stations in a 20 kV radial
distribution network. The proposed method was
tested on the Basuki Rahmat feeder using real system
data and compared with conventional Genetic
Algorithm (GA) and Particle Swarm Optimization
(PSO) techniques. Simulation results show that
HGAPSO achieves lower real power losses while
utilizing fewer charging heads, indicating a more
efficient and reliable charging station allocation.
Specifically, the HGAPSO method results in a real
power loss of 0.012 MW with only seven charging
heads, outperforming both GA and PSO solutions.
The improved performance is attributed to the
complementary strengths of GA and PSO, which
enhance global search capability and convergence
behavior. The findings confirm that HGAPSO is a
promising optimization tool for practical PEV
charging station planning in distribution networks.
Future work will focus on extending the proposed
approach to multiple feeders, dynamic load
conditions, and the integration of renewable energy
sources.
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