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Abstract: This research designs and builds a wheeled soccer robot using YOLOv8 for real-time ball detection and 

distance estimation, aiming to improve efficiency in technology competitions. The system includes Arduino Uno R3, 

Raspberry Pi 3 model b, detection system, and navigation design. 691 ball image use as dataset that consist of 552 image 

as training dataset and 249 image as valid dataset. YOLOv8 demonstrated exceptional reliability in ball detection during 

testing, achieving an average accuracy of 100%, 100% precision, and 94% recall. Navigation testing toward the ball had 

an acceptable average error of 8.0466%. The results confirm that YOLOv8 is excellent for simplifying high-accuracy 

ball detection and distance estimation in wheeled soccer robots. Future work should consider a higher-spec Raspberry 

Pi, a high-resolution camera, additional sensors, and advanced systems to improve detection and obstacle avoidance 

(opponent robots, goal). 
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1. Introduction 

For years, robots have assisted humans in various 

fields because they have a greater capacity and are 

often better prepared to complete more complex 

tasks, as shown by a higher level of repeatability. 

Advances in the fields of batteries, sensors, artificial 

intelligence (AI), and machine learning (ML) have 

opened the door to new areas and new applications 

[1]. One interesting and challenging application in 

this field is the development of soccer robots, which 

combines artificial intelligence (AI), mechanics, and 

control engineering. Soccer robots offer an ideal 

platform for testing new algorithms, hardware, and 

strategies under complex and unpredictable 

conditions. 

Object detection, especially the detection of the 

ball which is a key component in soccer robots. 

Without the ability to detect the ball accurately and 

quickly, the robot will not be able to interact 

effectively with its environment, thereby hindering 

its ability to compete in the game. In this context, 

image processing and machine learning technologies 

are very important to provide efficient and accurate 

solutions. Object detection can simplify the process 

of identifying object types from an image in a modern 

way, such as using a laptop camera or webcam. In the 

final project, the output of the detection ball will be 

used as data to detect the ball on the soccer robot [2]. 

 

The YOLO (You Only Look Once) model is 

widely known as one of the most effective and fastest 

object detection methods. The latest version of this 

model, YOLOv8, offers improvements in speed and 

accuracy, making it an ideal candidate for real-time 

applications such as soccer robots. YOLOv8 uses a 

more sophisticated architecture and optimization 

algorithms that enable fast and accurate object 

detection, even in poor lighting conditions or 

complex backgrounds. 

This research focuses on the application of the 

YOLOv8 model to detect the ball on wheeled soccer 

robots. By utilizing the real-time detection 

capabilities of YOLOv8, it is expected that the robot 

can quickly and accurately obtain the necessary 

visual information to make decisions in the game. 

This implementation is expected to not only improve 

the robot's performance in detecting and following 

the ball but also provide an important contribution to 

the development of smarter and more responsive 

robotic technology. 

The use of YOLOv8 in the context of soccer 

robots also opens up opportunities for further 

exploration in the fields of computer vision and AI. 

This includes the development of further algorithms 

to improve detection reliability under various 

environmental conditions, as well as integration with 

control systems that allow robots to respond with 

smarter and more adaptive actions. 
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Although previous studies have successfully 

applied earlier YOLO versions (primarily YOLOv3) 

for ball detection in soccer robots, they often rely on 

more powerful hardware such as NVIDIA GPUs or 

Jetson platforms and larger datasets. Few works 

demonstrate real-time performance using the latest 

YOLOv8 on low-cost, resource-constrained 

embedded systems like the Raspberry Pi 3. 

Moreover, integrated distance estimation and 

autonomous navigation using bounding box outputs 

remain underexplored on such hardware. This study 

addresses these gaps by implementing the 

lightweight YOLOv8n model for accurate real-time 

ball detection, pinhole-based distance estimation, and 

navigation on a low-cost wheeled soccer robot 

platform. 

2. Related Works 

In 2019, Soebhakti et al. [3] conducted a study on 

a soccer robot capable of detecting objects like the 

ball, goal, and center circle using a camera. They 

utilized YOLOv3 (You Only Look Once Version 3), 

a method based on CNN [4], for fast and highly 

accurate detection. The software specifications 

included CMAKE 3.8 for modern CUDA, CUDA 

10.0, OpenCV 2.4, cuDNN 7.0, running on Linux 

16.04. With an Octa Core Intel Core i7-7700HQ 

processor, 16 GB RAM, and a 3GB NVIDIA 

GeForce GTX 1060 graphics card, they achieved a 

detection speed of 28.3 FPS, IOU of 71.76%, recall 

of 0.92, precision of 0.92, and mAP of 87.07% using 

52,000 data samples. The study also proved 

YOLOv3's ability to detect objects under three 

different lighting conditions, with a maximum range 

of 3 meters for the ball and 8 meters for the goal. 

YOLOv3 was also used in a 2020 study by 

Susanto et al. [5], who implemented XNOR-Net [6] 

on a humanoid soccer robot [7]. The addition of 

XNOR-Net, which uses a binary Convolutional 

Neural Network for image classification, 

significantly lightened the YOLO [8] operation, 

making it 58 times faster and using 32 times less 

memory than other methods. With XNOR-YOLO on 

a Logitech C92 1080p webcam, an Intel NUC6i5sYH 

Core i5 miniPC, and an NVIDIA Jetson TX1 GPU, 

they achieved a detection rate of 30 FPS for both the 

ball and the goal. 

Another study utilizing YOLOv3 on a humanoid 

soccer robot was conducted by Nugraha et al. [9] in 

2021. They built a robot capable of detecting the ball, 

goal, field boundaries, and other robots (teammates 

or opponents). This research tested YOLOv3's 

detection accuracy in various situations: full and 

partial visual ball detection, slow and fast ball 

movement, ball distance, and detection time. The 

results showed good detection for full and partial 

visual balls, but YOLOv3 struggled with moving 

objects, requiring the robot to approach the object for 

effective detection. The optimal ball detection range 

was found to be 50-900 cm, with an average detection 

time of 0.033 seconds, based on 3000 trained image 

samples. 

In 2022, Sanubari & Puriyanto [10] utilized 

YOLO (YOLOv3 and YOLOv3-Tiny) on a KRSBI-

B robot to detect the ball and goal using an 

Omnidirectional camera. Using 8000 datasets (7000 

training and 1000 validation) with frame sizes 

320x320 and 416x416, they achieved accuracies of 

81.8% (YOLOv3) and 74.2% (YOLOv3-Tiny) for 

the former, and 93.2% (YOLOv3) and 81% 

(YOLOv3-Tiny) for the latter. These results 

confirmed that YOLOv3's mAP was consistently 

higher than YOLOv3-Tiny's, indicating both models 

could detect the ball and goal effectively. They 

suggested incorporating other deep learning methods 

for robot movement strategies. 

Most recently, Jati et al. (2024) [11] used YOLO-

NAS (Neural Architecture Search) in their study, 

"Enhancing Humanoid Robot Soccer Ball Tracking, 

Goal Alignment, and Robot Avoidance Using 

YOLO-NAS," for ball detection, goal alignment, and 

obstacle avoidance maneuvers. This research also use 

YOLOv8 [12] as a comparison for the model. The 

research achieved an average success rate of 53.3% 

for ball detection (from 60 samples), 91.7% for goal 

alignment, and 100% for opponent avoidance 

maneuvers (from 10 samples). They recommended 

using more data to remove research limitations. 

Previous studies predominantly employed 

YOLOv3 and its variants, achieving good detection 

performance but typically on higher-end hardware 

(e.g., NVIDIA GTX 1060 [3], Jetson TX1 [5]) that 

exceeds the computational constraints of low-cost 

platforms like the Raspberry Pi 3. These approaches 

also required larger datasets (thousands to tens of 

thousands of images) and did not integrate simple yet 

effective distance estimation for autonomous 

navigation on constrained hardware. In contrast, the 

present work utilizes the more efficient YOLOv8n 

architecture with a significantly smaller dataset (691 

images) to achieve comparable or superior precision 

while enabling real-time operation and navigation on 
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a Raspberry Pi 3, highlighting improved suitability 

for budget-constrained robotic applications. 

Compared to earlier YOLO versions used in 

soccer robots (primarily YOLOv3 and YOLOv3-

Tiny), YOLOv8n offers architectural improvements 

including anchor-free detection and advanced 

training strategies, resulting in better speed-accuracy 

trade-offs on resource-limited hardware. Ultralytics 

benchmarks indicate YOLOv8n outperforms 

YOLOv5n and YOLOv3-Tiny in mAP while 

maintaining similar or faster inference times on CPU-

only systems, making it more suitable for deployment 

on the Raspberry Pi 3 without requiring GPU 

acceleration. 

3. Research Method 

This study develops a ball-detection system for a 

wheeled soccer robot using the YOLOv8 object-

detection model. The proposed system enables the 

robot to detect a yellow ball in real time, estimate its 

distance, and navigate toward it autonomously. The 

research methodology encompasses requirement 

analysis, system design, YOLOv8 model 

implementation, system testing and comprehensive 

performance evaluation (Fig. 1). 

 

 
Figure 1. Research Procedure 

The hardware platform consists of a Raspberry Pi 

[13] 3 Model B as the main processing unit, a 

compact CSI camera module for image acquisition, 

an Arduino Uno R3 [14] for low-level motor control, 

an L298N dual H-bridge motor driver, and four DC 

motors mounted on a custom wheeled soccer robot 

chassis. Serial communication via USB is employed 

to exchange detection results and distance commands 

between the Raspberry Pi (running Python) and the 

Arduino (programmed in C++ using Arduino IDE). 

The software environment includes Raspberry Pi OS 

64-bit, Thonny IDE 4.0.2, Arduino IDE, and the 

Ultralytics YOLOv8 library. 

Data collection involved two sources: (1) a 

custom dataset comprising photographs of the target 

yellow ball captured using a smartphone and the 

robot’s own camera under varying lighting and angle 

conditions, supplemented by relevant images 

obtained from the internet; and (2) real-time video 

streams acquired directly from the mounted camera 

during testing. All collected images underwent 

manual annotation using bounding boxes and the 

class label “ball”. Data augmentation techniques 

were applied to increase dataset diversity and 

robustness. The final dataset was split into training 

(80%) and validation/test (80%) sets to prevent 

overfitting and enable reliable performance 

evaluation (Fig. 2). 

 

 
Figure 2. Data Design 

The YOLOv8n (nano) pre-trained model was 

selected for its favorable trade-off between accuracy 

and inference speed on resource-constrained 

hardware. Custom training was performed by fine-

tuning the model on the prepared dataset. 
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Hyperparameters such as epoch count, batch size, and 

optimizer were adjusted empirically to achieve 

convergence. Upon completion of training, the best 

weights file (.pt) with the highest mAP@0.5 on the 

validation set was exported for deployment (Fig. 3). 

 

 
Figure 3. Training System Flowchart 

 

The overall system workflow is as follows: the 

camera continuously captures frames, which are fed 

into the YOLOv8 model running on the Raspberry Pi. 

When confidence for the “ball” class exceeds 70%, 

the bounding-box center coordinates are obtained, 

and the estimated distance to the yellow ball is 

computed using the classical pinhole camera model. 

This model leverages the principle of similar 

triangles, where the real-world diameter of the ball D 

(in meters) and the camera's focal length f (in pixels, 

determined through prior calibration) are fixed 

known parameters, while the apparent projected 

width 𝜔 (in pixels) of the ball directly measured from 

the YOLOv8 bounding box varies inversely with 

distance; the range Z (depth along the optical axis) is 

thus calculated via the monotonic relationship   

𝑍 =
𝑓×𝐷

𝜔
, assuming a predominantly fronto-parallel 

orientation of the ball to minimize perspective 

distortion and neglecting lens radial distortion 

(reasonable approximations for the low-cost CSI 

camera module operating within 1–3 meters). These 

data (bounding-box center and estimated distance) 

are transmitted via serial communication to the 

Arduino, which translates the distance into 

appropriate PWM signals for the DC motors, driving 

the robot forward toward the ball. If confidence falls 

below the threshold or no ball is detected, the robot 

resumes searching behaviour. (Fig. 4). 

 

 
Figure 4. Object Detection Flowchart 

A confidence threshold of 70% was selected for 

ball detection based on empirical evaluation during 

preliminary testing on the validation set. This value 

effectively balanced high precision (minimizing false 

positives in potential cluttered environments) with 

sufficient recall, aligning with common practices in 

real-time YOLO deployments for robotics. 

System evaluation was conducted indoors under 

controlled yet varied lighting conditions. The yellow 

ball was placed at random positions and distances 

ranging from 1 m to 3 m from the robot. Performance 

metrics for object detection included True Positive 

(TP), False Positive (FP), False Negative (FN), and 

True Negative (TN), from which Accuracy, 
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Precision, and Recall [15] were computed using the 

standard formulas: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% 

(1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
× 100% 

(2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

(3) 

 

Navigation performance was quantified by 

Navigation Error using Mean Absolute Percentage 

Error (MAPE) [16]: 

 

𝑀𝐴𝑃𝐸 (%)  =
1

𝑛
∑ |

𝑌𝑖 − 𝑋𝑖

𝑌𝑖

| × 100%

𝑛

𝑖=1

 
(4) 

 

Where Yi is the ground-truth distance, and Xi is 

the robot’s actual traveled distance. Precision-Recall 

curves and distance-dependent navigation error plots 

were generated to visualize model robustness across 

operating conditions. 

The integrated methodology, combining state-of-

the-art deep learning-based detection with 

lightweight embedded implementation, provides a 

complete framework for real-time ball detection and 

autonomous approach in soccer robot soccer 

applications, with quantitative benchmarks 

facilitating objective assessment and future 

improvements. 

4. Results and Discussion  

The proposed ball-detection and navigation 

system for a wheeled soccer robot was successfully 

implemented and comprehensively evaluated. The 

final hardware realization of the robot closely 

followed the design outlined in Section 3, with 

overall dimensions of 25 cm × 25 cm × 15 cm. The 

mechanical structure was driven by four DC motors 

controlled through an L298N dual H-bridge driver, 

while low-level motion control was handled by an 

Arduino Uno R3. Real-time image processing and 

inference were performed on a Raspberry Pi 3 Model 

B equipped with a compact CSI webcam. Power was 

supplied separately by a 12 V (3-cell) LiPo battery 

pack for the motors and Arduino, and a power bank 

for the Raspberry Pi to ensure stable operation during 

extended tests (Fig. 5). 

 

 
Figure 5. Soccer Robot Final Design 

The YOLOv8n model was custom-trained on a 

dataset consisting of 691 annotated images of a 

yellow target ball (kasti/tennis ball) collected from 

both direct camera captures. After manual labelling 

and augmentation, the dataset was split into 552 

training images and 139 validation images. Training 

was conducted for 30 epochs with a batch size of 16, 

AdamW optimizer, and 640×640 input resolution. 

The best-performing weights were deployed on the 

Raspberry Pi for real-time inference. 

Detection logic was enhanced with a central blue 

region-of-interest (ROI) (Fig. 6) in the frame and 

predefined distance thresholds (1.0, 1.5, 2.0, 2.5, and 

3.0 m). Distance estimation was performed using the 

known ball diameter and pinhole camera model. 

When a ball was detected inside the ROI with 

confidence ≥ 0.7 and within one of the predefined 

distance bands, the corresponding command (1-5) 

was sent via USB serial to the Arduino, which 

executed calibrated forward motion using PWM and 

timed delays. Upon reaching the target distance, both 

detection and motion loops terminated. 

 

 
Figure 6. Detection Interface  
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Detection performance was evaluated over 10 

trials at each distance (1–3 m). The system achieved 

an average accuracy of 100%, precision of 100%, and 

recall of 94% (Table 1). Perfect precision across all 

distances indicates zero false positives — the model 

never misclassified a non-ball object as a ball. Recall 

remained 100% up to 2 m but dropped to 90% at 2.5 

m and 80% at 3 m, primarily due to occasional 

processing delays on the resource-constrained 

Raspberry Pi 3 and minor degradation of bounding-

box accuracy at longer ranges. 

 
Table 1. Detection performance metrics across tested 

distances 

Distance 

(meter) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 100 100 100 

1.5 100 100 100 

2 100 100 100 

2.5 100 100 90 

3 100 100 80 

Average 100 100 94 

 

The reported 100% accuracy and precision were 

obtained under controlled indoor conditions with 

stable lighting, a relatively small custom dataset of 

691 images, and 10 trials per distance. 

Navigation accuracy was assessed by measuring 

the actual stopping distance after each successful 

detection. Mean Absolute Percentage Error (MAPE) 

yielded an overall navigation error of 8.05% (Table 

2). Error increased gradually with distance, from 5% 

at 1 m to approximately 10% at 2.5–3 m, which is 

attributed to cumulative wheel slippage, minor 

calibration drift in PWM-to-distance mapping, and 

small errors in distance estimation from YOLO 

bounding boxes. 

 
Table 2. Navigation error results 

Object 

Distance (cm) 

Distance Reach 

(cm) 

Navigation 

Error (%) 

100 95 5 

150 142 5.333 

200 181 9.5 

250 224 10.4 

300 270 10 

Average (%) 8.0466 

 

The Precision-Recall curve (Fig. 7) confirms 

excellent precision maintained at 100% while recall 

decreases at longer ranges. The navigation error plot 

(Fig. 8) shows a near-linear increase, yet the 

maximum error remains below 11%, demonstrating 

robust and controllable navigation behavior suitable 

for indoor soccer robot applications. 

 
Figure 7. Precision-Recall Curve 

 
Figure 8. Navigation Error Graph 

Overall, the integrated system successfully 

demonstrated reliable real-time ball detection and 

autonomous approach within 1–3 m under controlled 

indoor lighting. The perfect precision and high recall 

up to 2 m, combined with single-digit navigation 

error, validate the effectiveness of YOLOv8n on low-

cost hardware for this task. Performance degradation 

beyond 2.5 m suggests future improvements in 

camera resolution, adoption of a more powerful 

single-board computer (e.g., Raspberry Pi 4/5 or 

NVIDIA Jetson Nano), refined distance estimation 

using stereo vision or depth sensors, advanced path-

planning algorithms, and mechanical enhancements 

to reduce wheel slip. With these refinements, the 

proposed framework has strong potential for 

competitive robot soccer environments requiring fast 

and accurate ball acquisition. 
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5. Conclusion 

This study successfully demonstrates the 

effectiveness of the YOLOv8 object detection model 

for real-time ball detection and autonomous 

navigation in a low-cost wheeled soccer robot. 

Experimental results from ten trials per distance (1–3 

m) confirm that the system achieves 100% accuracy, 

100% precision, and 94% recall in ball detection, 

with zero false positives across all tested conditions. 

The navigation module, driven by distance estimates 

derived from YOLOv8 bounding boxes, yields an 

average navigation error of only 8.05% (MAPE), 

with errors remaining below 11% even at the 

maximum tested range of 3 meters. 

The consistent high precision and acceptable 

recall up to 2 meters, combined with single-digit 

navigation error, validate the suitability of the 

lightweight YOLOv8n variant for deployment on 

resource-constrained platforms such as the Raspberry 

Pi 3. Although detection recall and navigation 

accuracy slightly degrade beyond 2.5 meters due to 

hardware limitations and cumulative mechanical 

factors, overall performance remains highly reliable 

for indoor robot soccer applications. 

In conclusion, the proposed YOLOv8-based 

vision system provides an accurate, robust, and 

computationally efficient solution for ball detection 

and approach tasks in wheeled soccer robots, offering 

a strong foundation for further development in 

competitive robotic soccer environments. 

These results demonstrate strong performance 

within the tested scenario but may not fully 

generalize to more dynamic environments involving 

moving balls, varying outdoor lighting, obstacles, or 

larger field sizes. 

6. Limitation 

Although the developed system demonstrated 

strong performance in indoor ball detection and 

navigation, several limitations were identified during 

testing that affect overall robustness and real-world 

applicability. 

The primary constraint arises from the use of a 

Raspberry Pi 3 Model B, which exhibited occasional 

processing delays and limited RAM and storage, 

causing frame drops and reduced inference speed, 

particularly at longer distances. Recall degradation 

beyond 2.5 m and the observed increase in navigation 

error with distance are largely attributable to these 

hardware bottlenecks and the relatively low 

resolution of the CSI camera module. Additionally, 

the fixed forward-facing camera created a blind zone 

below approximately 20 cm, preventing reliable 

detection of very close objects, and the simple open-

loop navigation strategy based on timed PWM 

commands was susceptible to wheel slippage and 

minor mechanical inconsistencies. 

To address these shortcomings, future iterations 

of the system are recommended to incorporate the 

following enhancements: 

 

1. Upgrade the computing platform to a Raspberry 

Pi 4/5 (≥4 GB RAM) or an NVIDIA Jetson 

series module, paired with a high-capacity 

microSD card (≥32 GB), to support higher 

inference rates and eliminate real-time 

processing bottlenecks. 

2. Employ a higher-resolution camera (≥1080p) or 

an omnidirectional lens system to improve 

detection reliability at greater distances and 

widen the effective field of view. 

3. Integrate supplementary proximity sensors such 

as ultrasonic or time-of-flight sensors to 

compensate for the camera’s near-field blind 

spot and provide more accurate distance 

measurements when the ball is within 20–30 cm. 

4. Extend the perception capabilities by training 

the model on additional classes (opponent 

robots, goalposts, field lines) and implement 

more advanced navigation algorithms (e.g., PID 

control, dynamic path planning, or obstacle 

avoidance) to enable competitive play scenarios, 

including dribbling past opponents and 

autonomous goal scoring. 

 

Implementing these improvements is expected to 

significantly enhance detection recall at longer 

ranges, reduce navigation error to below 5%, and 

transform the prototype into a fully competitive 

soccer robot suitable for standardized RoboCup or 

similar tournaments. 
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