Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Received: June 15, 2025. Revised: December 26, 2025

Engineering

3D Object Movement Transformation Using FPS and TPS Camera View Modes
in OpenGL

Maulina Safitri *, Rama Yusuf Mahendra?, Rasyeedah Binti Mohd Othman?, Riffani Fathia Annisa*

L4 Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
ZInstitut Teknologi Sepuluh Nopember Surabaya, Indonesia
3 Universiti Teknologi PETRONAS, Malaysia
* Correspondong author’s Email: maulinasafitri@uin-malang.ac.id

Abstract: Object transformation in three-dimensional space is a fundamental component in the development of interactive
and realistic 3D modeling systems, particularly for control-based visual simulations and gaming applications. This study
investigates the use of two camera viewpoint modes First-Person Shooter (FPS) and Third-Person Shooter (TPS) in a 3D
object movement simulation implemented using OpenGL. The system is developed in Python using the Pygame library
and applies basic object transformations, including translation, rotation, and scaling, based on homogeneous coordinates.
Both camera modes are evaluated within the same simulation environment consisting of a car object, boundary walls, and
obstacles. Experimental results show that the TPS camera mode provides better navigation performance by reducing
collision frequency and offering a broader view of the environment, while the FPS camera mode delivers a more immersive
experience with limited spatial visibility. Comparative graphs of navigation completion time and collision count highlight
clear performance differences between the two camera modes. These results indicate that camera viewpoint selection
significantly affects navigation efficiency and user experience in 3D visualization systems. The proposed simulation can
serve as a foundation for visual-based control systems, virtual training environments, and educational applications
involving spatial navigation.

Keywords: 3D Modeling, OpenGL, Object Transformation, Interactive Simulation.

1. Introduction

Over the past few decades, three-dimensional
(3D) object modeling has become a core component
in various application domains, including digital

Other works have concentrated on rendering
efficiency and visualization performance using
OpenGL or WebGL frameworks, emphasizing
graphical optimization rather than navigation

games, virtual simulations, digital architecture, and
vision-based control systems. Previous studies have
shown that 3D modeling enables realistic, interactive,
and dynamic representations of objects and
environments, making it a fundamental element in
the development of intelligent visual systems [1] [2].

A crucial aspect of 3D modeling is object
transformation, particularly displacement
transformation, which allows objects to move and
change orientation dynamically within three-
dimensional space. Such transformations are
essential not only for visual realism but also for
vision-based control systems that require accurate
spatial representation and real-time object interaction
[3].

Several prior studies have investigated the role of
camera perspective in interactive 3D environments.
Emmrich et al. [1] and Diego et al. [4] analyzed first-
person and third-person perspectives in gaming and
virtual reality contexts, focusing mainly on user
immersion, comfort, and interaction techniques.

behavior or control effectiveness [2] [5]. These
studies demonstrate the importance of viewpoint
design in 3D systems but generally treat camera
perspective as a design choice without quantitatively
evaluating its impact on navigation performance.

In addition, established literature on OpenGL-
based graphics systems provides strong theoretical
and practical foundations for object transformation
and 3D visualization, particularly in experimental
and educational simulation environments [6] [7].
However, existing studies rarely integrate a direct
comparison of First-Person Shooter (FPS) and Third-
Person Shooter (TPS) camera view modes within the
same object transformation framework while
measuring navigation efficiency using objective
performance metrics.

To address this research gap, this study
implements and compares FPS and TPS camera view
modes in a 3D object movement simulation using
OpenGL. In this research, FPS and TPS are explicitly
defined as camera viewpoint modes rather than object

12


mailto:maulinasafitri@uin-malang.ac.id

Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Engineering

transformation methods. The system is developed
using Python, Pygame, and OpenGL, and both
camera modes are evaluated under identical
environmental conditions based on navigation
completion time and collision frequency. The
objective of this study is to analyze how camera
viewpoint  selection  influences  navigation
effectiveness and user experience in interactive 3D
simulations, thereby contributing to the design of
more effective visual-based control systems, virtual
training platforms, and educational applications.

2. Method
2.1 System Flow Diagram

The system follows a sequential processing flow.
The simulation begins with the initialization of the
Pygame and OpenGL environments to configure the
display window and graphical settings. Next, the 3D
scene is constructed by defining the primary objects,
including a car, boundary walls, and obstacles.

Initialization of the Pygame and OpenGL
Environment

Y

Creation of 3D Objects (Car, Wall,
Obstacles)

Y

Camera Mode Selection (FPS or TPS)

Y

Application of Object and Camera
Transformations Based on User Input

Y

Projection to The Screen and Frame
Rendering

Y

Real-Time Display Update

Figure 1. System flow diagram of the 3D object
movement simulation using FPS and TPS camera view
modes.

Received: June 15, 2025. Revised: December 26, 2025

The system then selects the camera view mode,
either First-Person Shooter (FPS) or Third-Person
Shooter (TPS), which determines the wuser’s
viewpoint within the simulation environment [8].
Based on user input, object transformations
(translation, rotation, and scaling) and camera
transformations are applied accordingly. The
transformed scene is subsequently projected onto the
screen and rendered as visual frames. Finally, the
display is updated in real time to ensure that all user
interactions and system changes are immediately
reflected.

2.2 System  Architecture
Environment

and Development

The system is designed and implemented using
the Python programming language, with the Pygame
library handling display management and user input,
and OpenGL serving as the primary API for 3D
graphical visualization [9]. This combination enables
the development of a flexible and modular simulation
system capable of real-time interaction and
rendering.

The system architecture is organized into
three main transformation stages: Object
Transformation, View (Camera)
Transformation, and Projection Transformation.
Object Transformation manages the position,
orientation, and scale of 3D objects using
transformation matrices. View Transformation
controls the camera configuration, including the
implementation of FPS and TPS camera view
modes. Projection Transformation maps the 3D
scene onto the 2D display plane for visualization,
all of which are implemented through matrix-
based transformations in OpenGL.

2.3 Mathematical
Transformations

Representation of 3D

Each object in a 3D scene is typically defined
within its own coordinate system, known as model
space (also referred to as local space or object space).
When assembling multiple objects into a single
scene, their vertices must be transformed from local
space into world space, which serves as a common
reference frame for all objects. This process is
referred to as a world transformation [10].

13



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Engineering

The world transformation consists of a sequence
of scaling (adjusting the object’s size to match world
dimensions), rotation (orienting the object axes), and
translation (moving the object from the origin to its
position in world space). Rotation and scaling are
classified as linear transformations because they
preserve vector addition and scalar multiplication by
definition [6]. Linear transformations combined with
translation constitute what is known as an affine
transformation [6].

In affine transformations, straight lines remain
straight and the ratios of distances between points are
preserved. In OpenGL, a vertex V located at position
(%, Y, 2) is represented as a 3x1 column vector:

X
V= M (1)
Z

2.3.1 Scaling

Scaling is a transformation that modifies the size
of an object relative to the coordinate axes in three-
dimensional space. In 3D graphics, scaling is applied
independently along the X, y, and z axes and can be
represented using a diagonal scaling matrix. This
transformation  preserves the object’s shape
proportions when uniform scaling is applied and is
commonly used in object resizing operations in
OpenGL-based rendering systems [6] [9].

The scaling transformation matrix S is defined as:

sx 0 O
S = [ 0 sy O ] 2
0 0 sz

where Sx, Sy, and Sz denote the scaling factors
along the x, y, and z axes, respectively. The
transformed vertex V' is obtained through matrix
multiplication V' =S V [6].

2.3.2 Rotation

Rotation in three-dimensional space is
performed about a specific axis, in contrast to
two-dimensional rotation, which occurs around a
rotation center. A 3D rotation around the x, y, or
z axis by an angle O\thetab, measured
counterclockwise following the right-hand rule,

Received: June 15, 2025. Revised: December 26, 2025

can be represented using standard rotation
matrices [6] [9].

Rotation around the z-axis is defined as:

cosf@ —sin6 0

Rz(0) = [sine cosO 0] 3)

0 0 1

Rotation around the x-axis is defined as:
1 0 0

Rx(0) = |0 cos8 —sind 4)
0 sin® cosO

Rotation around the z-axis is defined as:
cos@ 0 sinb

Ry(0) = 0 1 0 (5)
—sin® 0 cos6

The rotation angles about the X, y, and z axes are
commonly referred to as Euler angles, which can be
combined to represent an object’s arbitrary
orientation in 3D space. The resulting transformation
is known as an Euler rotation and is widely used in
real-time graphics applications [6].

2.3.3 Translation

Translation is a transformation that shifts an
object’s position in space without altering its
orientation or scale. Unlike scaling and rotation,
translation is not a linear transformation; however, it
can be modeled using vector addition [6]. A

translation by a displacement vector d =
[dx, dy,dz]" can be expressed as:
x dx x +dx
[y] +|dy|+ |y +dy (6)
z dz z+dz

In OpenGL, translation is implemented using
four-component homogeneous coordinates, where a
vertex is represented as (xyy,z1). Using
homogeneous coordinates allows translation to be
expressed as a matrix multiplication [6][9]. The
translation matrix T(d) is defined as:

14



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Engineering
1 0 0 dx
_10 1 0 dy
TWD=11 0 0 ds ()
0 0 0 1

where d = [dx,dy,dz]T is the translation vector.
The transformed vertex V' is obtained as:

x + dx
- _|y+ay
V' =T (@dV 7+ do (8)
1

If the homogeneous coordinate w # 1, the
corresponding Cartesian coordinates are obtained by
normalization (x/w, y/w, z/w). When w = 0, the
vector represents a direction rather than a point [6].

2.4 Transformation Implementation within the
System

2.4.1 Object transformation

Obiject transformations are applied to modify the
position, orientation, and scale of 3D objects within
the simulation environment. In this system, object
transformations are implemented using standard
OpenGL transformation  functions, including
glTranslatef (), glRotatef (), and
glscalef (), Wwhich correspond to translation,
rotation, and scaling operations, respectively [6][9].
These transformations are based on matrix operations
described in Section 2.3 and are applied in the
object’s local coordinate system before being
mapped to world space.

The transformation parameters are updated
dynamically based on system logic and user
input, and the resulting transformation matrices
are passed to the rendering pipeline to ensure
correct spatial positioning of objects during real-
time visualization [6].

2.4.2 View Transformation

View transformation is responsible for controlling
the camera position and orientation within the 3D
simulation environment. In this study, view
transformation is used to implement two camera view
modes: First-Person Shooter (FPS) and Third-Person
Shooter (TPS). Camera movement and orientation
are controlled through translation and rotation

Received: June 15, 2025. Revised: December 26, 2025

operations using OpenGL functions such as
glTranslatef () and glRotatef (), while user
input is handled via the Pygame library [6] [11].

In FPS mode, the camera is positioned at the
object’s location, simulating a first-person
perspective in which camera motion directly
follows object movement. In TPS mode, the
camera is positioned at an offset relative to the
object, typically behind and above it, providing a
broader view of the surrounding environment.
The rendered scene is updated in real time using
pygame.display.flip (), enabling responsive
interaction and smooth navigation [11].

2.4.3 Projection Transformation

Projection transformation maps the three-
dimensional scene onto the two-dimensional display
plane. In this system, perspective projection is
applied to simulate depth perception consistent with
human visual experience. Perspective projection is
implemented using OpenGL projection matrices,
allowing objects farther from the camera to appear
smaller on the screen [6][9].

Although both FPS and TPS modes utilize the
same projection model, the perceived visual output
differs due to variations in camera position and
orientation. The FPS mode emphasizes immersion by
aligning the camera with the object’s forward
direction, whereas the TPS mode enhances
situational awareness by maintaining a wider viewing
angle of the environment. This separation ensures
that the observed performance differences between
FPS and TPS modes are attributed to camera
viewpoint configuration rather than differences in
object transformation or projection algorithms [6].

2.5 Experimental Setup

The experiment involved 14 participants, all of
whom were undergraduate students from STEM-
related disciplines. Most participants had prior
experience playing 3D games, with more than half
classified as intermediate-level players. This
background ensured that the participants were
familiar with 3D navigation mechanics and camera-
based interaction.

Each participant was required to complete a
navigation task using both camera modes: First-
Person Shooter (FPS) and Third-Person Shooter
(TPS). The task consisted of navigating a car object

15



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Engineering

through a virtual 3D environment while avoiding
collisions with obstacles and boundary walls. For
each trial, participants were instructed to reach the
designated endpoint as quickly as possible without
intentionally colliding with any obstacles.

The experimental conditions were not identical
across trials; the arena layout, initial position, and
obstacle configuration differed between runs.
However, the camera parameters, control scheme,
and transformation mechanisms were kept constant
for both FPS and TPS modes to ensure a fair
comparison between the two viewpoints.

During each trial, the system automatically
recorded performance metrics, including the
navigation completion time (in seconds) and the
number of collisions encountered. These metrics
were logged internally by the system using
timestamp-based measurement and  collision
counters. The values reported in the Results section
represent the average performance across all
participants for each camera mode.

3. Results and Discussion

This chapter presents the results obtained from the
3D simulation experiments using FPS and TPS view
modes. The experiments were conducted with 14
participants, each of whom performed the navigation
task using both view modes. For each trial, the system
automatically recorded the completion time and the
number of collisions. The results are presented
through  system  visualizations, movement
simulations, collision detection outputs, and
guantitative performance graphs across the following
subchapters.

3.1 3D Object Design and Simulation
Environment

The simulation environment consists of several
3D elements, including a car as the primary object,
walls as arena boundaries, and obstacles serving as
navigation barriers. These objects are constructed
using basic OpenGL transformations, namely
glPushMatrix (), glTranslatef (),
glRotatef (), and glScalef (), within the world
coordinate system. The geometric structure of the car
is simplified using basic shapes such as cubes and

Received: June 15, 2025. Revised: December 26, 2025

rectangular prisms, while the obstacles are statically
positioned to facilitate collision detection tests.

N

Object

Figure 2. 3D simulation environment showing the car
object, boundary walls, and obstacles.

Fig. 2 illustrates the overall 3D simulation

environment, including the car object, arena
boundaries, and obstacle layout used in the
experiment.

3.2 FPS and TPS View Modes
3.2.1 FPS Mode

In FPS mode, the camera is positioned inside the
car object, providing a first-person perspective. This
setup offers an immersive experience, simulating the
sensation of being inside the vehicle and directly
controlling its movement direction. However, the
main challenge lies in the limited field of view, as
surrounding objects remain unseen unless the view
direction is manually changed, as illustrated in Fig. 2.

The transformation implementation involves
rotation and translation based on user input, as
follows:

if view.mode == "FPS":
glRotatef (90, 0, 1, O0)
glRotatef (-angle, 0, 1, 0)
glTranslatef (-position.x, -10, -
position.z)

User input (forward, backward, turn) is captured
via pygame.key.get pressed() events and
recalculated into motion direction vectors. The
movement response appears smooth due to the

16



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent

Engineering

combination of position updates and dynamic camera
angle adjustments.

3.2.2 TPS Mode

In TPS mode, the camera is positioned above and
slightly behind the car object. The camera is
configured to provide a comprehensive view of the
entire arena and surrounding obstacles, granting users
broader environmental awareness and control. This
mode is commonly employed in strategy-based or
navigation-focused games as illustrated in Fig. 3.

The transformation implementation also involves
rotation and translation based on user input, as
follows:

elif view.mode == "TPS":
glTranslatef (0, 0, -35)

glRotatef (90, 1, 0, 0)

Since the camera is not attached to the object's
coordinate system, users can more easily avoid
obstacles and plan movement trajectories. This
difference in visibility directly impacts the
effectiveness of navigation.

Figure 3. TPS camera view showing the observer’s
perspective, visualizing the entire track and surrounding
objects.

3.3 Vehicle Movement

The simulation supports four primary movements:
forward, backward, left turn, and right turn. A
combination of rotation and translation generates
dynamic and realistic animation of vehicle motion.
The direction of movement is calculated using Euler

Received: June 15, 2025. Revised: December 26, 2025

angles, where the directional vector is determined by
trigonometric ~ functions  math.cos () and

math.sin () based on the current orientation angle.

Linear vehicle movements, including forward
and backward motion, are illustrated in Figure 4
and Fig. 5, respectively. These movements
represent straight-line translation along the
forward axis

vehicle’s without rotational

changes.

Figure 4. Linear vehicle movement in the forward
direction.

Figure 5. Linear vehicle movement in the backward
direction.

Turning motions are only permitted when the
vehicle is in motion (either forward or backward), in
accordance with realistic physical simulation

17



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent

Engineering

principles. The combined movements involving
translation and rotation are shown in Fig. 6-9, which
depict directional combinations such as forward-turn
right, forward-turn left, backward-turn left, and
backward-turn right.

The smoothness of the animation is maintained
through frame-by-frame display refreshing using
pygame.display.flip (), in combination with
glClear () to reset the rendering buffer before each
frame update.

G

Figure 6. Vehicle movement with directional
combination: forward and turn right.

' )

Figure 7. Vehicle movement with directional
combination: forward and turn left.

Received: June 15, 2025. Revised: December 26, 2025

Figure 8. Vehicle movement with directional
combination: backward and turn left.

€ 4

Figure 9. Vehicle movement with directional
combination: backward and turn right.

3.4 Collison Detection

The simulation incorporates a collision detection
system between the vehicle and both arena
boundaries and internal obstacles. The approach used
is bounding box testing, which compares the
vehicle’s position coordinates with the obstacle
boundaries and applies position correction in case of
penetration.

For obstacle detection, the system calculates the
minimum distance between the car and the barrier
using absolute differences, namely
abs (position.x car—position.x obs) and
abs (position.z car-position.z obs). Ifthe
computed distance falls below a predefined threshold
(e.g., 10 pixels), a collision is assumed to have

18



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Engineering

occurred, and the vehicle movement is restricted to
prevent further penetration.

Fig. 10 illustrates a collision event between the
vehicle and the arena wall, while Fig. 11 shows a
collision between the wvehicle and an internal
obstacle.

Figure 10. Visualization of vehicle collision with the
arena boundary wall.

Figure 11. Visualization of vehicle collision with an
internal obstacle.

3.5 Quantitative Evaluation and Performance
Graph

The quantitative results shown in this section
represent the average performance across all 14
participants for both FPS and TPS modes. To
evaluate the performance of the two implemented
approaches, a simple quantitative assessment was
conducted based on two parameters:

1. Average time (in seconds) required by users

to complete the navigation path

2. Number of collisions occurring during

navigation

The quantitative comparison between FPS and
TPS modes is summarized in Table 1, which reports

Received: June 15, 2025. Revised: December 26, 2025

the average completion time and average number of
collisions for each mode.

Table 1. Average completion time and collision count for
FPS and TPS navigation modes.

Mode | Average Time in Average Number of
Seconds Collisions

FPS 28.2 3.4

TPS 25.6 1.8

To further visualize the performance differences,
Fig. 12 presents a comparison graph illustrating
navigation efficiency based on the two evaluated
metrics.

Comparison of Navigation Time and Collisions per Mode
28.2

mm Average Time (s)
25.6 mmm Average Collisions

Navigation Mode

Figure 12. Performance comparison graph illustrating
navigation efficiency between FPS and TPS modes
based on average completion time and collision
frequency.

As shown in Fig. 11, users in FPS mode required
an average of 28.2 seconds to complete the
navigation task and experienced approximately 3.4
collisions. This result reflects the immersive nature of
the first-person perspective, where limited field of
view may reduce spatial awareness and increase the
difficulty of obstacle avoidance. In contrast, TPS
mode achieved a lower average completion time of
25.6 seconds and a reduced collision count of 1.8.
This indicates that the third-person perspective
provides improved environmental visibility, allowing
users to plan movement paths more effectively and
avoid obstacles. Overall, the results suggest that TPS
mode offers better navigation efficiency, while FPS
mode emphasizes immersion with slightly reduced
control accuracy.

19



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

Engineering

3.6 Analysis

Based on the experimental observations, the TPS
mode provides more stable navigation control and
results in fewer collisions, as users benefit from a
broader field of view of the simulated environment.
In contrast, the FPS mode offers a more immersive
experience but limits the user’s ability to anticipate
objects outside the direct line of sight.

Each camera mode presents its own
advantages depending on the application
context. For action-oriented or high-speed
gaming applications, the FPS mode is generally
preferred due to its immersive characteristics.
However, for training simulations or strategy-
based navigation tasks that require accuracy and
situational awareness, the TPS mode proves to be
more effective.

4. Conclusion

This This study successfully implemented two 3D
viewpoint approaches using OpenGL, namely the
First-Person Shooter (FPS) and Third-Person Shooter
(TPS) techniques. Both approaches were applied to
enable interactive and realistic object displacement
transformations in three-dimensional space. The
experimental results revealed that:

1. TPS mode offers advantages in visual
navigation due to its wider perspective, reducing
collisions and enhancing the user’s ability to
understand the spatial context of the
environment.

2. FPS mode delivers a more immersive and
realistic user experience but suffers from limited
visibility, which may increase the likelihood of
collisions or navigational errors.

The transformations applied translation, rotation,
and scaling were successfully integrated using
homogeneous transformation matrices. The system,
implemented using Python, Pygame, and OpenGL,
demonstrated flexibility and effectiveness in
supporting 3D modeling and navigation simulations.

This system shows potential for use in visual-
based navigation simulations of autonomous robots
or vehicles, serving as a training platform prior to
real-world deployment. For future research, the
system can be extended by incorporating adaptive or

Received: June 15, 2025. Revised: December 26, 2025

hybrid camera modes that dynamically switch
between FPS and TPS based on navigation context.
Additionally, more complex environments, larger
participant groups, and additional performance
metrics such as user workload or path optimality can
be explored to further evaluate navigation
effectiveness. The integration of intelligent control
algorithms or machine learning-based navigation
strategies also represents a promising direction for
future development.

References

[1] K.Emmrich, A. Krekhov and S. Cmentowski,
“Streaming vr games to the broad audience: A
comparison of the first-person and third-
person perspectives,” pp. 1-14, 2021.

[2] M. A. AboArab, V. T. Potsika and D. I.
Fotiadis, “DECODE-3DViz: Efficient
WebGL-Based High-Fidelity Visualization
of Large-Scale Images using Level of Detail
and Data Chunk Streaming,” Journal of
Imaging Informatics in Medicine, pp. 1-19,
2025.

[3] Sharma, Ajay, Patel, R. Kumar and P. ,
“Computer vision-based smart monitoring
and control system for crop,” Springer, 2024,
pp. 65-82.

[4] M. Diego, L. H.-N. and W. , “An in-depth
exploration of the effect of 2d/3d views and
controller types on first person shooter games
in virtual reality,” IEEE International
Symposium on Mixed and Augmented Reality
(ISMAR, pp. 712-724, 2020.

[5] P. Y. & M. M. V. Timokhin, “Hybrid
Visualization with Vulkan-OpenGL.:
Technology and Methods of Implementation
in Virtual Environment Systems,” Scientific
Visualization, vol. 15(3), p. 7-17, 2023.

[6] S. Guha, Computer Graphics Through
OpenGL®: From Theory to Experiments,
CRC Press Taylor & Francis Group, 2023.

[7] M. Adnani and A. Z. Falani, “Implementasi
Open Gl Untuk Pembuatan Objek 3d,”
JOURNAL ZETROEM, vol. 3, pp. 1-6, 2021.

20



Volume 01, Issue 02, December 2025 : 12-21

International Journal of
Electrical and Intelligent
#

(8]

9]

Engineering

Ahmed, S. Nabeel, Khaligq, Ayesha and Irfan,
“Unreal Engine's Realistic War First-Third
Person Shooting Game: Fallen Heroes,”
INTERNATIONAL JOURNAL OF SPECIAL
EDUCATION, vol. 37, 2022.

Kosarevsky, Sergey, Latypov and Viktor, 3D
Graphics  Rendering  Cookbook: A
comprehensive guide to exploring rendering
algorithms in modern OpenGL and Vulkan,
Packt Publishing Ltd, 2021.

[10] white, C. Mallcolm, Fang, Hongjian and

Nakata, “PyKonal: a Python package for
solving the eikonal equation in spherical and
Cartesian coordinates using the fast marching
method,” Seismological Research Letters-
Seismological Society of America, pp. 2378-
2389, 2020.

[11] M. Naufal, T. Wiyuna, A. D. Bintarum and A.

F. Burhanudin, “Desain Simulasi Gerak
Parabola Sebagai Pemanfaatan Pembelajaran
Fisika SMA Kelas X Menggunakan
Pygame,” Mitra Pilar: Jurnal Pendidikan,
Inovasi, dan Terapan Teknologi, vol. 1 No.1,
pp. 155-170, 2022.

Received: June 15, 2025.

Revised: December 26, 2025

21



