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Abstract: This research designs and builds a wheeled soccer robot using YOLOVS for real-time ball detection and
distance estimation, aiming to improve efficiency in technology competitions. The system includes Arduino Uno R3,
Raspberry Pi 3 model b, detection system, and navigation design. 691 ball image use as dataset that consist of 552 image
as training dataset and 249 image as valid dataset. YOLOV8 demonstrated exceptional reliability in ball detection during
testing, achieving an average accuracy of 100%, 100% precision, and 94% recall. Navigation testing toward the ball had
an acceptable average error of 8.0466%. The results confirm that YOLOVS is excellent for simplifying high-accuracy
ball detection and distance estimation in wheeled soccer robots. Future work should consider a higher-spec Raspberry
Pi, a high-resolution camera, additional sensors, and advanced systems to improve detection and obstacle avoidance

(opponent robots, goal).
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1. Introduction

For years, robots have assisted humans in various
fields because they have a greater capacity and are
often better prepared to complete more complex
tasks, as shown by a higher level of repeatability.
Advances in the fields of batteries, sensors, artificial
intelligence (Al), and machine learning (ML) have
opened the door to new areas and new applications
[1]. One interesting and challenging application in
this field is the development of soccer robots, which
combines artificial intelligence (Al), mechanics, and
control engineering. Soccer robots offer an ideal
platform for testing new algorithms, hardware, and
strategies under complex and unpredictable
conditions.

Object detection, especially the detection of the
ball which is a key component in soccer robots.
Without the ability to detect the ball accurately and
quickly, the robot will not be able to interact
effectively with its environment, thereby hindering
its ability to compete in the game. In this context,
image processing and machine learning technologies
are very important to provide efficient and accurate
solutions. Object detection can simplify the process
of identifying object types from an image in a modern
way, such as using a laptop camera or webcam. In the
final project, the output of the detection ball will be
used as data to detect the ball on the soccer robot [2].

The YOLO (You Only Look Once) model is
widely known as one of the most effective and fastest
object detection methods. The latest version of this
model, YOLOVS, offers improvements in speed and
accuracy, making it an ideal candidate for real-time
applications such as soccer robots. YOLOV8 uses a
more sophisticated architecture and optimization
algorithms that enable fast and accurate object
detection, even in poor lighting conditions or
complex backgrounds.

This research focuses on the application of the
YOLOv8 model to detect the ball on wheeled soccer
robots. By utilizing the real-time detection
capabilities of YOLOVS, it is expected that the robot
can quickly and accurately obtain the necessary
visual information to make decisions in the game.
This implementation is expected to not only improve
the robot's performance in detecting and following
the ball but also provide an important contribution to
the development of smarter and more responsive
robotic technology.

The use of YOLOVS8 in the context of soccer
robots also opens up opportunities for further
exploration in the fields of computer vision and Al.
This includes the development of further algorithms
to improve detection reliability under various
environmental conditions, as well as integration with
control systems that allow robots to respond with
smarter and more adaptive actions.
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Although previous studies have successfully
applied earlier YOLO versions (primarily YOLOV3)
for ball detection in soccer robots, they often rely on
more powerful hardware such as NVIDIA GPUs or
Jetson platforms and larger datasets. Few works
demonstrate real-time performance using the latest

YOLOv8 on low-cost, resource-constrained
embedded systems like the Raspberry Pi 3.
Moreover, integrated distance estimation and

autonomous navigation using bounding box outputs
remain underexplored on such hardware. This study
addresses these gaps by implementing the
lightweight YOLOv8n model for accurate real-time
ball detection, pinhole-based distance estimation, and
navigation on a low-cost wheeled soccer robot
platform.

2. Related Works

In 2019, Soebhakti et al. [3] conducted a study on
a soccer robot capable of detecting objects like the
ball, goal, and center circle using a camera. They
utilized YOLOv3 (You Only Look Once Version 3),
a method based on CNN [4], for fast and highly
accurate detection. The software specifications
included CMAKE 3.8 for modern CUDA, CUDA
10.0, OpenCV 2.4, cuDNN 7.0, running on Linux
16.04. With an Octa Core Intel Core i7-7700HQ
processor, 16 GB RAM, and a 3GB NVIDIA
GeForce GTX 1060 graphics card, they achieved a
detection speed of 28.3 FPS, 10U of 71.76%, recall
of 0.92, precision of 0.92, and mAP of 87.07% using
52,000 data samples. The study also proved
YOLOv3's ability to detect objects under three
different lighting conditions, with a maximum range
of 3 meters for the ball and 8 meters for the goal.

YOLOv3 was also used in a 2020 study by
Susanto et al. [5], who implemented XNOR-Net [6]
on a humanoid soccer robot [7]. The addition of
XNOR-Net, which uses a binary Convolutional
Neural Network for image classification,
significantly lightened the YOLO [8] operation,
making it 58 times faster and using 32 times less
memory than other methods. With XNOR-YOLO on
a Logitech C92 1080p webcam, an Intel NUC6i5sYH
Core i5 miniPC, and an NVIDIA Jetson TX1 GPU,
they achieved a detection rate of 30 FPS for both the
ball and the goal.

Another study utilizing YOLOv3 on a humanoid
soccer robot was conducted by Nugraha et al. [9] in
2021. They built a robot capable of detecting the ball,
goal, field boundaries, and other robots (teammates
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or opponents). This research tested YOLOvV3's
detection accuracy in various situations: full and
partial visual ball detection, slow and fast ball
movement, ball distance, and detection time. The
results showed good detection for full and partial
visual balls, but YOLOv3 struggled with moving
objects, requiring the robot to approach the object for
effective detection. The optimal ball detection range
was found to be 50-900 cm, with an average detection
time of 0.033 seconds, based on 3000 trained image
samples.

In 2022, Sanubari & Puriyanto [10] utilized
YOLO (YOLOv3 and YOLOv3-Tiny) on a KRSBI-
B robot to detect the ball and goal using an
Omnidirectional camera. Using 8000 datasets (7000
training and 1000 validation) with frame sizes
320x320 and 416x416, they achieved accuracies of
81.8% (YOLOV3) and 74.2% (YOLOv3-Tiny) for
the former, and 93.2% (YOLOv3) and 81%
(YOLOV3-Tiny) for the latter. These results
confirmed that YOLOv3's mAP was consistently
higher than YOLOv3-Tiny's, indicating both models
could detect the ball and goal effectively. They
suggested incorporating other deep learning methods
for robot movement strategies.

Most recently, Jati et al. (2024) [11] used YOLO-
NAS (Neural Architecture Search) in their study,
"Enhancing Humanoid Robot Soccer Ball Tracking,
Goal Alignment, and Robot Avoidance Using
YOLO-NAS," for ball detection, goal alignment, and
obstacle avoidance maneuvers. This research also use
YOLOvV8 [12] as a comparison for the model. The
research achieved an average success rate of 53.3%
for ball detection (from 60 samples), 91.7% for goal
alignment, and 100% for opponent avoidance
maneuvers (from 10 samples). They recommended
using more data to remove research limitations.

Previous studies predominantly employed
YOLOv3 and its variants, achieving good detection
performance but typically on higher-end hardware
(e.g., NVIDIA GTX 1060 [3], Jetson TX1 [5]) that
exceeds the computational constraints of low-cost
platforms like the Raspberry Pi 3. These approaches
also required larger datasets (thousands to tens of
thousands of images) and did not integrate simple yet
effective distance estimation for autonomous
navigation on constrained hardware. In contrast, the
present work utilizes the more efficient YOLOv8n
architecture with a significantly smaller dataset (691
images) to achieve comparable or superior precision
while enabling real-time operation and navigation on
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a Raspberry Pi 3, highlighting improved suitability
for budget-constrained robotic applications.

Compared to earlier YOLO versions used in
soccer robots (primarily YOLOv3 and YOLOv3-
Tiny), YOLOv8n offers architectural improvements
including anchor-free detection and advanced
training strategies, resulting in better speed-accuracy
trade-offs on resource-limited hardware. Ultralytics
benchmarks indicate YOLOv8n outperforms
YOLOv5bn and YOLOvV3-Tiny in mAP while
maintaining similar or faster inference times on CPU-
only systems, making it more suitable for deployment
on the Raspberry Pi 3 without requiring GPU
acceleration.

3. Research Method

This study develops a ball-detection system for a
wheeled soccer robot using the YOLOv8 object-
detection model. The proposed system enables the
robot to detect a yellow ball in real time, estimate its
distance, and navigate toward it autonomously. The
research methodology encompasses requirement
analysis, system design, YOLOvV8 model
implementation, system testing and comprehensive
performance evaluation (Fig. 1).

Requirement
Analysis

Y

System Design

L

YOLOv8 Model
Implementation

Y

System Testing

y

Analysis Results

Figure 1. Research Procedure

The hardware platform consists of a Raspberry Pi
[13] 3 Model B as the main processing unit, a
compact CSI camera module for image acquisition,
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an Arduino Uno R3 [14] for low-level motor control,
an L298N dual H-bridge motor driver, and four DC
motors mounted on a custom wheeled soccer robot
chassis. Serial communication via USB is employed
to exchange detection results and distance commands
between the Raspberry Pi (running Python) and the
Arduino (programmed in C++ using Arduino IDE).
The software environment includes Raspberry Pi OS
64-bit, Thonny IDE 4.0.2, Arduino IDE, and the
Ultralytics YOLOVS library.

Data collection involved two sources: (1) a
custom dataset comprising photographs of the target
yellow ball captured using a smartphone and the
robot’s own camera under varying lighting and angle
conditions, supplemented by relevant images
obtained from the internet; and (2) real-time video
streams acquired directly from the mounted camera
during testing. AIll collected images underwent
manual annotation using bounding boxes and the
class label “ball”. Data augmentation techniques
were applied to increase dataset diversity and
robustness. The final dataset was split into training
(80%) and validation/test (80%) sets to prevent
overfitting and enable reliable performance
evaluation (Fig. 2).

Ball Image Capture
Using Camera

|
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Data Augmentation

|

Data Annotation

|
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Images from Internet

I
v v
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Training Data

Figure 2. Data Design

The YOLOV8n (nano) pre-trained model was
selected for its favorable trade-off between accuracy
and inference speed on resource-constrained
hardware. Custom training was performed by fine-
tuning the model on the prepared dataset.

32



Volume 01, Issue 02, December 2025 : 30-37

International Journal of
Electrical and Intelligent
#

Engineering

Hyperparameters such as epoch count, batch size, and
optimizer were adjusted empirically to achieve
convergence. Upon completion of training, the best
weights file (.pt) with the highest mMAP@0.5 on the
validation set was exported for deployment (Fig. 3).
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Figure 3. Training System Flowchart

The overall system workflow is as follows: the
camera continuously captures frames, which are fed
into the YOLOV8 model running on the Raspberry Pi.
When confidence for the “ball” class exceeds 70%,
the bounding-box center coordinates are obtained,
and the estimated distance to the yellow ball is
computed using the classical pinhole camera model.
This model leverages the principle of similar
triangles, where the real-world diameter of the ball D
(in meters) and the camera’s focal length f (in pixels,
determined through prior calibration) are fixed
known parameters, while the apparent projected
width w (in pixels) of the ball directly measured from
the YOLOV8 bounding box varies inversely with
distance; the range Z (depth along the optical axis) is

thus calculated via the monotonic relationship

Z :f%D, assuming a predominantly fronto-parallel

orientation of the ball to minimize perspective
distortion and neglecting lens radial distortion
(reasonable approximations for the low-cost CSI
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camera module operating within 1-3 meters). These
data (bounding-box center and estimated distance)
are transmitted via serial communication to the
Arduino, which translates the distance into
appropriate PWM signals for the DC motors, driving
the robot forward toward the ball. If confidence falls
below the threshold or no ball is detected, the robot
resumes searching behaviour. (Fig. 4).

Input Ball
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Figure 4. Object Detection Flowchart

A confidence threshold of 70% was selected for
ball detection based on empirical evaluation during
preliminary testing on the validation set. This value
effectively balanced high precision (minimizing false
positives in potential cluttered environments) with
sufficient recall, aligning with common practices in
real-time YOLO deployments for robotics.

System evaluation was conducted indoors under
controlled yet varied lighting conditions. The yellow
ball was placed at random positions and distances
ranging from 1 m to 3 m from the robot. Performance
metrics for object detection included True Positive
(TP), False Positive (FP), False Negative (FN), and
True Negative (TN), from which Accuracy,
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Precision, and Recall [15] were computed using the
standard formulas:

4 B TP +TN < 1005, 1)
CUTASY = TP TN + FP + FN ’
T (2)
ici P 0,
Precision = TP 7P X 100%
(3)
—_— 0,
Recall = TP T FN x 100%

Navigation performance was quantified by
Navigation Error using Mean Absolute Percentage
Error (MAPE) [16]:

Y — X (4)
Y;

n
1
MAPE (%) = ;Z |7| x 100%
i=1

Where Yi is the ground-truth distance, and Xi is
the robot’s actual traveled distance. Precision-Recall
curves and distance-dependent navigation error plots
were generated to visualize model robustness across
operating conditions.

The integrated methodology, combining state-of-
the-art deep learning-based detection  with
lightweight embedded implementation, provides a
complete framework for real-time ball detection and
autonomous approach in soccer robot soccer
applications,  with  quantitative  benchmarks
facilitating objective assessment and future
improvements.

4. Results and Discussion

The proposed ball-detection and navigation
system for a wheeled soccer robot was successfully
implemented and comprehensively evaluated. The
final hardware realization of the robot closely
followed the design outlined in Section 3, with
overall dimensions of 25 cm x 25 cm x 15 cm. The
mechanical structure was driven by four DC motors
controlled through an L298N dual H-bridge driver,
while low-level motion control was handled by an
Arduino Uno R3. Real-time image processing and
inference were performed on a Raspberry Pi 3 Model
B equipped with a compact CSI webcam. Power was
supplied separately by a 12 V (3-cell) LiPo battery
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pack for the motors and Arduino, and a power bank
for the Raspberry Pi to ensure stable operation during
extended tests (Fig. 5).

Figure 5. Soccer Robot Final Design

The YOLOv8n model was custom-trained on a
dataset consisting of 691 annotated images of a
yellow target ball (kasti/tennis ball) collected from
both direct camera captures. After manual labelling
and augmentation, the dataset was split into 552
training images and 139 validation images. Training
was conducted for 30 epochs with a batch size of 16,
AdamW optimizer, and 640x640 input resolution.
The best-performing weights were deployed on the
Raspberry Pi for real-time inference.

Detection logic was enhanced with a central blue
region-of-interest (ROI) (Fig. 6) in the frame and
predefined distance thresholds (1.0, 1.5, 2.0, 2.5, and
3.0 m). Distance estimation was performed using the
known ball diameter and pinhole camera model.
When a ball was detected inside the ROI with
confidence > 0.7 and within one of the predefined
distance bands, the corresponding command (1-5)
was sent via USB serial to the Arduino, which
executed calibrated forward motion using PWM and
timed delays. Upon reaching the target distance, both
detection and motion loops terminated.

GCO00EBARAEE0

Figure 6. Detection Interface
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Detection performance was evaluated over 10
trials at each distance (1-3 m). The system achieved
an average accuracy of 100%, precision of 100%, and
recall of 94% (Table 1). Perfect precision across all
distances indicates zero false positives — the model
never misclassified a non-ball object as a ball. Recall
remained 100% up to 2 m but dropped to 90% at 2.5
m and 80% at 3 m, primarily due to occasional
processing delays on the resource-constrained
Raspberry Pi 3 and minor degradation of bounding-
box accuracy at longer ranges.

Table 1. Detection performance metrics across tested

distances
Distance | Accuracy | Precision | Recall
(meter) (%) (%) (%)
1 100 100 100
1.5 100 100 100
2 100 100 100
25 100 100 90
3 100 100 80
Average 100 100 94

The reported 100% accuracy and precision were
obtained under controlled indoor conditions with
stable lighting, a relatively small custom dataset of
691 images, and 10 trials per distance.

Navigation accuracy was assessed by measuring
the actual stopping distance after each successful
detection. Mean Absolute Percentage Error (MAPE)
yielded an overall navigation error of 8.05% (Table
2). Error increased gradually with distance, from 5%
at 1 m to approximately 10% at 2.5-3 m, which is
attributed to cumulative wheel slippage, minor
calibration drift in PWM-to-distance mapping, and
small errors in distance estimation from YOLO
bounding boxes.

Table 2. Navigation error results
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Object Distance Reach Navigation
Distance (cm) (cm) Error (%)
100 95 5

150 142 5.333

200 181 9.5

250 224 10.4

300 270 10
Average (%) 8.0466

The Precision-Recall curve (Fig. 7) confirms
excellent precision maintained at 100% while recall
decreases at longer ranges. The navigation error plot
(Fig. 8) shows a near-linear increase, yet the

Revised: December 30, 2025.

maximum error remains below 11%, demonstrating
robust and controllable navigation behavior suitable
for indoor soccer robot applications.

Recall-Precision Curve

—e— Recall-Precision Curve

98

96

75 80 85 90 95 100 105
Recall (%)

Figure 7. Precision-Recall Curve

Navigation Error vs. Initial Distance

—e— Navigation Error

0.0 0.5 10 15 2.0 25 3.0 3.5 4.0
Initial Distance (meters)

Figure 8. Navigation Error Graph

Overall, the integrated system successfully
demonstrated reliable real-time ball detection and
autonomous approach within 1-3 m under controlled
indoor lighting. The perfect precision and high recall
up to 2 m, combined with single-digit navigation
error, validate the effectiveness of YOLOv8n on low-
cost hardware for this task. Performance degradation
beyond 2.5 m suggests future improvements in
camera resolution, adoption of a more powerful
single-board computer (e.g., Raspberry Pi 4/5 or
NVIDIA Jetson Nano), refined distance estimation
using stereo vision or depth sensors, advanced path-
planning algorithms, and mechanical enhancements
to reduce wheel slip. With these refinements, the
proposed framework has strong potential for
competitive robot soccer environments requiring fast
and accurate ball acquisition.
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5. Conclusion

This study successfully demonstrates the
effectiveness of the YOLOV8 object detection model
for real-time ball detection and autonomous
navigation in a low-cost wheeled soccer robot.
Experimental results from ten trials per distance (1-3
m) confirm that the system achieves 100% accuracy,
100% precision, and 94% recall in ball detection,
with zero false positives across all tested conditions.
The navigation module, driven by distance estimates
derived from YOLOvV8 bounding boxes, yields an
average navigation error of only 8.05% (MAPE),
with errors remaining below 11% even at the
maximum tested range of 3 meters.

The consistent high precision and acceptable
recall up to 2 meters, combined with single-digit
navigation error, validate the suitability of the
lightweight YOLOv8n variant for deployment on
resource-constrained platforms such as the Raspberry
Pi 3. Although detection recall and navigation
accuracy slightly degrade beyond 2.5 meters due to
hardware limitations and cumulative mechanical
factors, overall performance remains highly reliable
for indoor robot soccer applications.

In conclusion, the proposed YOLOv8-based
vision system provides an accurate, robust, and
computationally efficient solution for ball detection
and approach tasks in wheeled soccer robots, offering
a strong foundation for further development in
competitive robotic soccer environments.

These results demonstrate strong performance
within the tested scenario but may not fully
generalize to more dynamic environments involving
moving balls, varying outdoor lighting, obstacles, or
larger field sizes.

6. Limitation

Although the developed system demonstrated
strong performance in indoor ball detection and
navigation, several limitations were identified during
testing that affect overall robustness and real-world
applicability.

The primary constraint arises from the use of a
Raspberry Pi 3 Model B, which exhibited occasional
processing delays and limited RAM and storage,
causing frame drops and reduced inference speed,
particularly at longer distances. Recall degradation
beyond 2.5 m and the observed increase in navigation
error with distance are largely attributable to these
hardware bottlenecks and the relatively low
resolution of the CSI camera module. Additionally,
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the fixed forward-facing camera created a blind zone
below approximately 20 cm, preventing reliable
detection of very close objects, and the simple open-
loop navigation strategy based on timed PWM
commands was susceptible to wheel slippage and
minor mechanical inconsistencies.

To address these shortcomings, future iterations
of the system are recommended to incorporate the
following enhancements:

1. Upgrade the computing platform to a Raspberry
Pi 4/5 (>4 GB RAM) or an NVIDIA Jetson
series module, paired with a high-capacity
microSD card (>32 GB), to support higher
inference rates and eliminate real-time
processing bottlenecks.

2. Employ a higher-resolution camera (>1080p) or
an omnidirectional lens system to improve
detection reliability at greater distances and
widen the effective field of view.

3. Integrate supplementary proximity sensors such
as ultrasonic or time-of-flight sensors to
compensate for the camera’s near-field blind
spot and provide more accurate distance
measurements when the ball is within 20-30 cm.

4. Extend the perception capabilities by training
the model on additional classes (opponent
robots, goalposts, field lines) and implement
more advanced navigation algorithms (e.g., PID
control, dynamic path planning, or obstacle
avoidance) to enable competitive play scenarios,
including dribbling past opponents and
autonomous goal scoring.

Implementing these improvements is expected to
significantly enhance detection recall at longer
ranges, reduce navigation error to below 5%, and
transform the prototype into a fully competitive
soccer robot suitable for standardized RoboCup or
similar tournaments.
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