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Abstract: Object transformation in three-dimensional space is a fundamental component in the development of interactive 

and realistic 3D modeling systems, particularly for control-based visual simulations and gaming applications. This study 

investigates the use of two camera viewpoint modes First-Person Shooter (FPS) and Third-Person Shooter (TPS) in a 3D 

object movement simulation implemented using OpenGL. The system is developed in Python using the Pygame library 

and applies basic object transformations, including translation, rotation, and scaling, based on homogeneous coordinates. 

Both camera modes are evaluated within the same simulation environment consisting of a car object, boundary walls, and 

obstacles. Experimental results show that the TPS camera mode provides better navigation performance by reducing 

collision frequency and offering a broader view of the environment, while the FPS camera mode delivers a more immersive 

experience with limited spatial visibility. Comparative graphs of navigation completion time and collision count highlight 

clear performance differences between the two camera modes. These results indicate that camera viewpoint selection 

significantly affects navigation efficiency and user experience in 3D visualization systems. The proposed simulation can 

serve as a foundation for visual-based control systems, virtual training environments, and educational applications 

involving spatial navigation. 
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1. Introduction 

Over the past few decades, three-dimensional 

(3D) object modeling has become a core component 

in various application domains, including digital 

games, virtual simulations, digital architecture, and 

vision-based control systems. Previous studies have 

shown that 3D modeling enables realistic, interactive, 

and dynamic representations of objects and 

environments, making it a fundamental element in 

the development of intelligent visual systems [1] [2]. 

A crucial aspect of 3D modeling is object 

transformation, particularly displacement 

transformation, which allows objects to move and 

change orientation dynamically within three-

dimensional space. Such transformations are 

essential not only for visual realism but also for 

vision-based control systems that require accurate 

spatial representation and real-time object interaction 

[3]. 

Several prior studies have investigated the role of 

camera perspective in interactive 3D environments. 

Emmrich et al. [1] and Diego et al. [4] analyzed first-

person and third-person perspectives in gaming and 

virtual reality contexts, focusing mainly on user 

immersion, comfort, and interaction techniques. 

Other works have concentrated on rendering 

efficiency and visualization performance using 

OpenGL or WebGL frameworks, emphasizing 

graphical optimization rather than navigation 

behavior or control effectiveness [2] [5]. These 

studies demonstrate the importance of viewpoint 

design in 3D systems but generally treat camera 

perspective as a design choice without quantitatively 

evaluating its impact on navigation performance. 

In addition, established literature on OpenGL-

based graphics systems provides strong theoretical 

and practical foundations for object transformation 

and 3D visualization, particularly in experimental 

and educational simulation environments [6] [7]. 

However, existing studies rarely integrate a direct 

comparison of First-Person Shooter (FPS) and Third-

Person Shooter (TPS) camera view modes within the 

same object transformation framework while 

measuring navigation efficiency using objective 

performance metrics. 

To address this research gap, this study 

implements and compares FPS and TPS camera view 

modes in a 3D object movement simulation using 

OpenGL. In this research, FPS and TPS are explicitly 

defined as camera viewpoint modes rather than object 
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transformation methods. The system is developed 

using Python, Pygame, and OpenGL, and both 

camera modes are evaluated under identical 

environmental conditions based on navigation 

completion time and collision frequency. The 

objective of this study is to analyze how camera 

viewpoint selection influences navigation 

effectiveness and user experience in interactive 3D 

simulations, thereby contributing to the design of 

more effective visual-based control systems, virtual 

training platforms, and educational applications. 

2. Method 

2.1 System Flow Diagram 

The system follows a sequential processing flow. 

The simulation begins with the initialization of the 

Pygame and OpenGL environments to configure the 

display window and graphical settings. Next, the 3D 

scene is constructed by defining the primary objects, 

including a car, boundary walls, and obstacles. 

 

Figure 1. System flow diagram of the 3D object 

movement simulation using FPS and TPS camera view 

modes.  

The system then selects the camera view mode, 

either First-Person Shooter (FPS) or Third-Person 

Shooter (TPS), which determines the user’s 

viewpoint within the simulation environment [8]. 

Based on user input, object transformations 

(translation, rotation, and scaling) and camera 

transformations are applied accordingly. The 

transformed scene is subsequently projected onto the 

screen and rendered as visual frames. Finally, the 

display is updated in real time to ensure that all user 

interactions and system changes are immediately 

reflected. 

2.2 System Architecture and Development 

Environment 

The system is designed and implemented using 

the Python programming language, with the Pygame 

library handling display management and user input, 

and OpenGL serving as the primary API for 3D 

graphical visualization [9]. This combination enables 

the development of a flexible and modular simulation 

system capable of real-time interaction and 

rendering. 

The system architecture is organized into 

three main transformation stages: Object 

Transformation, View (Camera) 

Transformation, and Projection Transformation. 

Object Transformation manages the position, 

orientation, and scale of 3D objects using 

transformation matrices. View Transformation 

controls the camera configuration, including the 

implementation of FPS and TPS camera view 

modes. Projection Transformation maps the 3D 

scene onto the 2D display plane for visualization, 

all of which are implemented through matrix-

based transformations in OpenGL. 

2.3 Mathematical Representation of 3D 

Transformations 

Each object in a 3D scene is typically defined 

within its own coordinate system, known as model 

space (also referred to as local space or object space). 

When assembling multiple objects into a single 

scene, their vertices must be transformed from local 

space into world space, which serves as a common 

reference frame for all objects. This process is 

referred to as a world transformation [10]. 
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The world transformation consists of a sequence 

of scaling (adjusting the object’s size to match world 

dimensions), rotation (orienting the object axes), and 

translation (moving the object from the origin to its 

position in world space). Rotation and scaling are 

classified as linear transformations because they 

preserve vector addition and scalar multiplication by 

definition [6]. Linear transformations combined with 

translation constitute what is known as an affine 

transformation [6]. 

In affine transformations, straight lines remain 

straight and the ratios of distances between points are 

preserved. In OpenGL, a vertex V located at position 

(x, y, z) is represented as a 3×1 column vector: 

V = [
𝑥
𝑦
𝑧

]      (1) 

2.3.1 Scaling 

Scaling is a transformation that modifies the size 

of an object relative to the coordinate axes in three-

dimensional space. In 3D graphics, scaling is applied 

independently along the x, y, and z axes and can be 

represented using a diagonal scaling matrix. This 

transformation preserves the object’s shape 

proportions when uniform scaling is applied and is 

commonly used in object resizing operations in 

OpenGL-based rendering systems [6] [9]. 

The scaling transformation matrix S is defined as: 

S = [
𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 𝑠𝑧

]     (2) 

where Sx, Sy, and Sz denote the scaling factors 

along the x, y, and z axes, respectively. The 

transformed vertex V′ is obtained through matrix 

multiplication V′ =S V [6]. 

2.3.2 Rotation 

Rotation in three-dimensional space is 

performed about a specific axis, in contrast to 

two-dimensional rotation, which occurs around a 

rotation center. A 3D rotation around the x, y, or 

z axis by an angle θ\thetaθ, measured 

counterclockwise following the right-hand rule, 

can be represented using standard rotation 

matrices [6] [9]. 

Rotation around the z-axis is defined as: 

Rz(θ) = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛θ 0
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ 0

0 0 1
]    (3) 

Rotation around the x-axis is defined as: 

Rx(θ) = [
1 0 0
0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛θ
0 𝑠𝑖𝑛θ 𝑐𝑜𝑠θ

]    (4) 

Rotation around the z-axis is defined as: 

Ry(θ) = [
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛θ

0 1 0
−𝑠𝑖𝑛θ 0 𝑐𝑜𝑠θ

]    (5) 

The rotation angles about the x, y, and z axes are 

commonly referred to as Euler angles, which can be 

combined to represent an object’s arbitrary 

orientation in 3D space. The resulting transformation 

is known as an Euler rotation and is widely used in 

real-time graphics applications [6]. 

2.3.3 Translation 

Translation is a transformation that shifts an 

object’s position in space without altering its 

orientation or scale. Unlike scaling and rotation, 

translation is not a linear transformation; however, it 

can be modeled using vector addition [6]. A 

translation by a displacement vector 𝒅 =
[ⅆ𝑥, ⅆ𝑦, ⅆ𝑧]𝑇   can be expressed as: 

[
𝑥
𝑦
𝑧

] + [
ⅆ𝑥
ⅆ𝑦
ⅆ𝑧

] + [
𝑥 + ⅆ𝑥
𝑦 + ⅆ𝑦
𝑧 + ⅆ𝑧

]     (6) 

In OpenGL, translation is implemented using 

four-component homogeneous coordinates, where a 

vertex is represented as (x,y,z,1). Using 

homogeneous coordinates allows translation to be 

expressed as a matrix multiplication [6][9]. The 

translation matrix T(d) is defined as: 
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𝑇 (𝒅) = [

1 0 0 ⅆ𝑥
0 1 0 ⅆ𝑦
1 0 0 ⅆ𝑧
0 0 0 1

]   (7) 

where  𝒅 = [ⅆ𝑥, ⅆ𝑦, ⅆ𝑧]𝑇 is the translation vector. 

The transformed vertex V′ is obtained as: 

𝑽′ = 𝑇 (𝒅)𝑽 = [

𝑥 + ⅆ𝑥
𝑦 + ⅆ𝑦
𝑧 + ⅆ𝑧

1

]   (8) 

If the homogeneous coordinate w ≠ 1, the 

corresponding Cartesian coordinates are obtained by 

normalization (x/w, y/w, z/w). When w = 0, the 

vector represents a direction rather than a point [6]. 

2.4 Transformation Implementation within the 

System 

2.4.1 Object transformation 

Object transformations are applied to modify the 

position, orientation, and scale of 3D objects within 

the simulation environment. In this system, object 

transformations are implemented using standard 

OpenGL transformation functions, including 

glTranslatef(), glRotatef(), and 

glScalef(), which correspond to translation, 

rotation, and scaling operations, respectively [6][9]. 

These transformations are based on matrix operations 

described in Section 2.3 and are applied in the 

object’s local coordinate system before being 

mapped to world space. 

The transformation parameters are updated 

dynamically based on system logic and user 

input, and the resulting transformation matrices 

are passed to the rendering pipeline to ensure 

correct spatial positioning of objects during real-

time visualization [6]. 

2.4.2 View Transformation 

View transformation is responsible for controlling 

the camera position and orientation within the 3D 

simulation environment. In this study, view 

transformation is used to implement two camera view 

modes: First-Person Shooter (FPS) and Third-Person 

Shooter (TPS). Camera movement and orientation 

are controlled through translation and rotation 

operations using OpenGL functions such as 

glTranslatef() and glRotatef(), while user 

input is handled via the Pygame library [6] [11]. 

In FPS mode, the camera is positioned at the 

object’s location, simulating a first-person 

perspective in which camera motion directly 

follows object movement. In TPS mode, the 

camera is positioned at an offset relative to the 

object, typically behind and above it, providing a 

broader view of the surrounding environment. 

The rendered scene is updated in real time using 

pygame.display.flip(), enabling responsive 

interaction and smooth navigation [11]. 

2.4.3 Projection Transformation 

Projection transformation maps the three-

dimensional scene onto the two-dimensional display 

plane. In this system, perspective projection is 

applied to simulate depth perception consistent with 

human visual experience. Perspective projection is 

implemented using OpenGL projection matrices, 

allowing objects farther from the camera to appear 

smaller on the screen [6][9]. 

Although both FPS and TPS modes utilize the 

same projection model, the perceived visual output 

differs due to variations in camera position and 

orientation. The FPS mode emphasizes immersion by 

aligning the camera with the object’s forward 

direction, whereas the TPS mode enhances 

situational awareness by maintaining a wider viewing 

angle of the environment. This separation ensures 

that the observed performance differences between 

FPS and TPS modes are attributed to camera 

viewpoint configuration rather than differences in 

object transformation or projection algorithms [6]. 

2.5 Experimental Setup 

The experiment involved 14 participants, all of 

whom were undergraduate students from STEM-

related disciplines. Most participants had prior 

experience playing 3D games, with more than half 

classified as intermediate-level players. This 

background ensured that the participants were 

familiar with 3D navigation mechanics and camera-

based interaction. 

Each participant was required to complete a 

navigation task using both camera modes: First-

Person Shooter (FPS) and Third-Person Shooter 

(TPS). The task consisted of navigating a car object 
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through a virtual 3D environment while avoiding 

collisions with obstacles and boundary walls. For 

each trial, participants were instructed to reach the 

designated endpoint as quickly as possible without 

intentionally colliding with any obstacles. 

The experimental conditions were not identical 

across trials; the arena layout, initial position, and 

obstacle configuration differed between runs. 

However, the camera parameters, control scheme, 

and transformation mechanisms were kept constant 

for both FPS and TPS modes to ensure a fair 

comparison between the two viewpoints. 

During each trial, the system automatically 

recorded performance metrics, including the 

navigation completion time (in seconds) and the 

number of collisions encountered. These metrics 

were logged internally by the system using 

timestamp-based measurement and collision 

counters. The values reported in the Results section 

represent the average performance across all 

participants for each camera mode. 

3. Results and Discussion 

This chapter presents the results obtained from the 

3D simulation experiments using FPS and TPS view 

modes. The experiments were conducted with 14 

participants, each of whom performed the navigation 

task using both view modes. For each trial, the system 

automatically recorded the completion time and the 

number of collisions. The results are presented 

through system visualizations, movement 

simulations, collision detection outputs, and 

quantitative performance graphs across the following 

subchapters. 

3.1 3D Object Design and Simulation 

Environment 

The simulation environment consists of several 

3D elements, including a car as the primary object, 

walls as arena boundaries, and obstacles serving as 

navigation barriers. These objects are constructed 

using basic OpenGL transformations, namely 
glPushMatrix(), glTranslatef(), 

glRotatef(), and glScalef(), within the world 

coordinate system. The geometric structure of the car 

is simplified using basic shapes such as cubes and 

rectangular prisms, while the obstacles are statically 

positioned to facilitate collision detection tests. 

 
Figure 2. 3D simulation environment showing the car 

object, boundary walls, and obstacles. 

Fig. 2 illustrates the overall 3D simulation 

environment, including the car object, arena 

boundaries, and obstacle layout used in the 

experiment. 

3.2 FPS and TPS View Modes 

3.2.1 FPS Mode 

In FPS mode, the camera is positioned inside the 

car object, providing a first-person perspective. This 

setup offers an immersive experience, simulating the 

sensation of being inside the vehicle and directly 

controlling its movement direction. However, the 

main challenge lies in the limited field of view, as 

surrounding objects remain unseen unless the view 

direction is manually changed, as illustrated in Fig. 2. 

The transformation implementation involves 

rotation and translation based on user input, as 

follows: 

 
if view.mode == "FPS": 

    glRotatef(90, 0, 1, 0) 

    glRotatef(-angle, 0, 1, 0) 

    glTranslatef(-position.x, -10, -

position.z) 

User input (forward, backward, turn) is captured 

via pygame.key.get_pressed() events and 

recalculated into motion direction vectors. The 

movement response appears smooth due to the 
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combination of position updates and dynamic camera 

angle adjustments. 

3.2.2 TPS Mode 

In TPS mode, the camera is positioned above and 

slightly behind the car object. The camera is 

configured to provide a comprehensive view of the 

entire arena and surrounding obstacles, granting users 

broader environmental awareness and control. This 

mode is commonly employed in strategy-based or 

navigation-focused games as illustrated in Fig. 3. 

The transformation implementation also involves 

rotation and translation based on user input, as 

follows: 

 
elif view.mode == "TPS": 

    glTranslatef(0, 0, -35) 

    glRotatef(90, 1, 0, 0) 

Since the camera is not attached to the object's 

coordinate system, users can more easily avoid 

obstacles and plan movement trajectories. This 

difference in visibility directly impacts the 

effectiveness of navigation. 

 
Figure 3. TPS camera view showing the observer’s 

perspective, visualizing the entire track and surrounding 

objects.  

3.3 Vehicle Movement 

The simulation supports four primary movements: 

forward, backward, left turn, and right turn. A 

combination of rotation and translation generates 

dynamic and realistic animation of vehicle motion. 

The direction of movement is calculated using Euler 

angles, where the directional vector is determined by 

trigonometric functions math.cos() and 

math.sin() based on the current orientation angle. 

Linear vehicle movements, including forward 

and backward motion, are illustrated in Figure 4 

and Fig. 5, respectively. These movements 

represent straight-line translation along the 

vehicle’s forward axis without rotational 

changes. 

 
Figure 4. Linear vehicle movement in the forward 

direction. 

 
Figure 5. Linear vehicle movement in the backward 

direction. 

Turning motions are only permitted when the 

vehicle is in motion (either forward or backward), in 

accordance with realistic physical simulation 
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principles. The combined movements involving 

translation and rotation are shown in Fig. 6–9, which 

depict directional combinations such as forward–turn 

right, forward–turn left, backward–turn left, and 

backward–turn right. 

The smoothness of the animation is maintained 

through frame-by-frame display refreshing using 

pygame.display.flip(), in combination with 

glClear() to reset the rendering buffer before each 

frame update. 

 
Figure 6. Vehicle movement with directional 

combination: forward and turn right. 

 
Figure 7. Vehicle movement with directional 

combination: forward and turn left. 

 
Figure 8. Vehicle movement with directional 

combination: backward and turn left. 

 
Figure 9. Vehicle movement with directional 

combination: backward and turn right. 

3.4 Collison Detection 

The simulation incorporates a collision detection 

system between the vehicle and both arena 

boundaries and internal obstacles. The approach used 

is bounding box testing, which compares the 

vehicle’s position coordinates with the obstacle 

boundaries and applies position correction in case of 

penetration. 

For obstacle detection, the system calculates the 

minimum distance between the car and the barrier 

using absolute differences, namely 

abs(position.x_car−position.x_obs) and 

abs(position.z_car−position.z_obs). If the 

computed distance falls below a predefined threshold 

(e.g., 10 pixels), a collision is assumed to have 
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occurred, and the vehicle movement is restricted to 

prevent further penetration. 

Fig. 10 illustrates a collision event between the 

vehicle and the arena wall, while Fig. 11 shows a 

collision between the vehicle and an internal 

obstacle. 

 
Figure 10. Visualization of vehicle collision with the 

arena boundary wall. 

 
Figure 11. Visualization of vehicle collision with an 

internal obstacle. 

3.5 Quantitative Evaluation and Performance 

Graph 

The quantitative results shown in this section 

represent the average performance across all 14 

participants for both FPS and TPS modes. To 

evaluate the performance of the two implemented 

approaches, a simple quantitative assessment was 

conducted based on two parameters: 

1. Average time (in seconds) required by users 

to complete the navigation path 

2. Number of collisions occurring during 

navigation 

The quantitative comparison between FPS and 

TPS modes is summarized in Table 1, which reports 

the average completion time and average number of 

collisions for each mode. 

 
Table 1. Average completion time and collision count for 

FPS and TPS navigation modes. 

Mode Average Time in 

Seconds 

Average Number of 

Collisions 

FPS 28.2 3.4 

TPS 25.6 1.8 

 

To further visualize the performance differences, 

Fig. 12 presents a comparison graph illustrating 

navigation efficiency based on the two evaluated 

metrics. 

As shown in Fig. 11, users in FPS mode required 

an average of 28.2 seconds to complete the 

navigation task and experienced approximately 3.4 

collisions. This result reflects the immersive nature of 

the first-person perspective, where limited field of 

view may reduce spatial awareness and increase the 

difficulty of obstacle avoidance. In contrast, TPS 

mode achieved a lower average completion time of 

25.6 seconds and a reduced collision count of 1.8. 

This indicates that the third-person perspective 

provides improved environmental visibility, allowing 

users to plan movement paths more effectively and 

avoid obstacles. Overall, the results suggest that TPS 

mode offers better navigation efficiency, while FPS 

mode emphasizes immersion with slightly reduced 

control accuracy. 

Figure 12. Performance comparison graph illustrating 

navigation efficiency between FPS and TPS modes 

based on average completion time and collision 

frequency. 
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3.6 Analysis 

Based on the experimental observations, the TPS 

mode provides more stable navigation control and 

results in fewer collisions, as users benefit from a 

broader field of view of the simulated environment. 

In contrast, the FPS mode offers a more immersive 

experience but limits the user’s ability to anticipate 

objects outside the direct line of sight. 

Each camera mode presents its own 

advantages depending on the application 

context. For action-oriented or high-speed 

gaming applications, the FPS mode is generally 

preferred due to its immersive characteristics. 

However, for training simulations or strategy-

based navigation tasks that require accuracy and 

situational awareness, the TPS mode proves to be 

more effective. 

4. Conclusion 

This This study successfully implemented two 3D 

viewpoint approaches using OpenGL, namely the 

First-Person Shooter (FPS) and Third-Person Shooter 

(TPS) techniques. Both approaches were applied to 

enable interactive and realistic object displacement 

transformations in three-dimensional space. The 

experimental results revealed that: 

1. TPS mode offers advantages in visual 

navigation due to its wider perspective, reducing 

collisions and enhancing the user’s ability to 

understand the spatial context of the 

environment. 

2. FPS mode delivers a more immersive and 

realistic user experience but suffers from limited 

visibility, which may increase the likelihood of 

collisions or navigational errors. 

The transformations applied translation, rotation, 

and scaling were successfully integrated using 

homogeneous transformation matrices. The system, 

implemented using Python, Pygame, and OpenGL, 

demonstrated flexibility and effectiveness in 

supporting 3D modeling and navigation simulations. 

This system shows potential for use in visual-

based navigation simulations of autonomous robots 

or vehicles, serving as a training platform prior to 

real-world deployment. For future research, the 

system can be extended by incorporating adaptive or 

hybrid camera modes that dynamically switch 

between FPS and TPS based on navigation context. 

Additionally, more complex environments, larger 

participant groups, and additional performance 

metrics such as user workload or path optimality can 

be explored to further evaluate navigation 

effectiveness. The integration of intelligent control 

algorithms or machine learning-based navigation 

strategies also represents a promising direction for 

future development. 
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