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A B S T R A C T 

This research is aimed to identify students’ misconceptions in 

proving onto and one-to-one function in Abstract Algebra using 

CRI (Certainty Response Index), which is an instrument to 

distinguish misconceptions and errors. This research uses 

qualitative method. There are eighteen research participants, and 

they are Mathematics Education students in 3rd semester. 

Researchers asked participants to solve some problems related to 

mathematical proof. Then, participants gave score based on their 

belief or level of certainty. The result shows that ten students get 

misconceptions. They were weak in understanding the definition of 

onto and one-to-one function, and are not yet trained to proof onto 

and one-to-one function in Abstract Algebra. Further, this research 

also find that the errors of participants in proving mathematics are 

mainly influenced by errors in algebraic operation. 
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1. INTRODUCTION 

The 21st century encourages us to have the ability to think critically, creatively, collaborate and 

communicate (Griffin, McGaw, & Care, 2012). This skill is trained through learning 

Mathematics. In the college curriculum, there is a course specifically designed to practice 

critical thinking skills. One of them is Abstract Algebra. The ability to think critically can be 

seen in their proofing ability in identifying several onto and one-to-one functions, or justify 

several theorems related to functions. Study of mathematical proof could develop the students’ 

ability to think critically in other domains of explanation (Dawkins & Weber, 2017; Lesseig, 

2016; Mata-Pereira & da Ponte, 2017; Reid, 2005). Seeing students' misconceptions in proving 

functions is one technique to see ability to think critically. Therefore, analyzing students’ 

misconception is very important study.  

The systematic error is experienced by students in a relatively long time. This systematic 

error is an error that occurs in students on aspects of student procedural knowledge, conceptual 

knowledge, or both. Some errors that often occur in students are calculation errors. While 

Radatz states mathematics as a language identifies errors experienced by students so far into 

students' mistakes in understanding mathematical concepts, symbols, and vocabulary (Li, 2016). 

There are three kinds of error, namely: structural errors, arbitrary errors, executive mistakes 

(Orton, 1983). Students' misconceptions are very strongly in cognitive structures. It influences 
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in a fundamental sense how students understand natural phenomena and argumentation (Boero, 

Fenaroli, & Guala, 2018; Hammer, 1996; Moon, Stanford, Cole, & Towns, 2017). 

Identification of misconceptions is a fertile area in education research, it should be 

distinguished from lack of knowledge. Misconception strongly held cognitive structures that are 

different from the accepted understanding in a field and it can interfere new knowledge’s 

construction. While a lack of concept or knowledge can be remedied with instruction and 

subsequent learning (Hammer, 1996). It is important to distinguish a lack of knowledge from a 

misconception. Although both are the same in interfere students’ new knowledge, but the 

instructional methods for eliminating misconceptions and for remedying a lack of knowledge 

can differ easily (Hasan, Bagayoko, & Kelley, 1999). 

One method that is usually used to distinguish students’ errors and misconceptions is CRI 

(Certainty Response Index). It is an instrument used to measure the degree of certainty response 

(Hasan, et.al, 1999). Researchers asked participants to give a score based on their belief or level 

of certainty. Certainty is related to their belief in using well knowledge, concepts, or principles. 

CRI often uses a certain scale. For example, a six-point scale (0–5) where 0 means that students 

only guess in total or lack of knowledge for the procedures or laws of the questions, while a 

score of 5 indicates that students have very self-confidence in answering the questions. 

Likewise, when researcher asked students to give a score of CRI, it means that we instruct them 

to make their own judgements about the certainty of proving an onto and one-to-one function in 

Abstract Algebra. Table 1 shows the score and level of CRI (Certainty Response Index). 

Table 1. Score and Level of Certainty 

 

 

 

 

 

 

 

Students with low level of CRI (< 2,5) shows that they donot understand about the subject, 

just guessing to answer the questions, and donot have a good conception about the subject or 

question. While students with high level of CRI (> 2,5) shows that they have a good confidence 

to answer the question or solve the problems. There are two possibilities in high level of CRI, 

confidence in correct answer shows that students has a good knowledge about the subject and 

confidence in wrong answer show that there are misconception. This is the way to distinguish 

between students’ misconception and lack of knowledge. Table 2 shows the characteristics to 

distinguish misconception, lack of knowledge, lucky guess, and knowledge of correct concept. 

Table 2. Decision matrix for students and given question, based on combination of correct or wrong 

answer and of low or high CRI 

 Low level of CRI (< 2,5) High Level of CRI (> 2,5) 

Correct answer Correct answer and low CRI 

(lucky guess) 

Correct answer and high CRI 

(knowledge of correct concept) 

Wrong answer Wrong answer and low CRI (lack 

of knowledge) 

Wrong answer and high CRI 

(Misconception) 

 

 

Score Level of Certainty 

0 Totally guessed answer 

1 Almost guess 

2 Not sure 

3 Sure 

4 Almost Certain 

5 Certain 
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2. METHOD 

The methode which used in this research is descriptive-qualitative. The descriptive research is 

aimed to describe phenomena that are little known or to identify a new phenomena 

(Dulock,1993).  The qualitative research is aimed to understand  the phenomena  which contains  

behavior, perception, action (Creswell, 2012). We use supporting instruments likes algebra test, 

questionnaires, and interviews. 

In this study, we identify some students misconseptions and errors in proving onto and one-

to-one function in Abstract Algebra course offered to Mathematics Education students. They are 

eighteen research participants. To collect data, we use diagnostic test related to onto and one-to-

one function. The participants were requested to write the degree of certainty he has in his own 

ability to select and utilize well-established knowledge, concepts or laws to arrive at the answer 

of examination or test. The test contains two indicators.  The first indicator is related to the 

ability of students to identify whether the sample functions presented in the problem are onto 

functions and injective functions. The second indicator is related to student skills in justifying a 

theorem on the inverse function. 

3. RESULTS AND DISCUSSION 

Students made variety reasons in mathematical proofs. Table 3 shows students’ test results 

analyzed by using CRI. 

Table 3. The number of students in knowledge of correct concept, lucky guess, lack of knowledge, and 

misconception 

Question/Proving 
Knowledge of 

correct concept 
Lucky guess 

Lack of 

knowledge 
Misconception 

Onto function 1  0 9 8 

One-to-one function 9 1 4 4 

 

Based on analysis in Table 3, students tend to get misconception in proving onto function 

than one-to-one function. This is because in proving onto function, students should use counter-

example while in proving one-to-one function students just proving with direct proof. This 

research found that some types of misconceptions; (1) proving a general case just by specific 

examples (misconception of representation); (2) misconceptions about mathematical symbols 

(misconceptions of symbols); (3) proving by misusing proving strategy (misconception of the 

proofs strategy).  Next will be explained about the three types of misconceptions. 

3.1. Misconception of Representation 

A mapping or function from   to   is onto if and only if every element of   is an image of at 

least one element in   . A standard way to demonstrate that       is onto is to take an 

arbitrary element   in   and show (usually by some kinds of formula or algebraic operation) 

that there exists an element   in   such that         (Gilbert & Gilbert, 2009). But students 

who experienced misconception of representation take a fixed element in B and show that it has 

an inverse image in A to prove that a function is onto. It shows that they tend to use an example 

to prove a general case. Subjects ignore the condition that codomain should entirely has in 

inverse image in domain, so they just take an example to show a general case. Figure 1 is 

students’ test result who experience misconceptions of representation. 
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Figure 1. Subject’s answer who experience misconceptions of representation 

Figure 1 show that the subject takes one fixed element of R, which is 2 to show that     

has an inverse image in      }. And with this argument, subject concluded that       is an 

onto function. It is also said by Selden & Selden (1987) that any wrong proof’s strategies are 

usually using examples to represent the whole. And according to Stavrou (2014) students 

usually replaced formal proofs with specific examples. Subject’s answer in Figure 1 also shows 

that there are another types of misconception, that is misconception symbol and it will be 

explained later. 

3.2. Misconception of Symbol 

In this type of misconception, subject experienced a misconception about understanding 

mathematical symbols. The subject ignored the important information contained in the symbol 

so that subject’s concept about mathematical symbol is different with the existing concept. This 

is indicated by subject’s inability to understand symbol              . Figure 2 shows 

subject’s answer which experienced misconception symbol. 

 

Figure 2. Subject’s answer who experience misconception symbol 

Figure 2 shows that subject cannot understand about the symbol of function or mapping. 

Subject expect that       means   subtract {0}, so that the result is R. Subject ignore about 

the operation of sets, that       means that set of real number, except {0}. This wrong 

conception is not suitable with the conception that exist, it make subject misconception about 

the symbol and also cannot proof onto function. This kind of misconception is called with 

vocabulary misconceptions that addressed by focusing on the part of the language that is 

𝑅      𝑅    𝑅 

𝑓 𝑅  𝑅 

𝑓 𝑥  
 𝑥  1

𝑥
 

Let 𝑓 𝑅      𝑅 defined by 𝑓 𝑥  
2𝑥−1

𝑥
 

Show that f is onto and one-to-one. 

 

𝑓 𝑅      𝑅  R     f R 

1 
2 
3 

 𝑥  1

𝑥
   

𝑥  1

𝑥
 1 

𝑥

𝑥
   

𝑥     𝑅 

To proof whether the function is onto or not, 

choose   𝑅 that means 𝑓 𝑥   , so that 

 

Because 2 has pre-map in R, so function 𝑓 

is onto 

1 
2 
3 
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misunderstood (Holmes, Miedema, & Haugen, 2013). In this case, subject has a vocabulary 

problem of defining or interpreting symbol of function.  

3.3  Misconception of Proof Strategies 

In this type of misconception the subject only rewrites the definition, the subject does not prove 

anything but has concluded that his statement is proven. Figure 3 shows subject’s answer who 

experience misconception of proofs strategy. 

 

Figure 3. Subject’s answer who experience misconception of proofs strategy 

Students’ answer in Figure 3 shows that subject cannot understand or get misconception in 

proving strategy. Function       is called one-to-one (injective) if and only if different 

elements of A always have different images under   . To prove that a function is one-to-one is 

using its contrapositive that is for any a, b in A            always implies     . But 

subject in this type of misconception ignoring this proving strategy, they just expect to explain 

the definition and conclude that the function is one-to-one. This kind of misconception is also 

called with logical errors (Sari, Waluyo, Ainur, & Darmaningsih, 2018), that is students’ proof 

framework is incorrect and thir argument is invalid. 

4. CONCLUSION 

This research shows that there are three types of misconceptions that occured, including: (1) 

proving a general case just by specific examples (misconception of representation); (2) 

misconceptions about mathematical symbols (misconceptions of symbols); (3) proving by 

misusing proving strategy (misconception of the proofs strategy).  It is necessary to improve 

students’ proving skills and strategy, because understanding about definition is not enough to 

construct a valid proof. A lecturer should familiarize students with proving framework and 

exercise so they can writing proof in a correct way and framework. A further study can be 

conducted by investigating students’ thinking or interviewing them to know about what they are 

thinking on every step. 
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