
 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

30

Ball Detection in Wheeled Soccer Robot Using the YOLOv8 Model

 Aqza Tri Ananda HAT1* Shoffin Nahwa Utama2 M. Imamudin3

Yunifa Miftachul Arif4 Ajib Hanani5

1,2,3,4,5Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia

* Corresponding author’s Email: aqzatrianandahat@gmail.com

Abstract: This research designs and builds a wheeled soccer robot using YOLOv8 for real-time ball detection and

distance estimation, aiming to improve efficiency in technology competitions. The system includes Arduino Uno R3,

Raspberry Pi 3 model b, detection system, and navigation design. 691 ball image use as dataset that consist of 552 image

as training dataset and 249 image as valid dataset. YOLOv8 demonstrated exceptional reliability in ball detection during

testing, achieving an average accuracy of 100%, 100% precision, and 94% recall. Navigation testing toward the ball had

an acceptable average error of 8.0466%. The results confirm that YOLOv8 is excellent for simplifying high-accuracy

ball detection and distance estimation in wheeled soccer robots. Future work should consider a higher-spec Raspberry

Pi, a high-resolution camera, additional sensors, and advanced systems to improve detection and obstacle avoidance

(opponent robots, goal).

Keywords: Object Detection, Robot Navigation, Wheeled Soccer Robot, YOLOv8

1. Introduction

For years, robots have assisted humans in various

fields because they have a greater capacity and are

often better prepared to complete more complex

tasks, as shown by a higher level of repeatability.

Advances in the fields of batteries, sensors, artificial

intelligence (AI), and machine learning (ML) have

opened the door to new areas and new applications

[1]. One interesting and challenging application in

this field is the development of soccer robots, which

combines artificial intelligence (AI), mechanics, and

control engineering. Soccer robots offer an ideal

platform for testing new algorithms, hardware, and

strategies under complex and unpredictable

conditions.

Object detection, especially the detection of the

ball which is a key component in soccer robots.

Without the ability to detect the ball accurately and

quickly, the robot will not be able to interact

effectively with its environment, thereby hindering

its ability to compete in the game. In this context,

image processing and machine learning technologies

are very important to provide efficient and accurate

solutions. Object detection can simplify the process

of identifying object types from an image in a modern

way, such as using a laptop camera or webcam. In the

final project, the output of the detection ball will be

used as data to detect the ball on the soccer robot [2].

The YOLO (You Only Look Once) model is

widely known as one of the most effective and fastest

object detection methods. The latest version of this

model, YOLOv8, offers improvements in speed and

accuracy, making it an ideal candidate for real-time

applications such as soccer robots. YOLOv8 uses a

more sophisticated architecture and optimization

algorithms that enable fast and accurate object

detection, even in poor lighting conditions or

complex backgrounds.

This research focuses on the application of the

YOLOv8 model to detect the ball on wheeled soccer

robots. By utilizing the real-time detection

capabilities of YOLOv8, it is expected that the robot

can quickly and accurately obtain the necessary

visual information to make decisions in the game.

This implementation is expected to not only improve

the robot's performance in detecting and following

the ball but also provide an important contribution to

the development of smarter and more responsive

robotic technology.

The use of YOLOv8 in the context of soccer

robots also opens up opportunities for further

exploration in the fields of computer vision and AI.

This includes the development of further algorithms

to improve detection reliability under various

environmental conditions, as well as integration with

control systems that allow robots to respond with

smarter and more adaptive actions.

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

31

Although previous studies have successfully

applied earlier YOLO versions (primarily YOLOv3)

for ball detection in soccer robots, they often rely on

more powerful hardware such as NVIDIA GPUs or

Jetson platforms and larger datasets. Few works

demonstrate real-time performance using the latest

YOLOv8 on low-cost, resource-constrained

embedded systems like the Raspberry Pi 3.

Moreover, integrated distance estimation and

autonomous navigation using bounding box outputs

remain underexplored on such hardware. This study

addresses these gaps by implementing the

lightweight YOLOv8n model for accurate real-time

ball detection, pinhole-based distance estimation, and

navigation on a low-cost wheeled soccer robot

platform.

2. Related Works

In 2019, Soebhakti et al. [3] conducted a study on

a soccer robot capable of detecting objects like the

ball, goal, and center circle using a camera. They

utilized YOLOv3 (You Only Look Once Version 3),

a method based on CNN [4], for fast and highly

accurate detection. The software specifications

included CMAKE 3.8 for modern CUDA, CUDA

10.0, OpenCV 2.4, cuDNN 7.0, running on Linux

16.04. With an Octa Core Intel Core i7-7700HQ

processor, 16 GB RAM, and a 3GB NVIDIA

GeForce GTX 1060 graphics card, they achieved a

detection speed of 28.3 FPS, IOU of 71.76%, recall

of 0.92, precision of 0.92, and mAP of 87.07% using

52,000 data samples. The study also proved

YOLOv3's ability to detect objects under three

different lighting conditions, with a maximum range

of 3 meters for the ball and 8 meters for the goal.

YOLOv3 was also used in a 2020 study by

Susanto et al. [5], who implemented XNOR-Net [6]

on a humanoid soccer robot [7]. The addition of

XNOR-Net, which uses a binary Convolutional

Neural Network for image classification,

significantly lightened the YOLO [8] operation,

making it 58 times faster and using 32 times less

memory than other methods. With XNOR-YOLO on

a Logitech C92 1080p webcam, an Intel NUC6i5sYH

Core i5 miniPC, and an NVIDIA Jetson TX1 GPU,

they achieved a detection rate of 30 FPS for both the

ball and the goal.

Another study utilizing YOLOv3 on a humanoid

soccer robot was conducted by Nugraha et al. [9] in

2021. They built a robot capable of detecting the ball,

goal, field boundaries, and other robots (teammates

or opponents). This research tested YOLOv3's

detection accuracy in various situations: full and

partial visual ball detection, slow and fast ball

movement, ball distance, and detection time. The

results showed good detection for full and partial

visual balls, but YOLOv3 struggled with moving

objects, requiring the robot to approach the object for

effective detection. The optimal ball detection range

was found to be 50-900 cm, with an average detection

time of 0.033 seconds, based on 3000 trained image

samples.

In 2022, Sanubari & Puriyanto [10] utilized

YOLO (YOLOv3 and YOLOv3-Tiny) on a KRSBI-

B robot to detect the ball and goal using an

Omnidirectional camera. Using 8000 datasets (7000

training and 1000 validation) with frame sizes

320x320 and 416x416, they achieved accuracies of

81.8% (YOLOv3) and 74.2% (YOLOv3-Tiny) for

the former, and 93.2% (YOLOv3) and 81%

(YOLOv3-Tiny) for the latter. These results

confirmed that YOLOv3's mAP was consistently

higher than YOLOv3-Tiny's, indicating both models

could detect the ball and goal effectively. They

suggested incorporating other deep learning methods

for robot movement strategies.

Most recently, Jati et al. (2024) [11] used YOLO-

NAS (Neural Architecture Search) in their study,

"Enhancing Humanoid Robot Soccer Ball Tracking,

Goal Alignment, and Robot Avoidance Using

YOLO-NAS," for ball detection, goal alignment, and

obstacle avoidance maneuvers. This research also use

YOLOv8 [12] as a comparison for the model. The

research achieved an average success rate of 53.3%

for ball detection (from 60 samples), 91.7% for goal

alignment, and 100% for opponent avoidance

maneuvers (from 10 samples). They recommended

using more data to remove research limitations.

Previous studies predominantly employed

YOLOv3 and its variants, achieving good detection

performance but typically on higher-end hardware

(e.g., NVIDIA GTX 1060 [3], Jetson TX1 [5]) that

exceeds the computational constraints of low-cost

platforms like the Raspberry Pi 3. These approaches

also required larger datasets (thousands to tens of

thousands of images) and did not integrate simple yet

effective distance estimation for autonomous

navigation on constrained hardware. In contrast, the

present work utilizes the more efficient YOLOv8n

architecture with a significantly smaller dataset (691

images) to achieve comparable or superior precision

while enabling real-time operation and navigation on

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

32

a Raspberry Pi 3, highlighting improved suitability

for budget-constrained robotic applications.

Compared to earlier YOLO versions used in

soccer robots (primarily YOLOv3 and YOLOv3-

Tiny), YOLOv8n offers architectural improvements

including anchor-free detection and advanced

training strategies, resulting in better speed-accuracy

trade-offs on resource-limited hardware. Ultralytics

benchmarks indicate YOLOv8n outperforms

YOLOv5n and YOLOv3-Tiny in mAP while

maintaining similar or faster inference times on CPU-

only systems, making it more suitable for deployment

on the Raspberry Pi 3 without requiring GPU

acceleration.

3. Research Method

This study develops a ball-detection system for a

wheeled soccer robot using the YOLOv8 object-

detection model. The proposed system enables the

robot to detect a yellow ball in real time, estimate its

distance, and navigate toward it autonomously. The

research methodology encompasses requirement

analysis, system design, YOLOv8 model

implementation, system testing and comprehensive

performance evaluation (Fig. 1).

Figure 1. Research Procedure

The hardware platform consists of a Raspberry Pi

[13] 3 Model B as the main processing unit, a

compact CSI camera module for image acquisition,

an Arduino Uno R3 [14] for low-level motor control,

an L298N dual H-bridge motor driver, and four DC

motors mounted on a custom wheeled soccer robot

chassis. Serial communication via USB is employed

to exchange detection results and distance commands

between the Raspberry Pi (running Python) and the

Arduino (programmed in C++ using Arduino IDE).

The software environment includes Raspberry Pi OS

64-bit, Thonny IDE 4.0.2, Arduino IDE, and the

Ultralytics YOLOv8 library.

Data collection involved two sources: (1) a

custom dataset comprising photographs of the target

yellow ball captured using a smartphone and the

robot’s own camera under varying lighting and angle

conditions, supplemented by relevant images

obtained from the internet; and (2) real-time video

streams acquired directly from the mounted camera

during testing. All collected images underwent

manual annotation using bounding boxes and the

class label “ball”. Data augmentation techniques

were applied to increase dataset diversity and

robustness. The final dataset was split into training

(80%) and validation/test (80%) sets to prevent

overfitting and enable reliable performance

evaluation (Fig. 2).

Figure 2. Data Design

The YOLOv8n (nano) pre-trained model was

selected for its favorable trade-off between accuracy

and inference speed on resource-constrained

hardware. Custom training was performed by fine-

tuning the model on the prepared dataset.

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

33

Hyperparameters such as epoch count, batch size, and

optimizer were adjusted empirically to achieve

convergence. Upon completion of training, the best

weights file (.pt) with the highest mAP@0.5 on the

validation set was exported for deployment (Fig. 3).

Figure 3. Training System Flowchart

The overall system workflow is as follows: the

camera continuously captures frames, which are fed

into the YOLOv8 model running on the Raspberry Pi.

When confidence for the “ball” class exceeds 70%,

the bounding-box center coordinates are obtained,

and the estimated distance to the yellow ball is

computed using the classical pinhole camera model.

This model leverages the principle of similar

triangles, where the real-world diameter of the ball D

(in meters) and the camera's focal length f (in pixels,

determined through prior calibration) are fixed

known parameters, while the apparent projected

width 𝜔 (in pixels) of the ball directly measured from

the YOLOv8 bounding box varies inversely with

distance; the range Z (depth along the optical axis) is

thus calculated via the monotonic relationship

𝑍 =
𝑓×𝐷

𝜔
, assuming a predominantly fronto-parallel

orientation of the ball to minimize perspective

distortion and neglecting lens radial distortion

(reasonable approximations for the low-cost CSI

camera module operating within 1–3 meters). These

data (bounding-box center and estimated distance)

are transmitted via serial communication to the

Arduino, which translates the distance into

appropriate PWM signals for the DC motors, driving

the robot forward toward the ball. If confidence falls

below the threshold or no ball is detected, the robot

resumes searching behaviour. (Fig. 4).

Figure 4. Object Detection Flowchart

A confidence threshold of 70% was selected for

ball detection based on empirical evaluation during

preliminary testing on the validation set. This value

effectively balanced high precision (minimizing false

positives in potential cluttered environments) with

sufficient recall, aligning with common practices in

real-time YOLO deployments for robotics.

System evaluation was conducted indoors under

controlled yet varied lighting conditions. The yellow

ball was placed at random positions and distances

ranging from 1 m to 3 m from the robot. Performance

metrics for object detection included True Positive

(TP), False Positive (FP), False Negative (FN), and

True Negative (TN), from which Accuracy,

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

34

Precision, and Recall [15] were computed using the

standard formulas:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100%

(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100%

(3)

Navigation performance was quantified by

Navigation Error using Mean Absolute Percentage

Error (MAPE) [16]:

𝑀𝐴𝑃𝐸 (%) =
1

𝑛
∑ |

𝑌𝑖 − 𝑋𝑖

𝑌𝑖

| × 100%

𝑛

𝑖=1

(4)

Where Yi is the ground-truth distance, and Xi is

the robot’s actual traveled distance. Precision-Recall

curves and distance-dependent navigation error plots

were generated to visualize model robustness across

operating conditions.

The integrated methodology, combining state-of-

the-art deep learning-based detection with

lightweight embedded implementation, provides a

complete framework for real-time ball detection and

autonomous approach in soccer robot soccer

applications, with quantitative benchmarks

facilitating objective assessment and future

improvements.

4. Results and Discussion

The proposed ball-detection and navigation

system for a wheeled soccer robot was successfully

implemented and comprehensively evaluated. The

final hardware realization of the robot closely

followed the design outlined in Section 3, with

overall dimensions of 25 cm × 25 cm × 15 cm. The

mechanical structure was driven by four DC motors

controlled through an L298N dual H-bridge driver,

while low-level motion control was handled by an

Arduino Uno R3. Real-time image processing and

inference were performed on a Raspberry Pi 3 Model

B equipped with a compact CSI webcam. Power was

supplied separately by a 12 V (3-cell) LiPo battery

pack for the motors and Arduino, and a power bank

for the Raspberry Pi to ensure stable operation during

extended tests (Fig. 5).

Figure 5. Soccer Robot Final Design

The YOLOv8n model was custom-trained on a

dataset consisting of 691 annotated images of a

yellow target ball (kasti/tennis ball) collected from

both direct camera captures. After manual labelling

and augmentation, the dataset was split into 552

training images and 139 validation images. Training

was conducted for 30 epochs with a batch size of 16,

AdamW optimizer, and 640×640 input resolution.

The best-performing weights were deployed on the

Raspberry Pi for real-time inference.

Detection logic was enhanced with a central blue

region-of-interest (ROI) (Fig. 6) in the frame and

predefined distance thresholds (1.0, 1.5, 2.0, 2.5, and

3.0 m). Distance estimation was performed using the

known ball diameter and pinhole camera model.

When a ball was detected inside the ROI with

confidence ≥ 0.7 and within one of the predefined

distance bands, the corresponding command (1-5)

was sent via USB serial to the Arduino, which

executed calibrated forward motion using PWM and

timed delays. Upon reaching the target distance, both

detection and motion loops terminated.

Figure 6. Detection Interface

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

35

Detection performance was evaluated over 10

trials at each distance (1–3 m). The system achieved

an average accuracy of 100%, precision of 100%, and

recall of 94% (Table 1). Perfect precision across all

distances indicates zero false positives — the model

never misclassified a non-ball object as a ball. Recall

remained 100% up to 2 m but dropped to 90% at 2.5

m and 80% at 3 m, primarily due to occasional

processing delays on the resource-constrained

Raspberry Pi 3 and minor degradation of bounding-

box accuracy at longer ranges.

Table 1. Detection performance metrics across tested

distances

Distance

(meter)

Accuracy

(%)

Precision

(%)

Recall

(%)

1 100 100 100

1.5 100 100 100

2 100 100 100

2.5 100 100 90

3 100 100 80

Average 100 100 94

The reported 100% accuracy and precision were

obtained under controlled indoor conditions with

stable lighting, a relatively small custom dataset of

691 images, and 10 trials per distance.

Navigation accuracy was assessed by measuring

the actual stopping distance after each successful

detection. Mean Absolute Percentage Error (MAPE)

yielded an overall navigation error of 8.05% (Table

2). Error increased gradually with distance, from 5%

at 1 m to approximately 10% at 2.5–3 m, which is

attributed to cumulative wheel slippage, minor

calibration drift in PWM-to-distance mapping, and

small errors in distance estimation from YOLO

bounding boxes.

Table 2. Navigation error results

Object

Distance (cm)

Distance Reach

(cm)

Navigation

Error (%)

100 95 5

150 142 5.333

200 181 9.5

250 224 10.4

300 270 10

Average (%) 8.0466

The Precision-Recall curve (Fig. 7) confirms

excellent precision maintained at 100% while recall

decreases at longer ranges. The navigation error plot

(Fig. 8) shows a near-linear increase, yet the

maximum error remains below 11%, demonstrating

robust and controllable navigation behavior suitable

for indoor soccer robot applications.

Figure 7. Precision-Recall Curve

Figure 8. Navigation Error Graph

Overall, the integrated system successfully

demonstrated reliable real-time ball detection and

autonomous approach within 1–3 m under controlled

indoor lighting. The perfect precision and high recall

up to 2 m, combined with single-digit navigation

error, validate the effectiveness of YOLOv8n on low-

cost hardware for this task. Performance degradation

beyond 2.5 m suggests future improvements in

camera resolution, adoption of a more powerful

single-board computer (e.g., Raspberry Pi 4/5 or

NVIDIA Jetson Nano), refined distance estimation

using stereo vision or depth sensors, advanced path-

planning algorithms, and mechanical enhancements

to reduce wheel slip. With these refinements, the

proposed framework has strong potential for

competitive robot soccer environments requiring fast

and accurate ball acquisition.

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

36

5. Conclusion

This study successfully demonstrates the

effectiveness of the YOLOv8 object detection model

for real-time ball detection and autonomous

navigation in a low-cost wheeled soccer robot.

Experimental results from ten trials per distance (1–3

m) confirm that the system achieves 100% accuracy,

100% precision, and 94% recall in ball detection,

with zero false positives across all tested conditions.

The navigation module, driven by distance estimates

derived from YOLOv8 bounding boxes, yields an

average navigation error of only 8.05% (MAPE),

with errors remaining below 11% even at the

maximum tested range of 3 meters.

The consistent high precision and acceptable

recall up to 2 meters, combined with single-digit

navigation error, validate the suitability of the

lightweight YOLOv8n variant for deployment on

resource-constrained platforms such as the Raspberry

Pi 3. Although detection recall and navigation

accuracy slightly degrade beyond 2.5 meters due to

hardware limitations and cumulative mechanical

factors, overall performance remains highly reliable

for indoor robot soccer applications.

In conclusion, the proposed YOLOv8-based

vision system provides an accurate, robust, and

computationally efficient solution for ball detection

and approach tasks in wheeled soccer robots, offering

a strong foundation for further development in

competitive robotic soccer environments.

These results demonstrate strong performance

within the tested scenario but may not fully

generalize to more dynamic environments involving

moving balls, varying outdoor lighting, obstacles, or

larger field sizes.

6. Limitation

Although the developed system demonstrated

strong performance in indoor ball detection and

navigation, several limitations were identified during

testing that affect overall robustness and real-world

applicability.

The primary constraint arises from the use of a

Raspberry Pi 3 Model B, which exhibited occasional

processing delays and limited RAM and storage,

causing frame drops and reduced inference speed,

particularly at longer distances. Recall degradation

beyond 2.5 m and the observed increase in navigation

error with distance are largely attributable to these

hardware bottlenecks and the relatively low

resolution of the CSI camera module. Additionally,

the fixed forward-facing camera created a blind zone

below approximately 20 cm, preventing reliable

detection of very close objects, and the simple open-

loop navigation strategy based on timed PWM

commands was susceptible to wheel slippage and

minor mechanical inconsistencies.

To address these shortcomings, future iterations

of the system are recommended to incorporate the

following enhancements:

1. Upgrade the computing platform to a Raspberry

Pi 4/5 (≥4 GB RAM) or an NVIDIA Jetson

series module, paired with a high-capacity

microSD card (≥32 GB), to support higher

inference rates and eliminate real-time

processing bottlenecks.

2. Employ a higher-resolution camera (≥1080p) or

an omnidirectional lens system to improve

detection reliability at greater distances and

widen the effective field of view.

3. Integrate supplementary proximity sensors such

as ultrasonic or time-of-flight sensors to

compensate for the camera’s near-field blind

spot and provide more accurate distance

measurements when the ball is within 20–30 cm.

4. Extend the perception capabilities by training

the model on additional classes (opponent

robots, goalposts, field lines) and implement

more advanced navigation algorithms (e.g., PID

control, dynamic path planning, or obstacle

avoidance) to enable competitive play scenarios,

including dribbling past opponents and

autonomous goal scoring.

Implementing these improvements is expected to

significantly enhance detection recall at longer

ranges, reduce navigation error to below 5%, and

transform the prototype into a fully competitive

soccer robot suitable for standardized RoboCup or

similar tournaments.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

The author expresses sincere gratitude to Shoffin

Nahwa Utama, M.T., the primary supervisor, for his

extraordinary dedication, continuous guidance,

constructive feedback, and unwavering support

throughout the entire research period. His

approachable demeanor, willingness to provide

 Volume 01, Issue 02, December 2025 : 30-37 Received: December 18, 2025. Revised: December 30, 2025.

37

assistance at any time, and role as both mentor and

fatherly figure greatly eased the completion of this

work without undue pressure. The author also

extends deep appreciation to Dr. M. Imamudin, Lc,

MA, the co-supervisor, for his valuable insights,

thoughtful suggestions, and consistent

encouragement during the preparation and

development of this study. Their combined expertise

and kindness were instrumental in bringing this

research to a successful conclusion.

References

[1] M. Kulshreshtha, S. S. Chandra, P.

Randhawa, G. Tsaramirsis, A. Khadidos, and

A. O. Khadidos, “Oatcr: Outdoor autonomous

trash-collecting robot design using yolov4-

tiny,” Electron., vol. 10, no. 18, 2021, doi:

10.3390/electronics10182292.

[2] D. Diono, M. J. W. Wicaksono, A. Jefiza, and

D. R. Prayudha, “Pendeteksian Objek Hasil

Pengepresan Kaleng dan Botol dengan

Metode You Only Look Once (YOLO) yang

Diaplikasikan pada Mesin Sortir

Pembelajaran PBL,” J. Integr., vol. 16, no. 1,

pp. 1–10, 2024, doi: 10.30871/ji.v16i1.4598.

[3] H. Soebhakti, S. Prayoga, R. A. Fatekha, and

M. B. Fashla, “The Real-Time Object

Detection System on Mobile Soccer Robot

using YOLO v3,” Proc. 2019 2nd Int. Conf.

Appl. Eng. ICAE 2019, 2019, doi:

10.1109/ICAE47758.2019.9221734.

[4] U. Aulia, I. Hasanuddin, M. Dirhamsyah, and

N. Nasaruddin, “Heliyon A new CNN-

BASED object detection system for

autonomous mobile robots based on real-

world vehicle datasets,” Heliyon, vol. 10, no.

15, p. e35247, 2024, doi:

10.1016/j.heliyon.2024.e35247.

[5] S. Susanto, F. A. Putra, and R. Analia,

“XNOR-YOLO: The high precision of the

ball and goal detecting on the barelang-FC

robot soccer,” Proc. ICAE 2020 - 3rd Int.

Conf. Appl. Eng., 2020, doi:

10.1109/ICAE50557.2020.9350386.

[6] W. Lee, K. Kim, W. Ahn, J. Kim, and D. Jeon,

“A Real-Time Object Detection Processor

With XNOR -Based Variable-Precision

Computing Unit,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 31, no. 6, pp. 749–761,

2023, doi: 10.1109/TVLSI.2023.3257198.

[7] T. Bräunl, Robots and Controllers. 2022. doi:

10.1007/978-981-16-0804-9_1.

[8] J. Redmon, S. Divvala, R. Girshick, and A.

Farhadi, “You Only Look Once: Unified,

Real-Time Object Detection”.

[9] A. C. Nugraha, M. L. Hakim, S. Yatmono,

and M. Khairudin, “Development of Ball

Detection System with YOLOv3 in a

Humanoid Soccer Robot,” J. Phys. Conf. Ser.,

vol. 2111, no. 1, pp. 1–17, 2021, doi:

10.1088/1742-6596/2111/1/012055.

[10] F. F. Sanubari and R. D. Puriyanto, “Deteksi

Bola dan Gawang dengan Metode YOLO

Menggunakan Kamera Omnidirectional pada

Robot KRSBI-B,” Bul. Ilm. Sarj. Tek. Elektro,

vol. 4, no. 2, pp. 76–85, 2022, doi:

10.12928/biste.v4i2.6712.

[11] H. Jati, N. A. Ilyasa, and D. D. Dominic,

“Enhancing Humanoid Robot Soccer Ball

Tracking, Goal Alignment, and Robot

Avoidance Using YOLO-NAS,” J. Robot.

Control, vol. 5, no. 3, pp. 829–838, 2024, doi:

10.18196/jrc.v5i3.21839.

[12] Д. Л. Я. Мобильного, Р. С.

Использованием, and Y. И. Strong, “REAL-

TIME OBJECT DETECTION AND

TRACKING FOR MOBILE ROBOT USING

YOLOV8 AND STRONG SORT,” vol. 11,

no. 116, 2023.

[13] E. Upton and G. Halfacree, Raspberry Pi®

User Guide. 2016. doi:

10.1002/9781119415572.

[14] K. W. Humaidillah, “Modul Belajar Arduino

Uno,” p. 52, 2019.

[15] C. D. Manning, “Introduction to Information

Retrieval,” no. c, 2009, [Online]. Available:

https://nlp.stanford.edu/IR-

book/pdf/irbookonlinereading.pdf

[16] A. Kurniawan and A. Harumwidiah, “An

evaluation of the artificial neural network

based on the estimation of daily average

global solar radiation in the city of Surabaya,”

vol. 22, no. 3, pp. 1245–1250, 2021, doi:

10.11591/ijeecs.v22.i3.pp1245-1250.

