
 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

12

3D Object Movement Transformation Using FPS and TPS Camera View Modes

in OpenGL

Maulina Safitri 1*, Rama Yusuf Mahendra2, Rasyeedah Binti Mohd Othman3, Riffani Fathia Annisa4

1,4 Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
2 Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

3 Universiti Teknologi PETRONAS, Malaysia

* Correspondong author’s Email: maulinasafitri@uin-malang.ac.id

Abstract: Object transformation in three-dimensional space is a fundamental component in the development of interactive

and realistic 3D modeling systems, particularly for control-based visual simulations and gaming applications. This study

investigates the use of two camera viewpoint modes First-Person Shooter (FPS) and Third-Person Shooter (TPS) in a 3D

object movement simulation implemented using OpenGL. The system is developed in Python using the Pygame library

and applies basic object transformations, including translation, rotation, and scaling, based on homogeneous coordinates.

Both camera modes are evaluated within the same simulation environment consisting of a car object, boundary walls, and

obstacles. Experimental results show that the TPS camera mode provides better navigation performance by reducing

collision frequency and offering a broader view of the environment, while the FPS camera mode delivers a more immersive

experience with limited spatial visibility. Comparative graphs of navigation completion time and collision count highlight

clear performance differences between the two camera modes. These results indicate that camera viewpoint selection

significantly affects navigation efficiency and user experience in 3D visualization systems. The proposed simulation can

serve as a foundation for visual-based control systems, virtual training environments, and educational applications

involving spatial navigation.

Keywords: 3D Modeling, OpenGL, Object Transformation, Interactive Simulation.

1. Introduction

Over the past few decades, three-dimensional

(3D) object modeling has become a core component

in various application domains, including digital

games, virtual simulations, digital architecture, and

vision-based control systems. Previous studies have

shown that 3D modeling enables realistic, interactive,

and dynamic representations of objects and

environments, making it a fundamental element in

the development of intelligent visual systems [1] [2].

A crucial aspect of 3D modeling is object

transformation, particularly displacement

transformation, which allows objects to move and

change orientation dynamically within three-

dimensional space. Such transformations are

essential not only for visual realism but also for

vision-based control systems that require accurate

spatial representation and real-time object interaction

[3].

Several prior studies have investigated the role of

camera perspective in interactive 3D environments.

Emmrich et al. [1] and Diego et al. [4] analyzed first-

person and third-person perspectives in gaming and

virtual reality contexts, focusing mainly on user

immersion, comfort, and interaction techniques.

Other works have concentrated on rendering

efficiency and visualization performance using

OpenGL or WebGL frameworks, emphasizing

graphical optimization rather than navigation

behavior or control effectiveness [2] [5]. These

studies demonstrate the importance of viewpoint

design in 3D systems but generally treat camera

perspective as a design choice without quantitatively

evaluating its impact on navigation performance.

In addition, established literature on OpenGL-

based graphics systems provides strong theoretical

and practical foundations for object transformation

and 3D visualization, particularly in experimental

and educational simulation environments [6] [7].

However, existing studies rarely integrate a direct

comparison of First-Person Shooter (FPS) and Third-

Person Shooter (TPS) camera view modes within the

same object transformation framework while

measuring navigation efficiency using objective

performance metrics.

To address this research gap, this study

implements and compares FPS and TPS camera view

modes in a 3D object movement simulation using

OpenGL. In this research, FPS and TPS are explicitly

defined as camera viewpoint modes rather than object

mailto:maulinasafitri@uin-malang.ac.id

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

13

transformation methods. The system is developed

using Python, Pygame, and OpenGL, and both

camera modes are evaluated under identical

environmental conditions based on navigation

completion time and collision frequency. The

objective of this study is to analyze how camera

viewpoint selection influences navigation

effectiveness and user experience in interactive 3D

simulations, thereby contributing to the design of

more effective visual-based control systems, virtual

training platforms, and educational applications.

2. Method

2.1 System Flow Diagram

The system follows a sequential processing flow.

The simulation begins with the initialization of the

Pygame and OpenGL environments to configure the

display window and graphical settings. Next, the 3D

scene is constructed by defining the primary objects,

including a car, boundary walls, and obstacles.

Figure 1. System flow diagram of the 3D object

movement simulation using FPS and TPS camera view

modes.

The system then selects the camera view mode,

either First-Person Shooter (FPS) or Third-Person

Shooter (TPS), which determines the user’s

viewpoint within the simulation environment [8].

Based on user input, object transformations

(translation, rotation, and scaling) and camera

transformations are applied accordingly. The

transformed scene is subsequently projected onto the

screen and rendered as visual frames. Finally, the

display is updated in real time to ensure that all user

interactions and system changes are immediately

reflected.

2.2 System Architecture and Development

Environment

The system is designed and implemented using

the Python programming language, with the Pygame

library handling display management and user input,

and OpenGL serving as the primary API for 3D

graphical visualization [9]. This combination enables

the development of a flexible and modular simulation

system capable of real-time interaction and

rendering.

The system architecture is organized into

three main transformation stages: Object

Transformation, View (Camera)

Transformation, and Projection Transformation.

Object Transformation manages the position,

orientation, and scale of 3D objects using

transformation matrices. View Transformation

controls the camera configuration, including the

implementation of FPS and TPS camera view

modes. Projection Transformation maps the 3D

scene onto the 2D display plane for visualization,

all of which are implemented through matrix-

based transformations in OpenGL.

2.3 Mathematical Representation of 3D

Transformations

Each object in a 3D scene is typically defined

within its own coordinate system, known as model

space (also referred to as local space or object space).

When assembling multiple objects into a single

scene, their vertices must be transformed from local

space into world space, which serves as a common

reference frame for all objects. This process is

referred to as a world transformation [10].

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

14

The world transformation consists of a sequence

of scaling (adjusting the object’s size to match world

dimensions), rotation (orienting the object axes), and

translation (moving the object from the origin to its

position in world space). Rotation and scaling are

classified as linear transformations because they

preserve vector addition and scalar multiplication by

definition [6]. Linear transformations combined with

translation constitute what is known as an affine

transformation [6].

In affine transformations, straight lines remain

straight and the ratios of distances between points are

preserved. In OpenGL, a vertex V located at position

(x, y, z) is represented as a 3×1 column vector:

V = [
𝑥
𝑦
𝑧

] (1)

2.3.1 Scaling

Scaling is a transformation that modifies the size

of an object relative to the coordinate axes in three-

dimensional space. In 3D graphics, scaling is applied

independently along the x, y, and z axes and can be

represented using a diagonal scaling matrix. This

transformation preserves the object’s shape

proportions when uniform scaling is applied and is

commonly used in object resizing operations in

OpenGL-based rendering systems [6] [9].

The scaling transformation matrix S is defined as:

S = [
𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 𝑠𝑧

] (2)

where Sx, Sy, and Sz denote the scaling factors

along the x, y, and z axes, respectively. The

transformed vertex V′ is obtained through matrix

multiplication V′ =S V [6].

2.3.2 Rotation

Rotation in three-dimensional space is

performed about a specific axis, in contrast to

two-dimensional rotation, which occurs around a

rotation center. A 3D rotation around the x, y, or

z axis by an angle θ\thetaθ, measured

counterclockwise following the right-hand rule,

can be represented using standard rotation

matrices [6] [9].

Rotation around the z-axis is defined as:

Rz(θ) = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛θ 0
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ 0

0 0 1
] (3)

Rotation around the x-axis is defined as:

Rx(θ) = [
1 0 0
0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛θ
0 𝑠𝑖𝑛θ 𝑐𝑜𝑠θ

] (4)

Rotation around the z-axis is defined as:

Ry(θ) = [
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛θ

0 1 0
−𝑠𝑖𝑛θ 0 𝑐𝑜𝑠θ

] (5)

The rotation angles about the x, y, and z axes are

commonly referred to as Euler angles, which can be

combined to represent an object’s arbitrary

orientation in 3D space. The resulting transformation

is known as an Euler rotation and is widely used in

real-time graphics applications [6].

2.3.3 Translation

Translation is a transformation that shifts an

object’s position in space without altering its

orientation or scale. Unlike scaling and rotation,

translation is not a linear transformation; however, it

can be modeled using vector addition [6]. A

translation by a displacement vector 𝒅 =
[ⅆ𝑥, ⅆ𝑦, ⅆ𝑧]𝑇 can be expressed as:

[
𝑥
𝑦
𝑧

] + [
ⅆ𝑥
ⅆ𝑦
ⅆ𝑧

] + [
𝑥 + ⅆ𝑥
𝑦 + ⅆ𝑦
𝑧 + ⅆ𝑧

] (6)

In OpenGL, translation is implemented using

four-component homogeneous coordinates, where a

vertex is represented as (x,y,z,1). Using

homogeneous coordinates allows translation to be

expressed as a matrix multiplication [6][9]. The

translation matrix T(d) is defined as:

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

15

𝑇 (𝒅) = [

1 0 0 ⅆ𝑥
0 1 0 ⅆ𝑦
1 0 0 ⅆ𝑧
0 0 0 1

] (7)

where 𝒅 = [ⅆ𝑥, ⅆ𝑦, ⅆ𝑧]𝑇 is the translation vector.

The transformed vertex V′ is obtained as:

𝑽′ = 𝑇 (𝒅)𝑽 = [

𝑥 + ⅆ𝑥
𝑦 + ⅆ𝑦
𝑧 + ⅆ𝑧

1

] (8)

If the homogeneous coordinate w ≠ 1, the

corresponding Cartesian coordinates are obtained by

normalization (x/w, y/w, z/w). When w = 0, the

vector represents a direction rather than a point [6].

2.4 Transformation Implementation within the

System

2.4.1 Object transformation

Object transformations are applied to modify the

position, orientation, and scale of 3D objects within

the simulation environment. In this system, object

transformations are implemented using standard

OpenGL transformation functions, including

glTranslatef(), glRotatef(), and

glScalef(), which correspond to translation,

rotation, and scaling operations, respectively [6][9].

These transformations are based on matrix operations

described in Section 2.3 and are applied in the

object’s local coordinate system before being

mapped to world space.

The transformation parameters are updated

dynamically based on system logic and user

input, and the resulting transformation matrices

are passed to the rendering pipeline to ensure

correct spatial positioning of objects during real-

time visualization [6].

2.4.2 View Transformation

View transformation is responsible for controlling

the camera position and orientation within the 3D

simulation environment. In this study, view

transformation is used to implement two camera view

modes: First-Person Shooter (FPS) and Third-Person

Shooter (TPS). Camera movement and orientation

are controlled through translation and rotation

operations using OpenGL functions such as

glTranslatef() and glRotatef(), while user

input is handled via the Pygame library [6] [11].

In FPS mode, the camera is positioned at the

object’s location, simulating a first-person

perspective in which camera motion directly

follows object movement. In TPS mode, the

camera is positioned at an offset relative to the

object, typically behind and above it, providing a

broader view of the surrounding environment.

The rendered scene is updated in real time using

pygame.display.flip(), enabling responsive

interaction and smooth navigation [11].

2.4.3 Projection Transformation

Projection transformation maps the three-

dimensional scene onto the two-dimensional display

plane. In this system, perspective projection is

applied to simulate depth perception consistent with

human visual experience. Perspective projection is

implemented using OpenGL projection matrices,

allowing objects farther from the camera to appear

smaller on the screen [6][9].

Although both FPS and TPS modes utilize the

same projection model, the perceived visual output

differs due to variations in camera position and

orientation. The FPS mode emphasizes immersion by

aligning the camera with the object’s forward

direction, whereas the TPS mode enhances

situational awareness by maintaining a wider viewing

angle of the environment. This separation ensures

that the observed performance differences between

FPS and TPS modes are attributed to camera

viewpoint configuration rather than differences in

object transformation or projection algorithms [6].

2.5 Experimental Setup

The experiment involved 14 participants, all of

whom were undergraduate students from STEM-

related disciplines. Most participants had prior

experience playing 3D games, with more than half

classified as intermediate-level players. This

background ensured that the participants were

familiar with 3D navigation mechanics and camera-

based interaction.

Each participant was required to complete a

navigation task using both camera modes: First-

Person Shooter (FPS) and Third-Person Shooter

(TPS). The task consisted of navigating a car object

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

16

through a virtual 3D environment while avoiding

collisions with obstacles and boundary walls. For

each trial, participants were instructed to reach the

designated endpoint as quickly as possible without

intentionally colliding with any obstacles.

The experimental conditions were not identical

across trials; the arena layout, initial position, and

obstacle configuration differed between runs.

However, the camera parameters, control scheme,

and transformation mechanisms were kept constant

for both FPS and TPS modes to ensure a fair

comparison between the two viewpoints.

During each trial, the system automatically

recorded performance metrics, including the

navigation completion time (in seconds) and the

number of collisions encountered. These metrics

were logged internally by the system using

timestamp-based measurement and collision

counters. The values reported in the Results section

represent the average performance across all

participants for each camera mode.

3. Results and Discussion

This chapter presents the results obtained from the

3D simulation experiments using FPS and TPS view

modes. The experiments were conducted with 14

participants, each of whom performed the navigation

task using both view modes. For each trial, the system

automatically recorded the completion time and the

number of collisions. The results are presented

through system visualizations, movement

simulations, collision detection outputs, and

quantitative performance graphs across the following

subchapters.

3.1 3D Object Design and Simulation

Environment

The simulation environment consists of several

3D elements, including a car as the primary object,

walls as arena boundaries, and obstacles serving as

navigation barriers. These objects are constructed

using basic OpenGL transformations, namely
glPushMatrix(), glTranslatef(),

glRotatef(), and glScalef(), within the world

coordinate system. The geometric structure of the car

is simplified using basic shapes such as cubes and

rectangular prisms, while the obstacles are statically

positioned to facilitate collision detection tests.

Figure 2. 3D simulation environment showing the car

object, boundary walls, and obstacles.

Fig. 2 illustrates the overall 3D simulation

environment, including the car object, arena

boundaries, and obstacle layout used in the

experiment.

3.2 FPS and TPS View Modes

3.2.1 FPS Mode

In FPS mode, the camera is positioned inside the

car object, providing a first-person perspective. This

setup offers an immersive experience, simulating the

sensation of being inside the vehicle and directly

controlling its movement direction. However, the

main challenge lies in the limited field of view, as

surrounding objects remain unseen unless the view

direction is manually changed, as illustrated in Fig. 2.

The transformation implementation involves

rotation and translation based on user input, as

follows:

if view.mode == "FPS":

 glRotatef(90, 0, 1, 0)

 glRotatef(-angle, 0, 1, 0)

 glTranslatef(-position.x, -10, -

position.z)

User input (forward, backward, turn) is captured

via pygame.key.get_pressed() events and

recalculated into motion direction vectors. The

movement response appears smooth due to the

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

17

combination of position updates and dynamic camera

angle adjustments.

3.2.2 TPS Mode

In TPS mode, the camera is positioned above and

slightly behind the car object. The camera is

configured to provide a comprehensive view of the

entire arena and surrounding obstacles, granting users

broader environmental awareness and control. This

mode is commonly employed in strategy-based or

navigation-focused games as illustrated in Fig. 3.

The transformation implementation also involves

rotation and translation based on user input, as

follows:

elif view.mode == "TPS":

 glTranslatef(0, 0, -35)

 glRotatef(90, 1, 0, 0)

Since the camera is not attached to the object's

coordinate system, users can more easily avoid

obstacles and plan movement trajectories. This

difference in visibility directly impacts the

effectiveness of navigation.

Figure 3. TPS camera view showing the observer’s

perspective, visualizing the entire track and surrounding

objects.

3.3 Vehicle Movement

The simulation supports four primary movements:

forward, backward, left turn, and right turn. A

combination of rotation and translation generates

dynamic and realistic animation of vehicle motion.

The direction of movement is calculated using Euler

angles, where the directional vector is determined by

trigonometric functions math.cos() and

math.sin() based on the current orientation angle.

Linear vehicle movements, including forward

and backward motion, are illustrated in Figure 4

and Fig. 5, respectively. These movements

represent straight-line translation along the

vehicle’s forward axis without rotational

changes.

Figure 4. Linear vehicle movement in the forward

direction.

Figure 5. Linear vehicle movement in the backward

direction.

Turning motions are only permitted when the

vehicle is in motion (either forward or backward), in

accordance with realistic physical simulation

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

18

principles. The combined movements involving

translation and rotation are shown in Fig. 6–9, which

depict directional combinations such as forward–turn

right, forward–turn left, backward–turn left, and

backward–turn right.

The smoothness of the animation is maintained

through frame-by-frame display refreshing using

pygame.display.flip(), in combination with

glClear() to reset the rendering buffer before each

frame update.

Figure 6. Vehicle movement with directional

combination: forward and turn right.

Figure 7. Vehicle movement with directional

combination: forward and turn left.

Figure 8. Vehicle movement with directional

combination: backward and turn left.

Figure 9. Vehicle movement with directional

combination: backward and turn right.

3.4 Collison Detection

The simulation incorporates a collision detection

system between the vehicle and both arena

boundaries and internal obstacles. The approach used

is bounding box testing, which compares the

vehicle’s position coordinates with the obstacle

boundaries and applies position correction in case of

penetration.

For obstacle detection, the system calculates the

minimum distance between the car and the barrier

using absolute differences, namely

abs(position.x_car−position.x_obs) and

abs(position.z_car−position.z_obs). If the

computed distance falls below a predefined threshold

(e.g., 10 pixels), a collision is assumed to have

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

19

occurred, and the vehicle movement is restricted to

prevent further penetration.

Fig. 10 illustrates a collision event between the

vehicle and the arena wall, while Fig. 11 shows a

collision between the vehicle and an internal

obstacle.

Figure 10. Visualization of vehicle collision with the

arena boundary wall.

Figure 11. Visualization of vehicle collision with an

internal obstacle.

3.5 Quantitative Evaluation and Performance

Graph

The quantitative results shown in this section

represent the average performance across all 14

participants for both FPS and TPS modes. To

evaluate the performance of the two implemented

approaches, a simple quantitative assessment was

conducted based on two parameters:

1. Average time (in seconds) required by users

to complete the navigation path

2. Number of collisions occurring during

navigation

The quantitative comparison between FPS and

TPS modes is summarized in Table 1, which reports

the average completion time and average number of

collisions for each mode.

Table 1. Average completion time and collision count for

FPS and TPS navigation modes.

Mode Average Time in

Seconds

Average Number of

Collisions

FPS 28.2 3.4

TPS 25.6 1.8

To further visualize the performance differences,

Fig. 12 presents a comparison graph illustrating

navigation efficiency based on the two evaluated

metrics.

As shown in Fig. 11, users in FPS mode required

an average of 28.2 seconds to complete the

navigation task and experienced approximately 3.4

collisions. This result reflects the immersive nature of

the first-person perspective, where limited field of

view may reduce spatial awareness and increase the

difficulty of obstacle avoidance. In contrast, TPS

mode achieved a lower average completion time of

25.6 seconds and a reduced collision count of 1.8.

This indicates that the third-person perspective

provides improved environmental visibility, allowing

users to plan movement paths more effectively and

avoid obstacles. Overall, the results suggest that TPS

mode offers better navigation efficiency, while FPS

mode emphasizes immersion with slightly reduced

control accuracy.

Figure 12. Performance comparison graph illustrating

navigation efficiency between FPS and TPS modes

based on average completion time and collision

frequency.

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

20

3.6 Analysis

Based on the experimental observations, the TPS

mode provides more stable navigation control and

results in fewer collisions, as users benefit from a

broader field of view of the simulated environment.

In contrast, the FPS mode offers a more immersive

experience but limits the user’s ability to anticipate

objects outside the direct line of sight.

Each camera mode presents its own

advantages depending on the application

context. For action-oriented or high-speed

gaming applications, the FPS mode is generally

preferred due to its immersive characteristics.

However, for training simulations or strategy-

based navigation tasks that require accuracy and

situational awareness, the TPS mode proves to be

more effective.

4. Conclusion

This This study successfully implemented two 3D

viewpoint approaches using OpenGL, namely the

First-Person Shooter (FPS) and Third-Person Shooter

(TPS) techniques. Both approaches were applied to

enable interactive and realistic object displacement

transformations in three-dimensional space. The

experimental results revealed that:

1. TPS mode offers advantages in visual

navigation due to its wider perspective, reducing

collisions and enhancing the user’s ability to

understand the spatial context of the

environment.

2. FPS mode delivers a more immersive and

realistic user experience but suffers from limited

visibility, which may increase the likelihood of

collisions or navigational errors.

The transformations applied translation, rotation,

and scaling were successfully integrated using

homogeneous transformation matrices. The system,

implemented using Python, Pygame, and OpenGL,

demonstrated flexibility and effectiveness in

supporting 3D modeling and navigation simulations.

This system shows potential for use in visual-

based navigation simulations of autonomous robots

or vehicles, serving as a training platform prior to

real-world deployment. For future research, the

system can be extended by incorporating adaptive or

hybrid camera modes that dynamically switch

between FPS and TPS based on navigation context.

Additionally, more complex environments, larger

participant groups, and additional performance

metrics such as user workload or path optimality can

be explored to further evaluate navigation

effectiveness. The integration of intelligent control

algorithms or machine learning-based navigation

strategies also represents a promising direction for

future development.

References

[1] K. Emmrich, A. Krekhov and S. Cmentowski,

“Streaming vr games to the broad audience: A

comparison of the first-person and third-

person perspectives,” pp. 1-14, 2021.

[2] M. A. AboArab, V. T. Potsika and D. I.

Fotiadis, “DECODE-3DViz: Efficient

WebGL-Based High-Fidelity Visualization

of Large-Scale Images using Level of Detail

and Data Chunk Streaming,” Journal of

Imaging Informatics in Medicine, pp. 1-19,

2025.

[3] Sharma, Ajay, Patel, R. Kumar and P. ,

“Computer vision-based smart monitoring

and control system for crop,” Springer, 2024,

pp. 65-82.

[4] M. Diego, L. H.-N. and W. , “An in-depth

exploration of the effect of 2d/3d views and

controller types on first person shooter games

in virtual reality,” IEEE International

Symposium on Mixed and Augmented Reality

(ISMAR, pp. 712-724, 2020.

[5] P. Y. &. M. M. V. Timokhin, “Hybrid

Visualization with Vulkan-OpenGL:

Technology and Methods of Implementation

in Virtual Environment Systems,” Scientific

Visualization, vol. 15(3), p. 7–17, 2023.

[6] S. Guha, Computer Graphics Through

OpenGL®: From Theory to Experiments,

CRC Press Taylor & Francis Group, 2023.

[7] M. Adnani and A. Z. Falani, “Implementasi

Open Gl Untuk Pembuatan Objek 3d,”

JOURNAL ZETROEM, vol. 3, pp. 1-6, 2021.

 Volume 01, Issue 02, December 2025 : 12-21 Received: June 15, 2025. Revised: December 26, 2025

21

[8] Ahmed, S. Nabeel, Khaliq, Ayesha and Irfan,

“Unreal Engine's Realistic War First-Third

Person Shooting Game: Fallen Heroes,”

INTERNATIONAL JOURNAL OF SPECIAL

EDUCATION, vol. 37, 2022.

[9] Kosarevsky, Sergey, Latypov and Viktor, 3D

Graphics Rendering Cookbook: A

comprehensive guide to exploring rendering

algorithms in modern OpenGL and Vulkan,

Packt Publishing Ltd, 2021.

[10] white, C. Mallcolm, Fang, Hongjian and

Nakata, “PyKonal: a Python package for

solving the eikonal equation in spherical and

Cartesian coordinates using the fast marching

method,” Seismological Research Letters-

Seismological Society of America, pp. 2378-

2389, 2020.

[11] M. Naufal, T. Wiyuna, A. D. Bintarum and A.

F. Burhanudin, “Desain Simulasi Gerak

Parabola Sebagai Pemanfaatan Pembelajaran

Fisika SMA Kelas X Menggunakan

Pygame,” Mitra Pilar: Jurnal Pendidikan,

Inovasi, dan Terapan Teknologi, vol. 1 No.1,

pp. 155-170, 2022.

